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This paper deals with the analytical representation of bifurcations of each 3D discrete
dynamics depending on the set of bifurcation parameters. The procedure of bifurcation
analysis proposed in this paper represents the 3D elaboration and specification of the general
algorithm ofthe n-dimensional linear bifurcation analysis proposed by the author earlier. It is
proven that 3D domain of asymptotic stability (attraction) of the fixed point for a given 3D
discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and
flutter surfaces. The analytical construction of these surfaces is achieved with the help of
classical Routh-Hurvitz conditions of asymptotic stability. As an application the adjustment
process proposed by T. Puu for the Cournot oligopoly model is considered in detail.
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1. INTRODUCTION

The purpose of this paper is to construct the 3D
analytical representation of the general procedure
of linear bifurcation analysis developed by Sonis

(1993, 1997). The bifurcation analysis describes the
changes in the qualitative properties ofthe orbits on
non-linear discrete dynamics under the changes of
the (external) parameters of these dynamics.
The bifurcation phenomena are defined by the

position of the boundaries of attraction of the fixed
point. It will be proven further that the domain of
attraction of the fixed point of 3D discrete
dynamics is bounded by three critical bifurcation
surfaces: the divergence surface corresponding to
the case in which one of the eigenvalues of the
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Jacobi matrix of the linear approximation of the
dynamics equals to 1; theflip surface corresponding
to the existence of the eigenvalue 1, and theflutter
surface corresponding to the pair of complex con-

jugated eigenvalues with absolute values equal to 1.
The crossing of these surfaces by the movement of
the fixed point will generate the plethora of all
possible bifurcation phenomena.

2. 3D LINEAR BIFURCATION ANALYSIS

2.1. Fixed Points of 3D Discrete
Non-Linear Dynamics

Let us consider 3D discrete dynamics represented
by the following system of autonomous difference
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equations:

Xt+ F(xt, y,,z,; A) (= F,)
Y,+l G(xt,Yt, Z,; A) (=
zt+ H(xt, y,,zt; A) (=

where A {a, a2, a3,..., ak} is a set of external
bifurcation parameters and Ft, Gt, H are the differ-
entiable functions of x,, Yt, zt. For the fixed set A all
fixed points (x, y, z) of the system (2.1) are given by
the solutions of the system of algebraic equations

x F(x,y,z; A); y G(x,y,z; A);
z=H(x,y,z;A) (2.2)

2.2. The Value of the Jacobi Matrix at a

Fixed Point

Let us now present in detail the 3D procedure
of linear bifurcation analysis. First step of the
analysis includes the construction of the Jacobi
matrix of a linear approximation of the non-linear
dynamics (2.1):

OF, OF, OFt
Ox Oy Oz
OG, OGt OGt (23)J(t,t+l) Oxt Oyt Ozt
OH OH OH
Ox Oy Oz

and its value at the fixed point (x, y, z):

OF OF OF
Ox Oy
OG OG OG

(2.4)J-
Ox
OH OH OH
Ox

where functions F, G, H are results of substitution

(x,, yt, z,) --, (x, y, z) in F,, G, Ht:
F F(x, y, z; A)

zt:z

G G(x, y, z; A) [G,],,--; (2.5)
zt:z

H- H(x, y, z; A)
zt=z

The eigenvalues of the Jacobi matrix J are the
solutions of the characteristic polynomial equation:

#3
__

c1#2 _[_ c2# _+_ c3 0 (2.6)

where

OF OG OH
Cl Tr J -x + oy-S- + O-T (2.7)

c2

OF OF
Ox Oy
OG OG
Ox Oy

OF OF
Ox Oz
OH OH
Ox Oz

OG OG
Oy Oz
OH OH
Oy Oz

(2.8)

c3 det J

OF OF OF
Ox Oy Oz
OG OG OG
Ox Oy Oz
OH OH OH
Ox Oy Oz

(2.9)

2.3. Domain of Attraction of the Fixed Point
and its Routh-Hurwitz Inequalities

If #1,#2,#3 are the roots of the characteristic
Eq. (2.6) then as well known:

CI --(#1 -t-- #2 -t- /23); C2 1#2 --[- /11/13 -1- #23;

C3 --##2#3 (2.10)

By the yon Neiman theorem the fixed point
(x,y,z) is asymptotically stable iff for all eigen-
values of the Jacobi matrix J the condition holds:

I#l < (2.11)
Condition (2.11) defines the space of parameters

Cl, C2, C3 (space of eigenvalues) the geometrical
domain of asymptotic stability (domain of attrac-

tion). The analytical description of this domain can
be given with the help of classical Routh-Hurwitz
algorithm in the form of non-linear inequalities
(see, Samuelson, 1983, pp. 435-437; Sonis, 1997).
For the derivation of these inequalities, for 3D
discrete dynamics we construct first the new
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parameters bo, b, b2, b3 such that:

b0= 1+c1+c2+c3;

be 3 c c2 + 3c3;
bl 3 + cl c2 3c3
b3= 1-c+c.-c3

(2.12)

Further we construct the Routh-Hurwitz matrix

bl b3 0 1bo b2 0
0 bl b3

(2.13)

Divergence

D(-3.3,-1)

and its main minors: FIGURE Domain of attraction of 3D discrete dynamics.

A1 bl;
b b3

/2--
b0 b2
b

A3= bo
0

bb2 bob3;

b3 0

b2 0

bl b3
b3/N2 (2.14)

b2--0 lies on the triangle BCD; and the plane b3 -0
lies on the triangle ABC (see Fig. 1).

In addition, the inequality

/2 bl b2 bob3 > 0 (2.19)

The classical condition of asymptotic stability are

b0 > 0; /k > 0; /k2 > 0; A3 > 0 (2.15)

which means that:

defines the part of the pyramid which includes the
point (0, O, O) and lies under the saddle

’X2 bib2 bob3 c2 q- c13 q- c 0 (2.20)

bo > 0; b > 0; b2 > 0; b3 > 0;

A2 bb2 bob3 > 0 (2.16)

2.4. Geometrical Structure of the Domain of
Attraction: Critical Bifurcation Surfaces

Thus, the domain of attraction of the fixed point
(x, y, z) is defined by three inequalities:

bo + c + 6’2 @ 6’3 > 0;

b3 c + c2 6’3 > 0

A2 c2 qt_ c1 (23 c > 0 (2.21)

It is possible to see that the inequalities

b0 > 0; bl > 0; b2 > 0; b3 > 0 (2.17)

define in the space of eigenvalues C1,2, the
interior of the pyramid with the vertices

A(-1, 1, 1), B(1, 1, 1),
C(3, 3, 1), D(-3, 3, 1) (2.18)

The boundaries of the domain of attraction are two
planes,

bo + c + c2 + C3 0;

b3 c + c2 c3 0 (2.22)

and a saddle

A2 c2 q- ClC3 c 0 (2.23)

such that the plane bo- 0 lies on the triangle ADB;
the plane b 0 lies on the triangle ACD; the plane

The plane bo 0 intersects the saddle by the sides
AD and BD; and the plane b3=0 intersects the
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saddle by the sides AC and BC; these two planes and
the saddle will be called critical bifurcation surfaces.

2.5. Real and Complex Eigenvalues
in the Domain of Attraction

It is important to note that the domain of attraction
is divided into two parts by a saddle-like surface in
such a manner that one part includes three real
eigenvalues and the other one includes two complex
conjugated eigenvalues and one real eigenvalue.
For the construction of such a surface let us use the
classical Thchirnhausen transformation:

#- A Cl (2.24)
3

This transformation converts the characteristic
polynomial Eq. (2.6) into

/3 @ p/ _[_ q 0 (2.25)

where

p 2
? 1C2 2--; q 3 3 27 C13 (2.26)

The well-known classical condition for Eq. (2.25)
(and same as for Eq. (2.6)) to have only real roots is
the negativeness of the discriminant:

Thus, the surface

A_(p q 2

is dividing the domain of attraction into the above
mentioned two parts.

In the space of eigenvalues this surface has an

equation:

4A -- - 0 (2.29)
27 6 27 108

This surface includes the origin. Moreover the plane
b0 0 intersects this surface by the sides AD and
BD, and the plane b3 0 intersects this surface by
the sides AC and BC. The coordinate plane c 0
intersects this surface by the cubic curve

c - c23 0 (2.30)

the coordinate plane c2-0 intersects this surface
by the parabola:

4 2 (2.31)83 C
and the coordinate plane c3-0 intersects this
surface by the parabola"

2c--L (2.32)C2-- 4

2.6. Structure of Bifurcations on the
Critical Surfaces

The formulae (2.10) imply that

bo q- Cl q- c2 + c3 (1 #l)(1 #2)(1 #3)

/93 cl + c2 C3 (1 -+- #l)(1 + #2)(1 -+- #3)
(2.33)

Thus, on the plane b0=0 at least one of the
eigenvalues is equal to 1, i.e., dynamics became
divergent this is a divergence plane. On the plane
b3 0 at least one of the eigenvalues is equal to 1,
i.e., dynamics became oscillatory, this is aflip plane.
Each point on the flip triangle ABC (see Fig. 1) cor-

responds to the two-periodic cycle, and the move-
ment of the fixed point through it generates the
Feigenbaum type periodic doubling sequence in
three dimensions, leading to chaos (Feigenbaum,
1978).

It is possible to check that on the saddle (2.23)

A2 C2 @ 13 C
(1 #,#2)(1 #1#3)(1 #2#3) 0 (2.34)
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This equality defines the structure of bifurcations
on the saddle in the following way. On the saddle all
three absolute values of each eigenvalue are not
more than 1, since a saddle is the boundary of the
domain of asymptotic stability and, moreover, on
the saddle we have one real eigenvalue and two
complex conjugate eigenvalues, say,

#1,2 R(COS 27rf + sin 27rf);

The condition (2.34) means that

#3 r (2.35)

Thus,

#12- (2.36)

1/1-1#21-1, R-l;

-1 <_r_< 1, 0<_f<_ (2.37)

Let us denote

C

A ct= c=0 c=- ct=-2

FIGURE 2 The segments of resonances for 3D discrete
dynamics.

c 2 cos 2rcf (2.38)

Obviously,

-2 < c <_ 2 (2.39)

Equation (2.10) implies

C1 --(#1 -}- #2 @ #3) --2COS 2rcf* r -c r

c2 fflff2 +3 + 2ff31 + 2rcos2 + r

(2.40)

If parameter is fixed and r is changing, then
Eqs. (2.40) describe a straight line in the space of
eigenvalues:

c--c-r; C2- +cr; c3--r; -1 _< r _<
(2.41)

This straight line is the straight line generator of
the saddle, it lies on the saddle and intersects the
side AC in the point (1 c, c, 1) and the side BD
in the point (-1 -c, + c,- 1) (see Fig. 2).

If f is a rational fraction: f-p/q then we have
the so-called q-periodic resonances; between them

the fixed points of the strong 3-periodic (3-p) and
4-periodic (4-p) resonances corresponding to f
1/3; f- 1/4. Strong 3-p resonance corresponds to
c-- -1 and lies on the segment of the straight line:

c- 1- r; C2- 1- r; 3--r; -1 < r _<
(2.42)

connecting the points (2, 2, l) and (0, 0,- 1).
Strong 4-p resonance corresponds to c-0 and

lies on the segment of the straight line:

C1 -r; C2 1; C3 -r; G r G (2.43)

connecting the points (1, 1, 1) and (-1, 1,- 1).
Other rational fractions represent fixed points of

weak resonances. For example, 6-p weak resonance
corresponds to c and lies on the segment of the
straight line:

c -1 r; C2 + r; C -r; -1 _< r _<
(2.44)

connecting the points (0, 0, 1) and (-2, 2,- 1).
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Table I represents the fixed points generating all
q-periodic orbits for q < 12.

If f is irrational, one obtains the quasi-periodic
orbits.

In the following, we will call an inequality

b0 + Cl + 2 nL- C3 > 0 (2.45)

the divergence inequality; the inequality

b3 c + 2 3 > 0 (2.46)

the flip inequality; the inequality

A2 1- c + clc3 c >0 (2.47)

the flutter inequality.

2.7. Special Case c3 0; Domain of
Attraction for 2D Dynamics

If c3 0 then the characteristic Eq. (2.6) will have a
form:

#2 + c1# + c: 0 (2.48)

TABLE Equilibria generating periodicity (till period 12)

Type of periodicity Arguments of eigenvalues Values of c
q f 2cp/q c 2 cos(27rp/q)

2 c -2
3 2-/3 -1
4 r/2 0
5 2-/5 0.61803

47r/5 -1.61803
6 rr/3
7 2/7 1.24698

4-/7 -0.44504
6r/7 -1.80194

8 7c/4 1.41421
9 27r/9 1.53209

47r/9 0.34730
87r/9 -1.87939

10 7r/5 1.61803
37r/5 -0.61803

11 27r/11 1.68251
4-/11 0.83083
67r/11 -0.28363
87r/11 -1.30972
107r/11 1.91899

12 7r/6 1.73205

which corresponds to the Jacobi matrix

j(2)

OF, OF
Ox,
OGt OG
Ox

(2.49)

of 2D dynamics:

X+l F(x,y,z,; A)

yt+ G(x,, yt, zt; A)

(=F,)

(= G,),

If

x F(x,y,z; A); y G(x,y,z; A) (2.51)

give the coordinates of the fixed point of the
dynamics (2.50) we can calculate the value of the
Jacobi matrix (2.49) in the fixed point (x, y) from
(2.5):

OF OF

j(2)_ Ox Oy
(2.52)O__G_G OG

Ox Oy

where

F F (x, y, z; A) {Ft]);,,=
zt=z

G- G(x,y,z; A) [Gt]l--
zt=z

(2.53)

with the characteristic polynomial Eq. (2.48) where

-c TrJ(2) OF OG
(2.54)Ox Oy

OF OF

c2 det j(2) Ox Oy
OG OG (2.55)

Ox Oy

According to the Routh-Hurwitz procedure, the
domain of stability of a fixed point for the 2D
dynamics (2.47) is given by the system of inequal-
ities (see Hsu, 1977; Sonis, 1993; 1996; 1997):

--1 =[= Cl < 2 < (2.56)
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which represents the divergence, flip and flutter
inequalities"

bo- + c + c2 > O; b3- 1- c + C2 2> O;
/2- 1- C2 > 0 (2.57)

Figure 3 describes the domain of attraction, which
is the triangle KLM in the space of eigenvalues
{c, c2} with vertices

K(-2, 1), L(2, 1), M(0, -1)

The sides of the triangle of stability are defined

by the following straight lines, the divergence
boundary"

+ cl + C2 0, or Tr j(2)_ det j(2) +
(2.59)

the flip boundary:

l+cl-c2-0, or Tr j(2) det j(2) q_

(2.60)

and the flutter boundary:

c2 1, or detj(2) (2.61)

Boundary between real and
complex eigenvalues

Flutter boundary’

l+C+ C_O -I Flip boundary
0

FIGURE 3 Domain of attraction of 2D discrete dynamics.

This domain (2.56)can be easily obtained from
(2.21), putting in (2.21) c_ 0. Geometrically this
means that the domain of stability of fixed point for
2D dynamics is the section of 3D domain of
stability with the help of the coordinate plane
c_=0. The segment KL represents all flutter
bifurcations of 2D dynamics. The 3D bifurcation

segments (2.40) touch the flutter segment if r 0
and we have all the bifurcations corresponding to
a 2 cos 2rrf in the points

Cl --O; C2 1; C3 --0; --2 < a <_ 2

(2.62)

So, Table I also describes the periodicities on flutter
segment KL.

Special Case cl- O" A Dynamics without the Self-
Influence
The 3D dynamics without self-influence have a

form:

xt+ F(yt, z,; A)
Y,+I G(xt, z,; A)
z,+ H(x,, y,; A)

(2.63)

where x,+ I(Y,+ 1,z,+ 1) does not explicitly depend
on x,(y,,z,). In this case Cl =0 and the domain of
stability ofequilibria is described by divergence, flip
and flutter inequalities:

bo- -+-c2--c3 > 0; b3- + c2- c3 > 0;

A2-- 1-c2-c2 >0 (2.64)

Figure 4 describes the domain of stability in the
space of the parameters c2, c3, whose boundaries are

the flutter parabola c2 c32 and the divergence
and flip straight lines: + cz-
The flutter segments (2.40) touches the flutter

parabola if r -a in the points:

Cl 0; C2 a2; C3 a;

--1 <_r----a< (2.65)

Table I indicates the impossible periodicities 8 and
12 where c > 1.
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1+C2+ C3--0

Flutter porabola /
.-c= 4 /

C

1_ \ Boundary between real

"". and complex eigenvalues

\ c"
-0/\ -;

ip hne

l+C,_- C3 =0

FIGURE 4 Domain of attraction of 3D non-self-influence
discrete dynamics.

3. COURNOT DYOPOLY AND TRIOPOLY:
BIFURCATION ANALYSIS OF T. PUU
ITERATIVE DYNAMICS

with a non-zero solution:

b a
x- y- (3 3)

(a -+- b)2’ (a+b)2

which is the Cournot equilibrium.
The Jacobi approximation matrix for the

dynamics (3.1) is

(1 )1-A A
2v

# 2x #

In the Cournot equilibrium this matrix becomes

A A(b
2a

2b #

Therefore, from (2.51)

3.1. Dyopoly with Adjustment -Cl TrJ- 2- (A + #) (3.6)

In his important book "Nonlinear Economic

Dynamics" Swedish economist Tonu Puu intro-
duced iterative process which leads two oligopolists
to their Cournot equilibrium (see Puu, 1997,
Chap. 5). T. Puu considered the following iteration
process:

where xt, yt are the supplies at time of two
competitors in a duopoly, a, b are their constant
marginal costs, A, # are the adjustment speeds. Here
it is assumed that a, b > 0; 0 <_ A, # <_ 1. The fixed
point (x, y) of this iteration dynamics satisfies the
system of algebraic equations"

(3.2)

and from (2.52)

c2-detJ- (I-A)(1-#)+ (a-b)2

4ab
(3.7)

The divergence inequality
becomes

-[- 1 -[- C2 < 0

-[2- (A + #)] + (1 A)(1 #)
(a-b)2

+ A# 4ab
> 0 (3.8)

which implies

(a+b)2

A# 4ab
> 0 (3.9)

which is always true for positive a, b and A, #, i.e.
there are no situations in which iterative dynamics
(3.1) diverges.
The flip inequality C + c2 < 0 becomes

+ [2- (A + #)] + (1 A)(1 #)
(a-b)2

+ A# 4ab
> 0 (3.10)
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or

(a/b)2

A# 4a----- > -2[2- (3, + #)] (3.11)

This inequality is always true, since the left side of
(3.11) is positive and the right side is negative.

Thus, the domain of stability of the Cournot
equilibrium is defined only by flutter inequality
A2 2 > 0 which gives

(a-b)(1 A)(1 #) + A# 4a----if-- < (3.12)

or

(a+b)2

< +-4ab

Let us introduce the ratio of the marginal costs

b
-=k (3.14)
a

and let

-A (.15)

Obviously, k > 0 and A > 2. Then, the domain .of
stability of the Cournot equilibrium will be

(1 +k)2

4k
<A (3.16)

or

k 2 2k(2A- 1) + < 0

which means that

kl <k<k2

where k, k2 > 0 are the (positive) roots

kl,2 (2A 1) :t= 2 v/A(A 1)

(3.17)

(3.19)

of the quadratic equation

k 2 2k(ZA 1) + 0 (3.20)

presenting the flutter boundary for the Cournot
equilibrium.

Obviously, these roots are reciprocal, since we

can use the reciprocal ratio k a/b.
The character of bifurcations in these roots are

the same and is defined by the value ofc from (2.35)
(see also Table I):

c 2cosZrf TrJ= 2- (A + #) > 0 (3.21)
Few examples are of special interest: if the

adjustments A,# are unitary, then c=0 and we
have (see, Section 2.5) 4-p cycle starting the
Feigenbaun double-periodic way to chaos; if

A+#= 1, then c= and we have 6-p cycle
bifurcations. Moreover, from (3.20) c > 0, thus,
Table I indicates that the duopoly adjustment
dynamics cannot have the 3-p bifurcation (with
c 1), but it can have the 5-p cycle corresponding
to c 0.61803, i.e., A + #= 1.38157.

3.2. Cournot Equilibrium in Triopoly
with Adjustment

The case of triopoly can be considered analogically.
Tonu Puu introduced iterative process which

leads three oligopolists to their Cournot equilib-
rium (see Puu, 1997, Chap. 5):

Yt + zt
Yt ztXt/l

a

+ xt
Yt+l Xt Zt (3.22)

b

xt + y
Zt+l Xt Yt

C

This dynamics is non-self influence dynamics
(see (2.7)) and its Cournot equilibrium

2(b + c- a). 2(a + c- b).
x-(a+b+c)2, y-(a+b+c)2,

2(a/b-c)
(a + b + C)2

(3.23)
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corresponds to the points in the 2D eigenvalue
space (see Fig. 4). The domain of stability of this
Cournot equilibrium can be easily calculated from
the value of the Jacobi approximation matrix at the
Cournot equilibrium

b+c-3a b/c-3a-
0

4a 4a
c / a- 3b c + a- 3b

0
4b 4b

a+b-3c a+b-3c
4c 4c

0 kl kl 1k2 0 k2
k3 k3 0

(3.24)

which gives (see (2.8) and (2.9))

-Cl Tr J 0

c2 =/k J -klk2 klk3 k2k3
-c3 detJ -2klk2k3

In this case the domain of stability of Cournot
equilibria is described by divergence, flip and flutter
inequalities:

bo= 1+c2+c >0;

m2 c2 c > 0

b3 + c2- c3 > 0;

(3.26)

Figure 4 describes the domain of stability in the
space of the parameters c2, c3, whose boundaries
are the flutter parabola -c2 c and the diver-
gence and flip straight lines is + c2 +c3. In the
terms of kl, k2, k3 the domain of structural stability
of Cournot equilibrium is given by system of
inequalities:

-4kkk < klk2 -+-klk3 -+-k2k3 < -+-2klk2k
(3.27)

Here the divergence surface is

klk2 klk k2k3 + 2klk2k3 0 (3.28)
The two periodic flip bifurcations are "sitting" on

the flip bifurcation surface:

klk2 + klk3 + k2k3 + 2klk2k3 (3.29)

and the flutter periodic and quasi-periodic bifurca-
tions belongs to flutter parabola 1- c2- c gen-
erating the flutter bifurcation surface-- ]1]2 @/1k -- k2k3 4kkk (3.30)

The character of flutter bifurcations is defined

(see (2.8)) by

2 cos 27rf c c3 2kl k2k3 (3.31)

or

f - arc cos kl kzk3 (3.32)

The rational values of f give the periodic flutter
bifurcations. As is indicated in (2.7) the triopoly
cannot have 8 and 12 periodic bifurcations (cf.
Table I). The irrational values of f give the quasi-
periodic bifurcations.

3.3. The "Virtual" Duopoly

The "virtual" duopoly is the special case of triopoly
with two identical competitors (see Puu, 1997,
Chap. 5).

Thus, we can obtain from (3.22) the following 2D
dynamics:

xt_t_l / u_ 2yt

xt + y
Yt+l b xt Yt

(3.33)

with the corresponding Cournot equilibrium:

2(2b a) 2a
x- y- (3.34)

(a + 2b)2’ (a + 2b) 2

The value of the corresponding Jacobi approx-
imation matrix at the Cournot equilibrium (3.34) is

0
2b- 3a

j(2) 2a
a- 2b a- 2b
4b 4b

(3.35)
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with

-Cl-Trj(2)--a-2b-- 1- 2k
4b 4k

(3.36)

c2 detJ(2) (a- 2b)(3a- 2b)
8ab

(1- 2k)(3 2k)
8k

(3.37)

where

b
-=k (3.38)
a

is the ratio of the marginal costs.
The divergence inequality + c + c2 > 0 gives:

2k (1 2k) (3 2k)
/ 4----- + 8k

> 0 (3.39)

which is equivalent to (1 + 2k)2> 0 and thus holds
always, so the adjustment dynamics cannot diverge.
The flip inequality c / c2 > 0 gives:

2k (1 2k) (3 2k)
4k 8k

> 0 (3.40)

which is equivalent to 5 4k + 4k2 4 +
(1- 2k)2> 0 and holds always, so the adjustment
dynamics cannot flip. The flutter inequality ca <
gives:

(1 2k)(3 2k)
8k

<1 (3.41)

which is equivalent to

3-16k+4k2 <0 (3.42)

which means that

kl <k<k2 (3.43)

where

(3.44)

are the roots of the quadratic equation

4k2 16k + 3 0 (3.45)

presenting the flutter boundary for the Cournot
equilibrium. Thus, the domain of stability of the
Cournot equilibrium (3.34) is the open segment
(/1,72) (2- (x/-[3,/2),2 + (x//2)). The end
points of this segment presents the bifurcation
points. Their nature is described by

2 cos 2rf c Tr j(2) 2kl,2
4kl,2

+/- v/13
6

(3.46)

So, if k approaches the value (3.44) then the
attraction of the Cournot equilibrium (3.34)
exchanged by the quasi-periodicity defined by the
irrational

+/- v/13
f arc cos (3.47)
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