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We study the behavior of the well-defined solutions of the max type difference equation xn+1 =
max{1/xn,Anxn−1}, n = 0, 1, . . ., where the initial conditions are arbitrary nonzero real numbers
and {An} is a period-two sequence of real numbers with An ∈ [0,∞).

1. Introduction and Preliminaries

Recently, the study of max-type difference equations attracted a considerable attention. Al-
though max-type difference equations are relatively simple in form, it is, unfortunately, ex-
tremely difficult to understand thoroughly the behavior of their solutions; see, for example
[1–39] and the relevant references cited therein. Max-type difference equations stem from cer-
tain models in automatic control theory (see [1, 24]). For some papers on periodicity of differ-
ence equation, see, for example, [15, 16, 19, 22] and the relevant references cited therein.

In [9], Simsek et al. studied the behavior of the solutions of the followingmax-type dif-
ference equation:

xn+1 = max
{
xn−1,

1
xn−1

}
, n = 0, 1, . . . , (1.1)

where the initial conditions are nonzero real numbers.
In [10], Simsek studied the behavior of the solutions of the following max-type

difference equation:

xn+1 = max
{
xn−2,

1
xn−2

}
, n = 0, 1, . . . , (1.2)
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where the initial conditions are negative real numbers.
In [18], Elabbasy and Elsayed studied the behavior of the solutions of (1.2) where the

initial conditions are nonzero real numbers.
In [20], Elsayed and Stević showed that every well-defined solution of the difference

equation

xn+1 = max
{
A

xn
, xn−2

}
, n = 0, 1, . . . , (1.3)

where A ∈ R, is eventually periodic with period three.
In [21], Elsayed and Iričanin showed that every positive solution to the following

third-order nonautonomous max-type difference equation:

xn+1 = max
{
An

xn
, xn−2

}
, n = 0, 1, . . . , (1.4)

where An is a three-periodic sequence of positive numbers and is periodic with period three.
In [29], Yalçinkaya et al. studied the behavior of the solutions of the following max-

type difference equation:

xn+1 = max
{

1
xn

,Axn−1

}
, n = 0, 1, . . . , (1.5)

where A ∈ R and initial conditions are nonzero real numbers.
In this paper, we study the behavior of the well-defined solutions of the max type dif-

ference equation

xn+1 = max
{

1
xn

,Anxn−1

}
, n = 0, 1, . . . , (1.6)

where the initial conditions are arbitrary nonzero real numbers and {An} is a period-two se-
quence of real numbers with An ∈ [0,∞).

We need the following definitions and lemmas.

Definition 1.1. A sequence {xn}∞n=−k is said to be eventually periodic with period p if there is
n0 ∈ {−k, . . . ,−1, 0, 1, . . .} such that xn+p = xn for all n ≥ n0. If n0 = −k, then we say that the se-
quence {xn}∞n=−k periodic with period p.

We make two definitions regarding (1.6).

Definition 1.2. A right semicycle is a string of terms xl, . . . , xm with l ≥ 1,m ≤ ∞ such that xn =
An−1xn−2 for all n = l, . . . , m. Furthermore, if l > 1, xl−1 = 1/xl−2, and ifm < ∞, xm+1 = 1/xm.

Definition 1.3. A left semicycle is a string of terms xl, . . . , xm with l ≥ 1, m ≤ ∞ such that xn =
1/xn−1 for all n = l, . . . ,m. Furthermore, if l > 1, xl−1 = An−2xn−3, and ifm < ∞, xm+1 = Amxm−1.

We give the following lemmas which show us the periodic behavior of the solutions
of (1.6).
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Lemma 1.4. Assume that {xn}∞n=−1 is a well-defined solution of (1.6). If xn0 = xn0+2 and xn0+1 = xn0+3

such that n0 ∈ N0 ∪ {−1}, then the solution {xn}∞n=−1 is eventually periodic with period two.

Proof. We prove that

xn0 = xn0+2m, xn0+1 = xn0+2m+1, (1.7)

by induction. For m = 1, this is, assumption. Assume that (1.7) holds for all 1 ≤ n ≤ m0 ∈ N.
We may assume that n0 is odd. Then, by the inductive hypothesis, we have

xn0+2(m0+1) = max
{

1
xn0+2m0+1

, An0+2m0+1xn0+2m0

}

= max
{

1
xn0+1

, A1xn0

}
= xn0+1 = xn0 ,

(1.8)

from this and the inductive hypothesis, we have

xn0+2(m0+1)+1 = max
{

1
xn0+2m0+2

, An0+2m0+2xn0+2m0+1

}

= max
{

1
xn0

, A0xn0+1

}
= xn0+3 = xn0+1,

(1.9)

which completes the proof (the case n0 is even similar, so it will be omitted).

We omit the proof of the following lemma, since it can easily be obtained by induction.

Lemma 1.5. Assume that {xn}∞n=−1 is a well-defined solution of (1.6). If xn0 , xn0+1 > 0 such that
n0 ∈ N0 ∪ {−1}, then xn > 0 for all n ≥ n0.

Lemma 1.6. Assume that {xn}∞n=−1 is a well-defined solution of (1.6) andAn ∈ [0, 1). If this solution
is eventually positive, then it is eventually periodic with period two.

Proof. Assume that n0 ∈ N0 ∪ {−1} is the smallest index such that xn > 0 for all n ≥ n0. Then,
we have

xn+1xn = max{1, Anxnxn−1} ∀n ≥ n0 + 1. (1.10)
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Using this, we have

xn0+2xn0+1 = max{1, An0+1xn0+1xn0},
xn0+3xn0+2 = max{1, An0+2xn0+2xn0+1}

= max{1, An0+2, An0+2An0+1xn0+1xn0}
= max{1, An0+2An0+1xn0+1xn0},

xn0+4xn0+3 = max{1, An0+3An0+2An0+1xn0+1xn0},
...

(1.11)

then we get

xn0+k+1xn0+k = max

{
1, xn0+1xn0

k∏
i=1

An0+i

}
∀k ≥ 1. (1.12)

Observe that there exists a positive integer k such that

xn0+1xn0

k∏
i=1

An0+i ≤ 1. (1.13)

From this directly follows that {xn}∞n=−1 is eventually periodic with period two.

Lemma 1.7. Equation (1.6) has no right semicycle with an infinite terms for the positive initial
conditions and 0 < A0, A1 < 1.

Proof. Conversely, assume that (1.6) has a right semicycle with an infinite terms. And, let
{an} be periodic sequence of natural numbers with period two such that (an) = (0, 1, 0, 1, . . .).
Without loss of generality, we denote by x1 the first term of right semicycle with an infinite
terms. There is at least n0 ∈ N. For all n > n0, we can write

xn = max

⎧⎨
⎩

1

A
[|n/2|]an
0 A

[|n/2|]an+1
1 xan

−1x
an+1
0

, A
[|(n+1)/2|]an+1
0 A

[|(n+1)/2|]an
1 xan+1

−1 xan
0

⎫⎬
⎭

= A
[|(n+1)/2|]an+1
0 A

[|(n+1)/2|]an
1 x−1x0,

(1.14)

which implies

A
[(n+1)/2]an+1+[n/2]an
0 A

[(n+1)/2]an+[n/2]an+1
1 x−1x0 > 1 ∀n > n0. (1.15)

But this is a contradiction which completes the proof.

We omit the proof of the following lemma, since it can easily be obtained similarly.

Lemma 1.8. Equation (1.6) has no right semicycle with an infinite terms for the negative initial
conditions and A0, A1 > 1.
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2. Main Results

Since An is a two periodic, it has the form (A0, A1, A0, A1, . . .). If A0 = A1 = 0, then (1.6) be-
comes xn+1 = 1/xn, fromwhich it follows that every well-defined solution is periodic with pe-
riod two. Hence, in the sequel, we will consider the case when at least one of A0 and A1 is
not zero.

2.1. The Case 0 < A0, A1 ≤ 1

Theorem 2.1. If 0 < A0, A1 ≤ 1 and at least one of the initial conditions is arbitrary positive real
number, then every well-defined solution of (1.6) is eventually periodic with period two.

Proof. Firstly, assume that x−1, x0 > 0. Then, we have x1 = max{1/x0, A0x−1}. There are two
cases to be considered.

(a) If A0x−1x0 ≤ 1, then x1 = 1/x0. Hence,

x2 = max
{

1
x1

, A1x0

}
= max{x0, A1x0} = x0,

x3 = max
{

1
x2

, A2x1

}
= max

{
1
x0

,
A0

x0

}
=

1
x0

,

x4 = max
{

1
x3

, A3x2

}
= max{x0, A1x0} = x0.

(2.1)

From Lemma 1.4, the result follows.

(b) If A0x−1x0 > 1, then x1 = A0x−1. We have

x2 = max
{

1
x1

, A1x0

}
= max

{
1

A0x−1
, A1x0

}
. (2.2)

There are two subcases to be considered.

(b1) If A0A1x−1x0 ≤ 1, then x2 = 1/(A0x−1). Hence,

x3 = max
{

1
x2

, A2x1

}
= max

{
A0x−1, A2

0x−1
}
= A0x−1,

x4 = max
{

1
x3

, A3x2

}
= max

{
1

A0x−1
,

A1

A0x−1

}
=

1
A0x−1

.

(2.3)

From Lemma 1.4, the result follows in this case.

(b2) If A0A1x−1x0 > 1, then x2 = A1x0. We have

x3 = max
{

1
x2

, A2x1

}
= max

{
1

A1x0
, A2

0x−1

}
. (2.4)
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There are two subcases to be considered.

(b21) If A2
0A1x−1x0 ≤ 1, then x3 = 1/(A1x0). We have

x4 = max
{

1
x3

, A3x2

}
= max

{
A1x0, A

2
1x0

}
= A1x0,

x5 = max
{

1
A1x0

, A4x3

}
= max

{
1

A1x0
,

A0

A1x0

}
=

1
A1x0

.

(2.5)

From Lemma 1.4, the result follows in this case.

(b22) If A2
0A1x−1x0 > 1, then x3 = A2

0x−1. The result follows Lemma 1.7.
Secondly, assume that x0 < 0 < x−1, then we have

x1 = max
{

1
x0

, A0x−1

}
= A0x−1 > 0,

x2 = max
{

1
x1

, A1x0

}
=

1
x1

> 0.

(2.6)

From Lemmas 1.5 and 1.6, the result follows (the case x−1 < 0 < x0 is
similar, so it will be omitted) which completes the proof.

Remark 2.2. If 0 < A0, A1 ≤ 1 and x−1, x0 < 0, then every well-defined solution of (1.6) is not
periodic.

2.2. The Case A0 = 0 < A1 < 1 or A1 = 0 < A0 < 1

Theorem 2.3. If A0 = 0 < A1 < 1 or A1 = 0 < A0 < 1, then every well-defined solution of (1.6) is
eventually periodic with period two.

Proof. First assume that A1 = 0 < A0 < 1. Then, we have

x1 = max
{

1
x0

, A0x−1

}
> 0,

x2 = max
{

1
x1

, A1x0

}
> 0.

(2.7)

From Lemmas 1.5 and 1.6, the result follows. The case A0 = 0 < A1 < 1 is similar, so it will be
omitted.

2.3. The Other Cases

If at least one ofA0 andA1 greater than one, then we have the well-defined solutions of (1.6),
where the positive initial conditions are not periodic. So, there are many cases in which solu-
tions of (1.6) are not periodic. If the solutions of (1.6) are not periodic, then general solution
of (1.6) can be obtained for many subcases.
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Theorem 2.4. Assume that {xn}∞n=−1 is a well-defined solution of (1.6) for A0 > 1 and A1 = 0.

(a) If x1 = 1/x0 and x0, x−1 > 0 or x−1 < 0 < x0, then

xn =

(
x0

A
[|(n−1)/2|]
0

)(−1)n

. (2.8)

(b) If x1 = A0x−1 and x0, x−1 > 0 or x0 < 0 < x−1, then

xn =

(
1

A
[|(n+1)/2|]
0 x−1

)(−1)n

. (2.9)

Proof. (a) It can be proved by induction. Let x1 = 1/x0 and x0, x−1 > 0. For n = 1, (2.8) holds.
Assume that (2.8) holds for all 1 ≤ m ≤ m0. We may assume that m0 ∈ N is even (the case m0

is odd is similar, so it will be omitted). Then, by the inductive hypothesis, we have

xm0+1 = max
{

1
xm0

, Am0xm0−1

}

= max

{
A

(m0−2)/2
0

x0
,
Am0/2

0

x0

}
=

Am0/2
0

x0
=

(
x0

A
[|m0/2|]
0

)(−1)m0+1

,

(2.10)

which completes the proof.
(b) Also, this case can be proved similarly.

Now, we describe the behavior of solutions of (1.6) for some other cases. We omit the
proof of the following theorem, since it can easily be obtained by induction.

Theorem 2.5. Assume that {xn}∞n=−1 is a well-defined solution of (1.6).

(a) If A0 = 0, A1 > 1 and x0, x−1 > 0 (or x−1 < 0 < x0), then

xn =
(
A

[|n/2|]
1 x0

)(−1)n
. (2.11)

(b) If A0, A1 > 1 and x0, x−1 > 0 (or x−1 < 0 < x0, x1 = 1/x0), then

xn =
(
Aan+1

0 Aan
1

)[|n/2|]
x
(−1)n
0 . (2.12)

(c) If A0, A1 > 1 and x0, x−1 > 0, x1 = A0x−1, x2 = A1x0, then

xn =
(
A

[|(n+1)/2|]an+1
0 A

[|(n+1)/2|]an
1

)[|n/2|]
xan+1
−1 xan

0 . (2.13)

There are many different cases. The different cases can be obtained similarly.
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Theorem 2.6. If A0, A1 > 1 and initial conditions are negative, then every well-defined solution of
(1.6) is eventually periodic with period two.

Proof. Assume that x0, x−1 < 0. Then,

x1 = max
{

1
x0

, A0x−1

}
. (2.14)

There are two cases to be considered.

(a) If x1 = 1/x0, then x2 = x0, x3 = 1/x0, x4 = x4 = x0. Then, the result follows
Lemma 1.4.

(b) If x1 = A0x−1, then x2 = max{1/(A0x−1), A1x0}. There are two subcases.

(b1) If x2 = 1/(A0x−1), then x3 = A0x−1, x4 = 1/(A0x−1). Then the result follows
Lemma 1.4.

(b2) If x2 = A0x−1, then there will be subcases and from Lemmas 1.4 and 1.8 which
completes the proof.
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