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We establish a new blow-up criteria for solution of the three-dimensional Boussinesq equations in
Triebel-Lizorkin spaces by using Littlewood-Paley decomposition.

1. Introduction and Main Results

In this paper, we consider the regularity of the following three-dimensional incompressible
Boussinesq equations:

U —pAu+u-Vu+VP =0e3, (x,t) € R*x(0,00),

0;—xkAO+u-VO=0,
(1.1)
V-u=0,

u(x,0) = ug, 6(x,0) = 6,,

where u = (u!(x,t), u(x,t), u>(x,t)) denotes the fluid velocity vector field, P = P(x,t) is the
scalar pressure, 0(x, t) is the scalar temperature, > 0 is the constant kinematic viscosity, x > 0
is the thermal diffusivity, and e; = (0,0,1)", while u and 6 are the given initial velocity and
initial temperature, respectively, with V-1, = 0. Boussinesq systems are widely used to model
the dynamics of the ocean or the atmosphere. They arise from the density-dependent fluid
equations by using the so-called Boussinesq approximation which consists in neglecting the
density dependence in all the terms but the one involving the gravity. This approximation can
be justified from compressible fluid equations by a simultaneous low Mach number/Froude
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number limit; we refer to [1] for a rigorous justification. It is well known that the question
of global existence or finite-time blow-up of smooth solutions for the 3D incompressible
Boussinesq equations. This challenging problem has attracted significant attention. Therefore,
it is interesting to study the blow-up criterion of the solutions for system (1.1).

Recently, Fan and Zhou [2] and Ishimura and Morimoto [3] proved the following
blow-up criterion, respectively:

curlu € L'(0,T; BY, . (%)), (1.2)

Vuell (o, T, L <R3>>. (1.3)

Subsequently, Qiu et al. [4] obtained Serrin-type regularity condition for the three-
dimensional Boussinesq equations under the incompressibility condition. Furthermore, Xu
et al. [5] obtained the similar regularity criteria of smooth solution for the 3D Boussinesq
equations in the Morrey-Campanato space.

Our purpose in this paper is to establish a blow-up criteria of smooth solution for the
three-dimensional Boussinesq equations under the incompressibility condition V - 1y = 0 in
Triebel-Lizorkin spaces.

Now we state our main results as follows.

Theorem 1.1. Let (up,00) € HY(R?), (u(-,t),0(-,t)) be the smooth solution to the problem (1.1)
with the initial data (uo, 6y) for 0 < t < T. If the solution u satisfies the following condition

Vue LP(O,T; Fy04/3) <R3)>, + % =2, ; <gq <o, (1.4)

then the solution (u,0) can be extended smoothly beyond t = T.

Corollary 1.2. Let (ug,6p) € H'(R®), (u(-,t),0(-,t)) be the smooth solution to the problem (1.1)
with the initial data (uo, 6p) for 0 < t < T. If the solution u satisfies the following condition

curlu e L! (0, T; Boy oo (R3> ) (1.5)

then the solution (u,0) can be extended smoothly beyond t = T.

Remark 1.3. By Corollary 1.2, we can see that our main result is an improvement of (1.2).

2. Preliminaries and Lemmas

The proof of the results presented in this paper is based on a dyadic partition of unity in
Fourier variables, the so-called homogeneous Littlewood-Paley decomposition. So, we first
introduce the Littlewood-Paley decomposition and Triebel-Lizorkin spaces.
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Let S(R%) be the Schwartz class of rapidly decreasing function. Given f € S(R?), its
Fourier transform ¥ f = f is defined by

@ =j e f (x)dx. 2.1)

R3

Let (y, ¢) be a couple of smooth functions valued in [0, 1] such that y is supported in the ball
{E e R3: || < 4/3}, ¢ is supported in the shell {¢ € R®: 3/4 < |¢| < 8/3}, and

x@+ Xp(278) =1, Veer®,

>0
(2.2)
Zq;(z-ig = 1), Ve e R3\ {0).
jez
Denoting ¢; = ¢(277¢), h = F'y, and h = F~'y, we define the dyadic blocks as
Aif =¢(27D) = 23ff h(2y)f(x-y)dy, jez,
R3
(2.3)
Sif = 3 Akf =23’f h(2y)f(x-y)dy, jer.
k<j-1 ®
Definition 2.1. Let S, be the space of temperate distribution u such that
lim S;f =0, inS$.
Jim S;f (2.4)
The formal equality
f=24f 2.5)

€z

holds in S, and is called the homogeneous Littlewood-Paley decomposition. It has nice
properties of quasi-orthogonality

A f=0, |j-q|>2 (2.6)

Let us now define the homogeneous Besov spaces and Triebel-Lizorkin spaces; we
refer to [6, 7] for more detailed properties.

Definition 2.2. Letting s € R, p,q € [1, oo], the homogeneous Besov space B} , is defined by

By ={f €2 (R)1flly, <o} 27)
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Here

=) 1
) (szsanjfnz> , g<

N = =00
Bpg !

sup2°|A,; f
jez

I f (2.8)

P/ qZOO/

and 2'(R%) denotes the dual space of 2(R3) = {f € S(R3) | D*f(0) = 0, Va € N?
multi-index}.

Definition 2.3. Let s € R, p € [1,00), and q € [1,00], and for s € R, p = oo, and g = oo, the
homogeneous Triebel-Lizorkin space F;,q is defined by

Erq={f €2 (B) 1Ifll5, <oo}. 29)
Here
o a
<22j5"|A]‘f|q> , q< oo,
Al = 00V w (2.10)
sup2”[A;f|| q=co,
jez )

for p = oo and g € [1,0), the space F;/q is defined by means of Carleson measures which
is not treated in this paper. Notice that by Minkowski’s inequality, we have the following
inclusions:

B CF? ifg<p
P4 P’ ’
(2.11)
S 7S
F,,CB,, ifg>p.
Also it is well known that
B,=F, L*CBl,=F,,  B,=F,=H. (2.12)

Throughout the proof of Theorem 1.1 in Section 3, we will use the following inter-
polation inequality frequently:

If Il < AT 2CIVAE™, 2<q<6, fel(R)nHE (R).  (213)
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Lemma 2.4. Let k € N. Then there exists a constant C independent of f,j such that for 1 < p <
<o

supl|0®A, f |, < CPEIWPDI A ]| (2.14)
lal=k '

Remark 2.5. From the above Beinstein estimate, we easily know that

14;£1, < C2TVPVDNA ], (2.15)

3. Proofs of the Main Results

In this section, we prove Theorem 1.1. For simplicity, without loss of generality, we assume
u=x=1

Proof of Theorem 1.1. Differentiating the first equation and the second equation of (1.1) with
respect to xx (1 < k < 3), and multiplying the resulting equations by ou/0xx = Oxu and
00/ 0xy = 0k6, respectively, then by integrating by parts over R® we get

1d
EEnakuniz + || Voul7. = —fak[(u -V)u] - dxudx - Jakvp -Opudx + J‘ak(eeg)aku dx,
1d 2 2
5 g 10kOlL + IVOKOIlL: = — | Oic[(u- V)O] - 00 .
(3.1)
Noting the incompressibility condition V - u = 0, since
jak[(u -V)u] - Opudx = f(aku -V)u - Orudx,
fakvp <Okudx =0, (3.2)
f@k[(u -V)0] - 0r0dx = f(aku - V)0 - 0,0 dx,
then the above equations (3.1) can be rewritten as
zaﬂakuﬂm +||VOoul|7, = — | (Oku - V)u - Ogudx + | Ox(0e3)0xudx,
(3.3)
EEHakGIle +[|VOrO||12 = — | (Oku - V)6 - 0x0 dx.
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Adding up (3.3), then we have

d
25 (10wl + 10BIE. ) + 170l + |V oc0IE,

N —

_— J'(aku V)u - dpudx — J(bku V)0 - 30 dx + J‘Bk(933) - Opudx (3:4)

£ L+ + I3.
Firstly, for the third term I3, by Holder’s inequality and Young’s inequality, we get

1 1
I = jak(ee3) S Opudx < §||v9||§2 + E||Vu||§z. (3.5)

The other terms are bounded similarly. For simplicity, we detail the term I,. Using the
Littlewood-Paley decomposition (2.5), we decompose Vu as follows:

j=N
Vu=YA;(Vu)= > Aj(Vu) + .ZNA]-(Vu) + > Aj(Vu). (3.6)
=

j€z j<-N >N

Here N is a positive integer to be chosen later. Plugging (3.6) into I, produces that

I, = ZI |A;(Vu)||VO|*dx
R3

j<-N

j=N
+ ) f |A;(Vu)| VO dx
j:_N R3 (3.7)

+y IR3|Aj(Vu)||V9|2dx

>N

=L+ +15.
For 121, using the Holder inequality, (2.12), and (2.15), we obtain that

L <|VOIE. > [|A;Vull,.,
j<—N
< CIVOIE D 28214Vl
j<-N (3.8)

< C27 /2N V||| VO 7

3/2
< C2CAN(|Vul, + | VoI, )
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For Izz, from the Holder inequality and (2.15), it follows that

j=N
- Zf VORI &, (Vuldx = [ 1V0F 3 |;(V]d

=N 3/2q
<. 'V9'2< > |Af<w>|2"/3> N
J=N

=N 3/2q
< CN(2‘7‘3)/2qJ |v9|2< S A (Vw77 dx
R3 j=—N

< CN@3724) vg|2

(3.9)

2 Vul,

Here 4 denotes the conjugate exponent of g. Since 2g > 3 by the Gagliardo-Nirenberg
inequality and the Young inequality, we have

- (24-3)/ 3/4
122 < CN@a 3)/2q||ve||qu q”VZG - ||Vu||p37(zq/3)
(3.10)
”VZG” +CNI|VOL [ Vull,
4 (24/3)

For I3, from the Holder and Young inequalities, (2.12), (2.15), and Gagliardo-Nirenberg
inequality, we have

f |4;(Vu)||VOPdx

>N

<IVOIL 1A (VW) |,

>N

< CIVOIE D292 1A (Vi) )

>N

1/2 1/2
V29HU<ZZ"> <Zzzf||Af<Vu>||§>
>N >N

< c2—<N/2)||V9lleHV29||L2||V2”“2

(3.11)

C < VOl

ccrmymon, (Jveff « [vu.)
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Plugging (3.8), (3.10), and (3.11) into (3.7) yields

B 3/2 1 2
L < C2ON([Vul; +|VeI3) + [ v+ CN||v9||§2||vu||’;o( ;
9.(29/3

(3.12)
2 2
+ cz-N/2||v9||Lz<||v29||Lz + ||v2u Lz).
Similarly, we also obtain the estimate
32 1 2
I < CAN(IVul3+ V613) "+ 5 || V2u|| + CNIVuli | vull,
2 2 4,(2q/3)
(3.13)
2 2
+ C2*N/2||Vu||Lz<”v26||L2 + ||V2u L2>.
Putting (3.5), (3.12), and (3.13) into (3.4) yields
1d 2 1 2 w20\ |I?
521V VeI + 5| (vu, v2)||
N 513/2 ) p
< {2 NV, Vo) R} + CNI(Tu, VO [Vl (3.14)
9,(24/3)
N V20 fon oo\ |2
+{c2N(vu, vo) 3. ) || (v2u, v20) L
Now we take N in (3.14) such that
1
C27N[[(Vu, VO) 7. < e’ (3.15)
that is,
log(e+/(Vu, VO)|I7.
il o)., (3.16)
log 2
Then (3.14) implies that
d
2NV, VO)I}. < C+Clog((e+ [V, VO) 2 )Il(Vu, VO Valy, . (3.17)
dt 9.(29/3)
Applying the Gronwall inequality twice, we have
T
(Vi V9)||%2 < Cexp{exp (Cf ||Vu||’;O (s)ds> }, (3.18)
0 0.(29/3)

for all t € (0,T). This completes the proof of Theorem 1.1. O
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Proof of Corollary 1.2. In Theorem 1.1, taking p = 1, and combining (2.12) with the classical
Riesz transformation is bounded in B, o, (R*), we can prove it. O

References

[1] E. Feireisl and A. Novotny, “The Oberbeck-Boussinesq approximation as a singular limit of the full
Navier-Stokes-Fourier system,” Journal of Mathematical Fluid Mechanics, vol. 11, no. 2, pp. 274-302, 2009.

[2] J. Fanand Y. Zhou, “A note on regularity criterion for the 3D Boussinesq system with partial viscosity,”
Applied Mathematics Letters, vol. 22, no. 5, pp. 802-805, 2009.

[3] N.Ishimura and H. Morimoto, “Remarks on the blow-up criterion for the 3-D Boussinesq equations,”
Mathematical Models & Methods in Applied Sciences, vol. 9, no. 9, pp. 1323-1332, 1999.

[4] H. Qiu, Y. Du, and Z. Yao, “Serrin-type blow-up criteria for 3D Boussinesq equations,” Applicable
Analysis, vol. 89, no. 10, pp. 1603-1613, 2010.

[5] E Xu, Q. Zhang, and X. Zheng, “Regularity Criteria of the 3D Boussinesq Equations in the Morrey-
Campanato Space,” Acta Applicandae Mathematicae, vol. 121, pp. 231-240, 2012.

[6] H. Triebel, Theory of Function Spaces, vol. 78 of Monographs in Mathematics, Birkhduser, Basel,
Switzerland, 1983.

[7] J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction, Springer, New York, NY, USA, 1976.

[8] J. Y. Chemin, Perfect Incompressible Fluids, vol. 14 of Oxford Lectures Series in Mathematics and its
Applications, Oxford Science Publications, Oxford, UK, 1998.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



