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1. Introduction

The aim of this paper is to investigate the persistence and stability property of the following
discrete two-prey one-predator model with infinite delays:

x1(n + 1) = x1(n) exp

[
a1(n) − b1(n)x1(n) − c1(n)

n∑
s=−∞

H1(n − s)x3(s)

]
,

x2(n + 1) = x2(n) exp

[
a2(n) − b2(n)x2(n) − c2(n)

n∑
s=−∞

H2(n − s)x3(s)

]
,

x3(n + 1) = x3(n) exp

[
−b3(n)x3(n) + d1(n)

n∑
s=−∞

H3(n − s)x1(s)

+ d2(n)
n∑

s=−∞
H4(n − s)x2(s)

]
,

(1.1)

where xi(n), i = 1, 2, are the densities of the prey species i at the nth generation; x3(n) is
the density of the predator at the nth generation; {ai(n)}, {ci(n)}, {di(n)}(i = 1, 2), {bi(n)}
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(i = 1, 2, 3); {Hi(n)}(i = 1, . . . , 4) are all bounded nonnegative sequences such that

0 < ali ≤ aui , 0 < cli ≤ cui , 0 < dli ≤ dui , 0 < bli ≤ bui ,
∞∑
n=0

Hi(n) = 1. (1.2)

Here, for any bounded sequence {g(n)}, set gu = supn∈N{g(n)} and gl = infn∈N{g(n)}.
From the point of view of biology, in the sequel, we assume that

xi(s) = Φi(s) ≥ 0, Φi(0) > 0, i = 1, 2, 3, (1.3)

where s = . . . ,−n,−n + 1, . . . ,−1, 0. Then system (1.1) with the initial condition (1.3) has a
unique positive solution (x1(n), x2(n), x3(n))

T .
As one of the dominant themes in mathematical biology, the predator-prey relation-

ship has been studied in a number of ways (see [1–4] and the references therein). In 1970,
Parrish and Saila [5] firstly proposed the one-prey two-predator model as follows:

ẋ1(t) = x1(t)
(
b1 − x1(t) − αx2(t) − ηz(t)

)
,

ẋ2(t) = x2(t)
(
b2 − βx1(t) − x2(t) − υz(t)

)
,

ż(t) = z(t)
(−b3 + dηx1(t) + dυx2(t)

)
.

(1.4)

Gramer and May [6] studied the stability of the positive equilibrium of system (1.4); Takcuchi
and Adachi [7] investigated the existence of the positive equilibrium and Hopf Bifurcation of
the above system.

Recently, Elettreby [8] proposed the following two-prey one-predator model:

ẋ(t) = ax(t)(1 − x(t)) − (x(t)z(t)),

ẏ(t) = by(t)
(
1 − y(t)) − (y(t)z(t)),

ż(t) = −cz(t)2 + dx(t)z(t) + ey(t)z(t),

(1.5)

where all the parameters in system (1.5) are positive constants. By applying differential
inequality theory and iterative scheme, he showed that the unique positive equilibrium
of system (1.5) is globally attractive. It is well known that a suitable ecosystem should
incorporate some pase of the state of system, which is represented by time delays. Li et al.
[9] studied the two-prey one-predator model with delays:

ẋ1(t) = x1(t)
(
b1 − x1(t) − αx2(t) − r1y(t)

)
,

ẋ2(t) = x2(t)
(
b2 − βx1(t) − x2(t) − r2y(t)

)
,

ẏ(t) = −b3y(t) + dr1x1(t − τ)y(t − τ) + dr2x2(t − τ)y(t − τ),
(1.6)

where x1(t), x2(t), y(t) are the densities of the prey and predator at the time t, respectively,
b1, b2, b3, α, β, r1, r2, d are all positive constants. They investigated the Hopf bifurcation of
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system (1.6). Corresponding to system (1.5), Huang [10] proposed and studied the following
system with infinite delays:

ẋ1(t) = ax1(t)

(
1 − x1(t) − 1

a

∫ t
−∞
K1(t − s)x3(s)ds

)
,

ẋ2(t) = bx2(t)

(
1 − x2(t) − 1

b

∫ t
−∞
K2(t − s)x3(s)ds

)
,

ẋ3(t) = x3(t)

(
−cx3(t) + d

∫ t
−∞
K3(t − s)x1(s)ds + e

∫ t
−∞
K4(t − s)x2(s)ds

)
,

(1.7)

where all the coefficients a, b, c, d, e are positive constants, and Ki : [0,+∞) → (0,+∞) are
continue functions such that

∫∞
0 Ki(s)ds = 1, i = 1, 2, 3, 4. By applying iterative scheme, he

showed that the unique positive equilibrium of the system is globally attractive.
On the other hand, it is well known that the discrete time model governed by

difference equations are more appropriate than the continuous ones when the populations
have nonoverlapping generations. Corresponding to traditional continuous Logistic model
governed by differential equations, Mohamad and Gopalsamy [11] proposed the following
single species discrete model:

x(n + 1) = x(n) exp
[
r(n)

(
1 − x(n)

K(n)

)]
. (1.8)

They tried to obtain a set of sufficient conditions which ensure that (1.8) admits a unique
positive and globally asymptotically stable almost periodic solution. However, Zhou and Zou
[12] gave an counterexample which shows that the main results of [11] are not correct. By
developing some new analysis technique, Zhou and Zou [12] obtained sufficient conditions
which ensure the existence of a positive and globally asymptotically stable ω-periodic
solution of system (1.8). Chen and Zhou [13] further generalized system (1.8) to the following
two-species Lotka-Volterra competition system:

x(n + 1) = x(n) exp
[
r1(n)

(
1 − x(n)

K1(n)
− μ2(n)y(n)

)]
,

y(n + 1) = y(n) exp
[
r2(n)

(
1 − μ1(n)x(n) −

y(n)
K2(n)

)]
.

(1.9)

They obtained the sufficient conditions which guarantee the persistence of the system (1.3).
Also, for the periodic case, they obtained the sufficient conditions which guarantee the
existence of a globally stable periodic solution of the system. Wang and Lu [14] proposed
the following Lotka-Volterra model:

xi(k + 1) = xi(k) exp

⎡
⎣ri(k) − n∑

j=1

aij(k)xj(k)

⎤
⎦, i = 1, 2, . . . , n, (1.10)
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where xi(k) is the density of population i at kth generation; ri(k) is the growth rate of
population i at kth generation; aij(k) measures the intensity of intraspecific competition or
interspecific action of species. By constructing a suitable Lyapunov function and using the
finite covering theorem of Mathematic Analysis, they obtained a set of sufficient conditions
which ensures the system to be globally asymptotically stable. Similar to the continuous
ones, some scholars also argued that the discrete model should incorporate some past state
of the species and thus should consider the discrete model with time delay. Recently, Chen
[15] investigated the persistent property of the following discrete two species Lotka-Volterra
competition model with deviating arguments:

x1(n + 1) = x1(n) exp

[
r1(n)

(
1 − x1(n)

K1(n)
− μ2(n)

n∑
s=−∞

H1(n − s)x2(s)

)]
,

x2(n + 1) = x2(n) exp

[
r2(n)

(
1 − μ1(n)

n∑
s=−∞

H2(n − s)x1(s) − x2(n)
K2(n)

)]
,

(1.11)

where xi(n), i = 1, 2, are the densities of competition species i at nth generation. By
establishing a new difference inequality, Chen [15] showed that under the same conditions
as that of Chen and Zhou [13], (1.11) is also permanent, which means that with some
suitable restriction on the coefficients of the system, delay has no influence on the persistent
property of the system. Chen [16] also investigated the persistent property of a discrete
n-species nonautonomous Lotka-Volterra competitive systems with infinite delays and
feedback controls. As we can see, both [15] and [16] considered the persistent property of the
system, but they did not investigate the stability property of the system. Recently, Chen et al.
[17] investigated the dynamic behaviors of the following general discrete nonautonomous
system of plankton allelopathy with finite time delay:

N1(k + 1) =N1(k) exp

[
r1(k) −

m∑
l=0

a1l(k)N1(k − l) −
m∑
l=0

b1l(k)N2(k − l)

−
m∑
l=0

c1l(k)N1(k)N2(k − l)
]
,

N2(k + 1) =N2(k) exp

[
r2(k) −

m∑
l=0

a2l(k)N2(k − l) −
m∑
l=0

b2l(k)N1(k − l)

−
m∑
l=0

c2l(k)N2(k)N1(k − l)
]
,

(1.12)

whereNi(k) represents the densities of population i at the kth generation; ri(k) is the intrinsic
growth rate of population i at the kth generation; ail(k) measures the intraspecific influence
of the (k − l)th generation of population i on the density of own population; bil(k) stands
for the inter-specific influence of the (k − l)th generation of population i on the density
of own population and cil(k) stands for the effect of toxic inhibition of population i by
population j at the (k − l)th generation, i, j = 1, 2 and i /= j. {ri(k)}, {ail(k)}, {bil(k)} and
{cil(k)} are all bounded nonnegative sequences defined for k ∈ N. They obtained sufficient
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conditions which guarantee the permanence, global attractivity and partial extinction of the
above system.

Concerned with the discrete predator-prey system, by giving the detail analysis of the
right hand side of the system, Yang [18] obtained a set of sufficient conditions which ensures
the uniform persistence of the system investigated. Recently, Chen and Chen [19] proposed
the following discrete periodic Volterra model with mutual interference and Holling II type
functional response

x(n + 1) = x(n) exp
[
r1(n) − b1(n)x(n) − c1(n)

k + x(n)
ym(n)

]
,

y(n + 1) = y(n) exp
[
−r2(n) − b2(n)y(n) − c2(n)x(n)

k + x(n)
ym−1(n)

]
.

(1.13)

They also obtained sufficient conditions which ensure the permanence of the system. For
more works on discrete population model, one could refer to [11–42] and the references cited
therein.

However, to the best of the authors knowledge, to this day, no scholars propose and
study the discrete predator-prey model with infinite delays. This motivates us to propose
and study (1.1). The aim of this paper is to investigate the persistent and stability property of
system (1.1).

The rest of the paper is arranged as follows: some useful lemmas are stated in the
following section. Sufficient conditions which ensure the permanence and global attractivity
of system (1.1) are stated and proved in Section 3. In Section 4, an example together with its
numeric simulation shows the feasibility of the main results. We end this paper by a brief
discussion.

2. Preliminaries

Now let us state several lemmas which will be useful in proving main results.

Lemma 2.1 (see [29]). Assume that {x(n)} satisfies x(n) > 0 and

x(n + 1) ≤ x(n) exp[r(n) − a(n)x(n)], (2.1)

for n ∈ N, where {r(n)} and {a(n)} are all positive sequences bounded above and below by positive
constants. Then

lim sup
n→+∞

x(n) ≤ 1
al

exp[ru − 1]. (2.2)

Lemma 2.2 (see [29]). Assume that {x(n)} satisfies

x(n + 1) ≥ x(n) exp[r(n) − a(n)x(n)], k ≥N0, (2.3)
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lim supn→+∞x(n) ≤ x∗ and x(N0) > 0, where {r(n)} and {a(n)} are all positive sequences bounded
above and below by positive constants andN0 ∈N. Then

lim inf
n→+∞

x(n) ≥ rl exp
[
rl − aux∗]
au

. (2.4)

Lemma 2.3 (see [43]). Let x : Z → R be a nonnegative bounded sequences, and let H : N → R
be a nonnegative sequences such that

∑∞
n=0 H(n) = 1. Then

lim inf
n→+∞

x(n) ≤ lim inf
n→+∞

n∑
s=−∞

H(n − s)x(s) ≤ lim sup
n→+∞

n∑
s=−∞

H(n − s)x(s) ≤ lim sup
n→+∞

x(n). (2.5)

3. Main Results

Now, we investigate the persistence property and stability property of system (1.1).

Theorem 3.1. Assume that

al1 − cu1M3 > 0, (H1)

al2 − cu2M3 > 0 (H2)

hold, then system (1.1) is permanent, that is,

mi ≤ lim inf
n→+∞

xi(n) ≤ lim sup
n→+∞

xi(n) ≤Mi, i = 1, 2, 3, (3.1)

where

Mi =
1

bli
exp
[
aui − 1

]
, i = 1, 2, M3 =

1

bl3
exp
[
du1M1 + du2M2 − 1

]
,

mi =
ali − cui M3

bui
exp
[
ali − cui M3 − bui Mi

]
, i = 1, 2,

m3 =
dl1m1 + dl2m2

b3
exp
[
dl1m1 + dl2m2 − bu3M3

]
.

(3.2)

Proof. It follows from the first two equations of system (1.1) that

xi(n + 1) ≤ xi(n) exp[ai(n) − bi(n)xi(n)], i = 1, 2. (3.3)

So, as a consequence of Lemma 2.1, for any solution (x1(n), x2(n), x3(n))
∞
n=0 of system (1.1)

with initial condition (1.3), one has

lim sup
n→+∞

xi(n) ≤ 1

bli
exp
[
aui − 1

] def= Mi, i = 1, 2. (3.4)
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According to Lemma 2.3, from (3.4), we have

lim sup
n→+∞

n∑
s=−∞

H3(n − s)x1(s) ≤M1, lim sup
n→+∞

n∑
s=−∞

H4(n − s)x2(s) ≤M2. (3.5)

For any small positive constant ε > 0, it follows from (3.5) that there exists a positive integer
n1 such that for all n ≥ n1,

n∑
s=−∞

H3(n − s)x1(s) ≤M1 + ε,
n∑

s=−∞
H4(n − s)x2(s) ≤M2 + ε. (3.6)

Thus, for all n ≥ n1, from the last equation of system (1.1), if follows that

x3(n + 1) ≤ x3(n) exp
[
−bl3x3(n) + du1 (M1 + ε) + du2 (M2 + ε)

]
. (3.7)

By applying Lemma 2.1 to (3.7), we have

lim sup
n→+∞

x3(n) ≤ 1

bl3
exp
[
du1 (M1 + ε) + du2 (M2 + ε) − 1

]
. (3.8)

Setting ε → 0, it follows that

lim sup
n→+∞

x3(n) ≤ 1

bl3
exp
[
du1M1 + du2M2 − 1

] def= M3. (3.9)

Next, we show that under the assumption of Theorem 3.1,

lim inf
n→+∞

xi(n) ≥ mi, i = 1, 2, 3. (3.10)

According to Lemma 2.3, from (3.9) we have

lim sup
n→∞

n∑
s=−∞

Hi(n − s)x3(s) ≤M3, i = 1, 2. (3.11)

Conditions (H1) and (H2) imply that for enough small positive constant ε1, we have

ali − Cu
i (M3 + ε1) > 0, i = 1, 2. (3.12)

For ε1, it follows from (3.11) that there exists an positive integer n2 ≥ n1 such that for all
n > n2,

n∑
s=−∞

Hi(n − s)x3(s) ≤M3 + ε1, i = 1, 2. (3.13)
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For n > n2, from (3.13) and the first two equations of system (1.1), we have

xi(n + 1) ≥ xi(n) exp
[
ali − bui xi(n) − cui (M3 + ε1)

]
, i = 1, 2. (3.14)

Thus, according to Lemma 2.2, one has

lim inf
n→+∞

xi(n) ≥
ali − cui (M3 + ε1)

bui
exp
[
ali − cui (M3 + ε1) − bui Mi

]
, i = 1, 2. (3.15)

Setting ε1 → 0, it follows that

lim inf
n→+∞

xi(n) ≥
ali − cui M3

bui
exp
[
ali − cui M3 − bui Mi

]
def= mi, i = 1, 2. (3.16)

According to Lemma 2.3, from (3.16) we have

lim inf
n→+∞

n∑
s=−∞

H3(n − s)x1(s) ≥ m1, lim inf
n→+∞

n∑
s=−∞

H4(n − s)x2(s) ≥ m2. (3.17)

For any ε2 > 0 small enough, without loss of generality, we may assume that ε2 <
(1/2)min{m1, m2}. From (3.17), it follows that there exists a n3, such that for all n ≥ n3,

n∑
s=−∞

H3(n − s)x1(s) ≥ m1 − ε2,
n∑

s=−∞
H4(n − s)x2(s) ≥ m2 − ε2. (3.18)

For n ≥ n3, from (3.18) and the last equation of (1.1), we have

x3(n + 1) ≥ x3(n) exp
[
−bu3x3(n) + dl1(m1 − ε2) + dl2(m2 − ε2)

]
. (3.19)

By applying Lemma 2.2 to (3.19), it follows that

lim inf
n→+∞

x3(n) ≥
dl1(m1 − ε2) + dl2(m2 − ε2)

bu3

× exp
[
dl1(m1 − ε2) + dl2(m2 − ε2) − bu3M3

]
.

(3.20)

Setting ε2 → 0, it follows that

lim inf
n→+∞

x3(n) ≥
dl1m1 + dl2m2

bu3
exp
[
dl1m1 + dl2m2 − bu3M3

]
def= m3. (3.21)

This ends the proof of Theorem 3.1.
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Theorem 3.2. Assume that (H1) and (H2) hold. Assume further that there exist positive constants
α, β, γ and δ such that

αmin
{
bl1,

2
M1

− bu1
}
− γdu1 > δ, (H3)

βmin
{
bl2,

2
M2

− bu2
}
− γdu2 > δ, (H4)

γ min
{
bl3,

2
M3

− bu3
}
− αcu1 − βcu2 > δ, (H5)

hold. Then for any two positive solutions (x1(n), x2(n), x3(n))
T and (y1(n), y2(n), y3(n))

T of system
(1.1), one has

lim
n→+∞

(
xi(n) − yi(n)

)
= 0, i = 1, 2, 3. (3.22)

Proof. From conditions (H3)–(H5), there exits an enough small positive constant ε3 such that

αmin
{
bl1,

2
M1 + ε3

− bu1
}
− γdu1 > δ, (3.23)

βmin
{
bl2,

2
M2 + ε3

− bu2
}
− γdu2 > δ, (3.24)

γ min
{
bl3,

2
M3 + ε3

− bu3
}
− αcu1 − βcu2 > δ. (3.25)

Since (H1) and (H2) hold, for any solutions (x1(n), x2(n), x3(n))
T and (y1(n), y2(n), y3(n))

T of
system (1.1) with the initial conditions (1.3), it follows from Theorem 3.1 that

lim sup
n→+∞

xi(n) ≤Mi, lim sup
n→+∞

yi(n) ≤Mi, i = 1, 2, 3. (3.26)

For the above ε3 and (3.26), there exists an n∗ > 0 such that for all n > n∗,

xi(n) ≤Mi + ε3, yi(n) ≤Mi + ε3. (3.27)

Firstly, let

V11(n) =
∣∣lnx1(n) − lny1(n)

∣∣. (3.28)
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Then from the first equation of the system (1.1), we have

V11(n + 1) =
∣∣lnx1(n + 1) − lny1(n + 1)

∣∣
≤ ∣∣lnx1(n) − lny1(n) − b1(n)

(
x1(n) − y1(n)

)∣∣
+ c1(n)

∣∣∣∣∣
n∑

s=−∞
H1(n − s) | x3(s) − y3(s)

∣∣∣∣∣.
(3.29)

Using the Mean Value Theorem, we get

x1(n) − y1(n) = exp(lnx1(n)) − exp
(
lny1(n)

)
= ξ1(n)

(
lnx1(n) − lny1(n)

)
, (3.30)

where ξ1(n) lies between x1(n) and y1(n), then it follows that

V11(n + 1) ≤ ∣∣lnx1(n) − lny1(n)
∣∣ −( 1

ξ1(n)
−
∣∣∣∣ 1
ξ1(n)

− b1(n)
∣∣∣∣
)∣∣x1(n) − y1(n)

∣∣

+ c1(n)

∣∣∣∣∣
n∑

s=−∞
H1(n − s) | x3(s) − y3(s)

∣∣∣∣∣,
(3.31)

and so

ΔV11 ≤ −
(

1
ξ1(n)

−
∣∣∣∣ 1
ξ1(n)

− b1(n)
∣∣∣∣
)∣∣x1(n) − y1(n)

∣∣

+ c1(n)

∣∣∣∣∣
n∑

s=−∞
H1(n − s) | x3(s) − y3(s)

∣∣∣∣∣.
(3.32)

Secondly, let

V12(n) =
∞∑
s=0

H1(s)
n−1∑
θ=n−s

c1(θ + s)
∣∣x3(θ) − y3(θ)

∣∣. (3.33)

then, similar to the aforementioned analysis, we have

ΔV12 = V12(n + 1) − V12(n)

≤ cu1
∣∣x3(n) − y3(n)

∣∣ − c1(n)
n∑

s=−∞
H1(n − s)∣∣x3(s) − y3(s)

∣∣. (3.34)
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Now, set

V1(n) = V11(n) + V12(n), (3.35)

then from (3.32) and (3.34), we have

ΔV1 = ΔV11 + ΔV12

≤ −
(

1
ξ1(n)

−
∣∣∣∣ 1
ξ1(n)

− b1(n)
∣∣∣∣
)∣∣x1(n) − y1(n)

∣∣
+ cu1
∣∣x3(n) − y3(n)

∣∣.
(3.36)

Let

V2(n) = V21(n) + V22(n), (3.37)

where

V21(n) =
∣∣lnx2(n) − lny2(n)

∣∣,
V22(n) =

∞∑
s=0

H2(s)
n−1∑
θ=n−s

c2(θ + s)
∣∣x3(θ) − y3(θ)

∣∣. (3.38)

Similar to the aforementioned analysis, we have

ΔV2 = ΔV21 + ΔV22

≤ −
(

1
ξ2(n)

−
∣∣∣∣ 1
ξ2(n)

− b2(n)
∣∣∣∣
)∣∣x2(n) − y2(n)

∣∣ + cu2 ∣∣x3(n) − y3(n)
∣∣, (3.39)

where ξ2(n) lies between x2(n) and y2(n).
Let

V3(n) = V31(n) + V32(n), (3.40)

where

V31(n) =
∣∣lnx3(n) − lny3(n)

∣∣,
V32(n) =

∞∑
s=0

H3(s)
n−1∑
θ=n−s

d1(θ + s)
∣∣x1(θ) − y1(θ)

∣∣

+
∞∑
s=0

H4(s)
n−1∑
θ=n−s

d2(θ + s)
∣∣x2(θ) − y2(θ)

∣∣.
(3.41)
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Similar to the aforementioned analysis, we have

ΔV3 = ΔV31 + ΔV32

≤ −
(

1
ξ3(n)

−
∣∣∣∣ 1
ξ3(n)

− b3(n)
∣∣∣∣
)∣∣x3(n) − y3(n)

∣∣
+ du1

∣∣x1(n) − y1(n)
∣∣ + du2 ∣∣x2(n) − y2(n)

∣∣,
(3.42)

where ξ3(n) lies between x3(n) and y3(n).
Now, we define a Lyapunou functional as follows:

V (n) = αV1(n) + βV2(n) + γV3(n). (3.43)

Calculating the difference of V along the solution of system (1.1), for n > n∗, it follows from
(3.23), (3.24), (3.25), (3.27), (3.36), (3.39) and (3.42) that

ΔV ≤ −
[
αmin

{
bl1,

2
M1 + ε3

− bu1
}
− γdu1

]∣∣x1(n) − y1(n)
∣∣

−
[
βmin

{
bl2,

2
M2 + ε3

− bu2
}
− γdu2

]∣∣x2(n) − y2(n)
∣∣

−
[
γ min

{
bl3,

2
M3 + ε3

− bu3
}
− αcu1 − βcu2

]∣∣x3(n) − y3(n)
∣∣

≤ −δ
n∑
i=1

∣∣xi(n) − yi(n)∣∣.

(3.44)

Summating both sides of the above inequalities from n∗ to n, we have

n∑
p=n∗

(
V
(
p + 1

) − V (p)) ≤ −δ
n∑

p=n∗

3∑
i=1

∣∣xi(p) − yi(p)∣∣, (3.45)

which implies

V (n + 1) + δ
n∑

p=n∗

3∑
i=1

∣∣xi(p) − yi(p)∣∣ ≤ V (n∗). (3.46)
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It follows that

n∑
p=n∗

3∑
i=1

∣∣xi(p) − yi(p)∣∣ ≤ V (n∗)
δ

, (3.47)

then

n∑
p=n∗

3∑
i=1

∣∣xi(p) − yi(p)∣∣ ≤ V (n∗)
δ

< +∞, (3.48)

which means that limn→∞
∑3

i=1 |xi(n) − yi(n)| = 0, that is

lim
n→+∞

(
xi(n) − yi(n)

)
= 0, i = 1, 2, 3. (3.49)

This completes the proof of Theorem 3.2.

4. Example

The following example shows the feasibility of the main results.

Example 4.1. Consider the following system:

x1(n + 1) = x1(n) exp

[(
1.1 + 0.1 sin

(√
2n
))

−
(

1.2 + 0.2 sin
(√

2n
))
x1(n)

− (0.3 + 0.2 cos(n))
n∑

s=−∞

e − 1
e

e−(n−s)x3(s)

]
,

x2(n + 1) = x2(n) exp

[(
1 + 0.1 sin

(√
3n
))

− (1.1 + 0.1 sin(n))x2(n)

−
(

0.2 + 0.02 cos
(√

3n
)) n∑

s=−∞

e2 − 1
e2

e−2(n−s)x3(s)

]
,

x3(n + 1) = x3(n) exp

[
−
(

1.15 + 0.15 sin
(√

3n
))
x3(n)

+
(

0.12 + 0.03 cos
(√

2n
)) n∑

s=−∞

e3 − 1
e3

e−3(n−s)x1(s)

+ (0.13 + 0.03 cos(n))
n∑

s=−∞

e4 − 1
e4

e−4(n−s)x2(s)

]
.

(4.1)



14 Discrete Dynamics in Nature and Society

0

0.2

0.4

0.6

0.8

1

1.2

So
lu

ti
on

x
1,
x

2,
an

d
x

3

0 5 10 15 20 25 30 35 40

Time n

x2

x1

x3

Figure 1: Dynamics behaviors of system (4.1) with initial conditions (x1(s), x2(s), x3(s))
T =

(0.5, 1, 0.3)T , (1.1, 1.1, 0.1)T , (0.9, 0.6, 0.2)T , s = . . . ,−n,−n + 1, . . . ,−1, 0.

One could easily see that there exist α = 0.06, β = 0.05, γ = 0.05 and δ = 0.001 such that

al1 − cu1M3 = 1 − 0.5M − 3 ≈ 0.7364 > 0,

al2 − cu2M3 = 1 − 0.22M3 ≈ 0.8840 > 0,

αmin
{
bl1,

2
M1

− bu1
}
− γdu1 ≈ 0.0082 > δ,

βmin
{
bl2,

2
M2

− bu2
}
− γdu2 ≈ 0.0241 > δ,

γ min
{
bl3,

2
M3

− bu3
}
− αcu1 − βcu2 ≈ 0.009 > δ.

(4.2)

Clearly, conditions (H1)–(H5) are satisfied. From Theorems 3.1 and 3.2, (1.1) is permanent
and globally attractive. Numeric simulation (Figure 1) strongly supports our results.

5. Discussion

In this paper, we propose a discrete two-prey one-predator model with infinite delay.
Theorem 3.1 shows that to ensure the permanence of the system, one should ensure ali, i = 1, 2
and bl3 enough large, that is, the net birth rate of prey species and the density restriction of
predator species should be large enough. We also obtain a set of sufficient conditions which
ensures the global attractivity of the system.
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