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The object of considerations is a thin linear-elastic cylindrical shell having a periodic
structure along one direction tangent to the shell midsurface. The aim of this paper is to
propose a new averaged nonasymptotic model of such shells, which makes it possible to
investigate free and forced vibrations, parametric vibrations, and dynamical stability of
the shells under consideration. As a tool of modeling we will apply the tolerance averaging
technique. The resulting equations have constant coefficients in the periodicity direction.
Moreover, in contrast with models obtained by the known asymptotic homogenization
technique, the proposed one makes it possible to describe the effect of the period length
on the overall shell behavior, called a length-scale effect.

Copyright © 2006 Barbara Tomczyk. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, a new nonasymptotic model for problems of dynamics and dynamical sta-
bility of thin cylindrical shells having a periodic structure (i.e., periodically varying thick-
ness and/or periodically varying elastic and inertial properties) along one direction tan-
gent to the shell midsurface � is presented. At the same time, the considered shells have
slowly varying or constant structure along the direction tangent to � and perpendicu-
lar to the direction of periodicity. This situation is mainly orientated towards cylindrical
shells reinforced by periodically spaced dense system of ribs as shown in Figure 1.1. Shells
with a periodic structure along one direction tangent to � are termed uniperiodic.

The period of inhomogeneity is assumed to be very large compared with the maximum
shell thickness and very small as compared to the midsurface curvature radius as well as
the smallest characteristic length dimension of the shell midsurface. It means that the
shells under consideration are composed of a large number of identical elements and
every such element, called a periodicity cell, can be treated as a shallow shell.

It should be noted that in the general case, on the shell midsurface we do not deal
with periodic but with what is called a locally periodic structure in directions tangent to
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Figure 1.1. Examples of uniperiodic shells.

�. Following [20], by a locally periodic shell we mean a shell which, in the subregions
of the shell midsurface � much smaller than �, can be approximately regarded as peri-
odic. Hence, a locally periodic shell is made of a large number of not only identical but
also similar elements. However, for cylindrical shells the Gaussian curvature is equal to
zero and hence on the developable cylindrical surface we can separate a cell which can
be referred to as the representative cell for a whole shell midsurface. It means that on
cylindrical surface we deal not with locally periodic but with aperiodic structure.

Because properties of periodic (or locally periodic) structures are described by highly
oscillating, noncontinuous, periodic functions, the exact equations of the shell (plate)
theory are too complicated to apply to investigations of engineering problems. That is
why a lot of different approximate modeling methods for shells and plates of this kind
have been proposed. Periodic cylindrical shells and plates are usually described using ho-
mogenized models derived by means of asymptotic methods. These models represent cer-
tain equivalent structures with constant or slowly varying stiffnesses and averaged mass
densities (cf. [5, 9–13]). Unfortunately, in models of this kind the effect of a period length
(called also the length-scale effect) on the overall shell behavior is neglected.

The periodically densely ribbed plates and shells are also modeled as homogeneous
orthotropic structures (cf. [1, 7]). These orthotropic models are not able to describe the
length-scale effect on the overall shell (plate) behavior, being independent of the period
of inhomogeneity.

In order to analyze this effect, the new averaged nonasymptotic models of thin uniperi-
odic cylindrical shells have been proposed in [17, 18]. These, co called the tolerance models,
have been obtained by applying the nonasymptotic tolerance averaging technique, proposed
and discussed for periodic composites in the monograph [21], to the known equations
of Kirchhoff-Love-type cylindrical shells (differential equations with functional highly
oscillating noncontinuous periodic coefficients). These tolerance models have constant
coefficients in periodicity direction and take into account the effect of a cell size on the
global shell dynamics and stationary stability. This effect is described by means of certain
extra unknowns called internal or fluctuation variables and by known functions which
represent oscillations inside the periodicity cell, and are obtained either as approximate
solutions to special eigenvalue problems for free vibrations on the separated cell with
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periodic boundary conditions or by using the finite element discretization of the cell.
However, the aforementioned tolerance model of dynamic problems for periodic cylindri-
cal shells proposed in [17], and that of stationary stability problems given in [18] cannot
be used to analyze a dynamical stability and parametric vibrations of the periodic shells.
That is why, in this paper the tolerance model of dynamic problems and dynamical stability
problems for uniperiodic Kirchhoff-Love-type cylindrical shells, loaded by time-dependent
forces tangent to the shell midsurface is derived and discussed. It means that the proposed
here model can be treated as a certain generalization of the models given in [17, 18].

It is worth noting that the application of the tolerance averaging technique to the in-
vestigation of selected dynamic and stability problems for periodic plates can be found in
many papers, that is, in [3, 15], where the stability of densely stiffened Kirchhoff-type
plates and of Hencky-Bolle-type plates is analyzed, respectively, in [8, 14], where dy-
namics of Kirchhoff-type plates and of wavy-type plates is investigated, respectively, and
others.

It has to be mentioned that an extremely extensive literature deals with elastic stability
and dynamics of thin cylindrical shells reinforced by widely spaced stiffeners. Contrary
to the shells with densely spaced ribs, which are objects of considerations in this paper,
those having widely spaced stiffeners are analyzed with allowance for the discreteness in
the arrangement of the ribs. It means that the dynamic and stability problems of such
shells are considered within the framework of discrete models, while the dynamic and
stability analysis of periodically, densely ribbed cylindrical shells investigated in this paper
is carried out within continuum models. The discrete approach is in detail discussed in
monographs [2, 6]. Moreover, in the mentioned monographs it can be found an extensive
review of papers and books dealing with stability and dynamic problems of widely ribbed
shells as well as of densely stiffened shells treated as homogeneous orthotropic structures.

It is well known that stability problems of thin cylindrical shells being homogeneous or
weakly heterogeneous have to be investigated by using the geometrically nonlinear shell
theory, [4, 16, 19]. However, in the case of the highly heterogeneous structures considered
here (i.e., densely ribbed shells) which are described by using continuum models, we are
interested in the upper state of critical forces and hence we can use the geometrically
linear stability theory for thin linear-elastic cylindrical Kirchhoff-Love-type shells.

The aim of this contribution is threefold.
(i) First, to formulate an averaged nonasymptotic model of a uniperiodic cylindrical

shell, which has constant coefficients in direction of periodicity and describes
the effect of a cell size on the global shell dynamics and dynamical stability. This
model will be derived by using the tolerance averaging procedure proposed in [21].

(ii) Second, to derive a simplified model (called asymptotic or homogenized) in
which the length-scale effect is neglected.

(iii) Third, to evaluate the effect of a cell size on the free vibrations of uniperiodic
shells by using both the tolerance and homogenized models.

Basic denotations, preliminary concepts, and starting equations will be presented in
Section 2. The general line of the tolerance averaging approach will be shown in Section 3.
The tolerance model for problems of dynamics and dynamical stability of linear-elastic
thin cylindrical shells with a periodic structure along one direction tangent to � and
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slowly varying or constant structure along the perpendicular direction tangent to � will
be proposed and discussed in Section 4. For comparison, the governing equations of a
certain homogenized model will be given in Section 5. In the subsequent section, in order
to evaluate the length-scale effect in dynamic problems, both the obtained tolerance and
homogenized models will be applied to investigations of free vibrations in open circular
cylindrical shell reinforced by ribs, which are densely and periodically spaced along the
lines of principal curvature of the shell midsurface. Final remarks will be formulated in
the last section.

2. Preliminaries

In this paper we will investigate thin linear-elastic cylindrical shells with a periodic struc-
ture along one direction tangent to �. Cylindrical shells of this kind will be termed
uniperiodic. At the same time, the shells under consideration have slowly varying or con-
stant structure (i.e., slowly varying or constant geometrical and/or material properties)
along the direction tangent to � and perpendicular to the direction of periodicity. Ex-
amples of such shells are presented in Figure 1.1.

Denote by Ω⊂ R2 a regular region of points Θ≡ (Θ1,Θ2) on the OΘ1Θ2-plane, Θ1, Θ2

being the Cartesian orthogonal coordinates on this plane, and let E3 be the physical space
parametrized by the Cartesian orthogonal coordinate system Ox1x2x3. Let us introduce
the orthogonal parametric representation of the undeformed smooth cylindrical shell
midsurface � by means of � := {x ≡ (x1,x2,x3) ∈ E3 : x = x(Θ1,Θ2), Θ ∈ Ω}, where
x(Θ1,Θ2) is a position vector of a point on � having coordinates Θ1, Θ2.

Throughout the paper indices α, β, . . . run over 1, 2 and are related to the midsurface
parameters Θ1, Θ2; indices A,B, . . . run over 1,2, . . . ,N , summation convention holds for
all aforesaid indices.

To every point x = x(Θ), Θ ∈Ω, we assign a covariant base vectors aα = x,α and co-
variant midsurface first and second metric tensors denoted by aαβ, bαβ, respectively, which
are given as follows: aαβ = aα · aβ, bαβ = n · aα,β, where n is a unit vector normal to �.

Let δ(Θ) stand for the shell thickness. We also define t as the time coordinate.
Taking into account that coordinate lines Θ2 = const are parallel on the OΘ1Θ2-plane

and that Θ2 is an arc coordinate on �, we define l as the period of shell structure in Θ2-
direction. The period l is assumed to be sufficiently large compared with the maximum
shell thickness and sufficiently small as compared with the midsurface curvature radius R
as well as the characteristic length dimension L of the shell midsurface along the direction
of shell periodicity, that is, supδ(·)� l�min{R,L}.

We will denote by Λ≡ {0}× (−l/2, l/2) the straight line segment on the OΘ1Θ2-plane
along the OΘ2-axis direction, which can be taken as a representative cell of the periodic
shell structure (the periodicity cell). To every Θ ∈Ω an arbitrary cell on OΘ1Θ2-plane
will be defined by means of Λ(Θ) ≡Θ+Λ, Θ ∈ΩΛ, ΩΛ := {Θ ∈Ω : Λ(Θ) ⊂Ω}, where
the point Θ∈ΩΛ is a center of a cell Λ(Θ) and ΩΛ is a set of all the cell centers which are
inside Ω.
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A function f (Θ) defined on ΩΛ will be called Λ-periodic if for arbitrary but fixed Θ1

and arbitrary Θ2, Θ2± l it satisfies the condition f (Θ1,Θ2)= f (Θ1,Θ2± l) in the whole
domain of its definition and it is not constant.

It is assumed that the cylindrical shell thickness as well as its elastic and inertial proper-
ties are Λ-periodic functions of Θ2 and slowly varying or constant functions of Θ1. Shells
like that are called uniperiodic.

The above periodic heterogeneities can be also interpreted as those caused by a peri-
odically spaced dense system of ribs, as shown in Figure 1.1.

For an arbitrary integrable function ϕ(·) defined on Ω, following [21], we define the
averaging operation, given by

〈ϕ〉(Θ)≡ 1
l

∫
Λ(Θ)

ϕ
(
Θ1,Ψ2)dΨ2,

(
Θ1,Ψ2)∈Λ(Θ), Θ= (Θ1,Θ2)∈ΩΛ. (2.1)

For a function ϕ, which is Λ-periodic in Θ2, formula (2.1) leads to 〈ϕ〉(Θ1). If the
function ϕ is Λ-periodic in Θ2 and is independent of Θ1, its averaged value obtained
from (2.1) is constant.

The denotation ∼= is used for a tolerance relation (cf. Section 3) and 	 denotes an
approximation due to the truncation of the infinite series (cf. Section 4).

Our considerations will be based on the simplified linear Kirchhoff-Love second-order
theory of thin elastic shells in which terms depending on the second metric tensor of �
are neglected in the formulae for curvature changes. Below, we quote the general formu-
lations of the theory under consideration.

2.1. The Kirchhoff-Love shell equations. Let uα(Θ, t), w(Θ, t) stand for the midsurface
shell displacements in directions tangent and normal to �, respectively. We denote by
εαβ(Θ, t), καβ(Θ, t) the membrane and curvature strain tensors and by nαβ(Θ, t), mαβ(Θ, t)
the stress resultants and stress couples, respectively. The elastic properties of the shell are
described by 2D-shell stiffness tensors Dαβγδ(Θ), Bαβγδ(Θ). Let μ(Θ) stand for the shell
mass density per midsurface unit area. Let fα(Θ, t), f (Θ, t) be external force components

per midsurface unit area, respectively, tangent and normal to �. We denote by N
αβ

(t) the
time-dependent compressive membrane forces in the shell midsurface.

Functions μ(Θ), Dαβγδ(Θ), Bαβγδ(Θ), and δ(Θ) are Λ-periodic functions of Θ2 and are
assumed to be slowly varying functions of Θ1.

The equations of a shell theory under consideration consist of
(i) the strain-displacement equations

εγδ = u(γ,δ)− bγδw, κγδ =−w,γδ , (2.2)

(ii) the stress-strain relations

nαβ =Dαβχδεγδ , mαβ = Bαβχδκγδ , (2.3)

(iii) the equations of motions

n
αβ
,α −μaαβüα + f β = 0, m

αβ
,αβ + bαβn

αβ−N
αβ
w,αβ−μẅ+ f = 0. (2.4)
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In the above equations the displacements uα(Θ, t) and w(Θ, t), Θ∈Ω, are the basic
unknowns.

For uniperiodic shells, μ(Θ), Dαβγδ(Θ), and Bαβγδ(Θ), Θ∈Ω, are noncontinuous high-
ly oscillating Λ-periodic functions; that is why (2.2)–(2.4) cannot be directly applied
to the numerical analysis of special problems. From (2.2)–(2.4) an averaged model of
uniperiodic cylindrical shells under consideration having coefficients, which are inde-
pendent of Θ2-midsurface parameter and are slowly varying (or constant) functions of
Θ1 as well as describing the cell size effect on the global shell behavior, will be derived.
In order to derive it, the tolerance averaging procedure given in [21] will be applied. To
make the analysis more clear, in the next section we will outline the basic concepts and
the main assumptions of this approach, following the monograph [21].

3. Modeling concepts and assumptions

Following the monograph [21], we outline below the basic concepts and assumptions
which will be used in the course of modeling procedure.

3.1. Basic concepts. The fundamental concepts of the tolerance averaging approach are
those of a certain tolerance system, slowly varying functions, periodic-like functions, and
periodic-like oscillating functions. These functions will be defined with respect to the Λ-
periodic shell structure defined in the foregoing section.

By a tolerance system we will mean a pair T = (�,ε(·)), where � is a set of real-valued
bounded functions F(·) defined on Ω and their derivatives (including also time deriva-
tives), which represent the unknowns in the problem under consideration (such as un-
known shell displacements tangent and normal to �) and for which the tolerance pa-
rameters εF being positive real numbers and determining the admissible accuracy related
to computations of values of F(·) are given; by ε is denoted the mapping �∈ F → εF .

A continuous bounded differentiable function F(Θ, t) defined on Ω is called Λ-slowly
varying with respect to the cell Λ and the tolerance system T ,F ∈ SVΛ(T), if roughly
speaking, can be treated (together with its derivatives) as constant on an arbitrary peri-
odicity cell Λ.

The continuous function ϕ(·) defined on Ω will be termed a Λ-periodic-like function,
ϕ(·) ∈ PLΛ(T), with respect to the cell Λ and the tolerance system T , if for every Θ =
(Θ1,Θ2) ∈ ΩΛ, there exists a continuous Λ-periodic function ϕΘ(·) such that (for all
Ψ = (Θ1,Ψ2)) [‖Θ−Ψ‖ ≤ l ⇒ ϕ(Ψ) ∼= ϕΘ(Ψ)], Ψ ∈ Λ(Θ), and the similar conditions
are also fulfilled by all its derivatives. It means that the values of a periodic-like function
ϕ(·) in an arbitrary cell Λ(Θ), Θ∈ΩΛ, can be approximated, with sufficient accuracy, by
the corresponding values of a certain Λ-periodic function ϕΘ(·). The function ϕΘ(·) will
be referred to as a Λ-periodic approximation of ϕ(·) on Λ(Θ).

Let μ(·) be a positive valueΛ-periodic function. The periodic-like function ϕ is calledΛ-
oscillating (with the weight μ), ϕ(·)∈ PL

μ
Λ(T), provided that the condition 〈μϕ〉(Θ)∼= 0

holds for every Θ∈ΩΛ. In the special case μ= const the oscillating periodic-like functions
satisfy condition 〈ϕ〉(Θ)∼= 0, Θ∈Ω; in this case we will write ϕ∈ PL1

Λ(T).
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3.2. Modelling assumptions. The tolerance averaging technique is based on two mod-
eling assumptions. The first of them is strictly related to the concept of Λ-slowly varying
and Λ-periodic-like functions.

Tolerance averaging assumption. If F ∈ SVΛ(T), ϕ(·)∈ PLΛ(T), and ϕΘ(·) is aΛ-periodic
approximation of ϕ(·) on Λ(Θ), then for every Λ-periodic bounded function f (·) and
every continuous Λ-periodic differentiable function h(·), such that sup{|h(Ψ1,Ψ2)|,
(Ψ1,Ψ2) ∈ Λ} ≤ l, the following tolerance averaging relations determined by the perti-
nent tolerance parameters hold for every Θ∈ΩΛ:

(T1) 〈 f F〉(Θ)∼= 〈 f 〉(Θ)F(Θ), (T2)
〈
f (hF),2

〉
(Θ)∼= 〈 f Fh,2

〉
(Θ),

(T3) 〈 f ϕ〉(Θ)∼= 〈 f ϕΘ
〉

(Θ), (T4)
〈
h( f ϕ),2

〉
(Θ)∼=−〈 f ϕh,2

〉
(Θ).

(3.1)

It means that in the course of averaging the left-hand sides of formulae (T1)–(T4) can
be approximated by their right-hand sides, respectively.

The second modeling assumption is based on heuristic premises.

Conformability assumption. In every periodic solid the displacement fields have to con-
form to the periodic structure of this solid. It means that the displacement fields are
periodic-like functions and hence can be represented by a sum of averaged displacements,
which are slowly varying (with respect to the cell and tolerance system), and by highly os-
cillating periodic-like disturbances, caused by the periodic structure of the solid.

The aforementioned conformability assumption together with the tolerance averaging
assumption constitute the foundations of the tolerance averaging technique. Using this
technique the tolerance model of uniperiodic cylindrical shells for problems of dynamics and
dynamical stability will be derived in the subsequent section.

4. The tolerance model

4.1. Modeling procedure. Let us assume that there is a certain tolerance system T =
(�,ε(·)), where the set F consists of the unknown shell displacements tangent and normal
to � and their derivatives.

The tolerance averaging approach to (2.2)–(2.4) will be realized in five steps.

Step 1. From the conformability assumption, it follows that the unknown shell displace-
ments uα(Θ, t), w(Θ, t) in (2.2)–(2.4) have to satisfy the conditions uα(Θ, t) ∈ PLΛ(T),
w(Θ, t)∈ PLΛ(T) and hence can be decomposed into

uα(Θ, t)=Uα(Θ, t) +dα(Θ, t), w(Θ, t)=W(Θ, t) + p(Θ, t), (4.1)

where Uα(Θ, t),W(Θ, t)∈ SVΛ(T) are the averaged parts of displacements uα(Θ, t), w(Θ,
t), respectively, called macrodisplacements and defined by Uα(·, t)≡ 〈μ〉−1(Θ1)〈μuα〉(·, t),
W(·, t) ≡ 〈μ〉−1(Θ1)〈μw〉(·, t) (cf. [21]) and dα(·, t), p(·, t) ∈ PL

μ
Λ(T) are the fluctuat-

ing parts of displacements uα(Θ, t), w(Θ, t), respectively, such that 〈μdα(Θ, t)〉 = 〈μp(Θ,
t)〉 = 0.
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Step 2. Substituting the right-hand side of (4.1) into (2.4) and after the tolerance averag-
ing of the resulting equations, we arrive at the following equations:

[〈
Dαβγδ

〉(
Θ1)(Uγ,δ − bγδW

)
+
〈
Dαβγδdγ,δ

〉
(Θ, t)− bγδ

〈
Dαβγδ p

〉
(Θ, t)

]
,α

−〈μ〉(Θ1)aαβÜα =−
〈
f β
〉

(Θ, t),
[〈
Bαβγδ

〉(
Θ1)W,γδ +

〈
Bαβγδ p,γδ

〉
(Θ, t)

]
,αβ

− bαβ
[〈
Dαβγδ

〉(
Θ1)(Uγ,δ − bγδW

)
+
〈
Dαβγδdγ,δ

〉
(Θ, t)− bγδ

〈
Dαβγδ p

〉]

+N
αβ
Wαβ + 〈μ〉(Θ1)Ẅ = 〈 f 〉(Θ, t),

(4.2)

which must hold for every Θ∈ΩΛ and every time t.
The above averaging implies the condition 〈 f β〉(Θ, t),〈 f 〉(Θ, t) ∈ SVΛ(T). This sit-

uation takes place if the shell external loadings satisfy the condition f β(Θ, t), f (Θ, t) ∈
PLΛ(T). Subsequently we will use the decomposition f β(·, t)= f

β
0 (·, t) + f̃ β(·, t), f (·, t)=

f0(·, t) + f̃ (·, t), where f
β

0 (·, t), f0(·, t) ∈ SVΛ(T), f̃ β(·, t), f̃ (·, t) ∈ PL1
Λ(T), and 〈 f̃ β〉(Θ,

t)= 〈 f̃ 〉(Θ, t)= 0.

Step 3. Multiplying (2.4)1 and (2.4)2 by arbitrary Λ-periodic test functions d∗, p∗, re-
spectively, such that 〈μd∗〉 = 〈μp∗〉 = 0, integrating these equations over Λ(Θ), Θ∈ΩΛ,

and using the tolerance averaging assumption, as well as denoting by d̃α, p̃ the Λ-periodic
approximations of dα, p, respectively, on Λ(Θ), we obtain the periodic problem on Λ(Θ)

for functions d̃α(Θ1,Ψ2, t), p̃(Θ1,Ψ2, t), (Θ1,Ψ2) ∈ Λ(Θ) = Λ(Θ1,Θ2), given by the fol-
lowing variational conditions:

−〈d∗,2D2βγδd̃γ,δ
〉

+
〈
d∗
(
D1βγδd̃γ,δ

)
,1

〉−bγδ[−〈d∗,2D2βγδ p̃〉+
〈
d∗
(
D1βγδ p̃)

,1

〉]−〈d∗μ ¨̃
d
〉
aαβ

=−〈d∗ f β〉+
〈
d∗,αD

αβγδ
〉(
Uγ,δ − bγδW

)− [〈d∗D1βγδ〉(Uγ,δ − bγδW
)]

,1,

〈
p∗,22B

22γδ p̃,γδ
〉− 2

〈
p∗,2
(
B21γδ p̃,γδ

)
,1

〉
+
〈
p∗
(
B11γδ p̃,γδ

)
,11

〉

− bαβ
[〈
p∗Dαβγδd̃γ,δ

〉− bγδ
〈
p∗Dαβγδ p̃

〉]
+
〈
p∗μ ¨̃p

〉
+N

11〈
p∗ p̃,11

〉

+ 2N
12〈

p∗ p̃,12
〉

+N
22〈

p∗ p̃,22
〉

= 〈p∗ f 〉+ bαβ
〈
p∗Dαβγδ

〉(
Uγ,δ − bγδW

)− 〈p∗,22B
22λδ〉W,γδ

+ 2
[(〈

p∗,2B
21γδ〉

,1−
〈
p∗,21B

21γδ〉)W,γδ +
〈
p∗,2B

21γδ〉W,γδ1
]

− {[(〈p∗B11γδ〉
,1− 2

〈
p∗,1B

11λδ〉)
,1 +

〈
p∗,11B

11γδ〉]W,γδ

+ 2
(〈
p∗B11γδ〉

,1−
〈
p∗,1B

11γδ〉)W,γδ1 +
〈
p∗B11γδ〉W,γδ11

}
.

(4.3)
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Conditions (4.3)1 and (4.3)2 must hold for every Λ-periodic test function d∗ and for
every Λ-periodic test function p∗, respectively.

Equations (4.2), (4.3) represent the basis for obtaining the tolerance model of thin
linear elastic uniperiodic cylindrical shells, which makes it possible to investigate free
and forced vibrations, parametric vibrations, dynamical stability, and stationary stability
(after neglecting the inertial forces and time coordinate).

Step 4. In order to obtain solution to the periodic problem on Λ(Θ), given by the vari-
ational equations (4.3), we can apply the known orthogonalization method. Hence, for
arbitrary Θ1 and (Θ1,Ψ2) ∈ Λ(Θ), Θ = (Θ1,Θ2) ∈ΩΛ, we can look for solutions to the
periodic problem (4.3) in the form of the finite series

d̃α
(
Θ1,Ψ2, t

)= hA
(
Θ1,Ψ2)QA

α

(
Θ1,Θ2, t

)
,

p̃
(
Θ1,Ψ2, t

)= gA
(
Θ1,Ψ2)VA

(
Θ1,Θ2, t

)
, A= 1,2, . . . ,N ,

(4.4)

in which the choice of a number N of terms in the finite sums determines different de-
grees of approximations and where QA

α (Θ1,Θ2, t), VA(Θ1,Θ2, t) are new unknowns called
fluctuation variables, being Λ-slowly varying functions in Θ2, that is, QA

α ,VA ∈ SVΛ(T).
Moreover, hA(Θ1,Ψ2), gA(Θ1,Ψ2), A= 1, . . . ,N , are known in every problem under con-
sideration, linear-independent, l-periodic functions such that hA, lhA,2, l−1gA,gA,2 ,gA,22 ∈
O(l) and max |hA(Θ1,Ψ2)|≤ l, max |gA(Θ1,Ψ2)|≤ l2 as well as 〈μhA〉(Θ1)=〈μgA〉(Θ1)=0
for every A and 〈μhAhB〉(Θ1)= 〈μgAgB〉(Θ1)= 0 for every A �= B.

Functions hA(Θ1,Ψ2), gA(Θ1,Ψ2), A= 1,2, . . .N , in (4.4) can be derived from the pe-
riodic finite element method discretization of the cell and hence will be referred to as
the shape functions. It can be observed that in many cases this discretization of the cell
requires a large number of finite elements and consequently the number N of extra un-
knowns QA

α , VA in (4.4) is also large.
The functions hA(Θ1,Ψ2), gA(Θ1,Ψ2), A = 1, . . . ,N , can also be obtained as exact or

approximate solutions to certain periodic eigenvalue problems on the cell describing free
periodic vibrations of the cell. It means that the functions hA, gA represent the expected
forms of free periodic vibration modes of an arbitrary cell and hence are referred to as
the mode-shape functions. Following [17], this periodic eigenvalue problem of finding
Λ-periodic eigenfunctions hα(Θ1,Ψ2),g(Θ1,Ψ2),(Θ1,Ψ2)∈Λ(Θ), Θ= (Θ1,Θ2)∈ΩΛ, is
given by the equations

[
D2βγ2(Θ1,Ψ2)hγ,2

(
Θ1,Ψ2)]

,2 +μ
(
Θ1,Ψ2)[ω(Θ1)]2

aαβhα
(
Θ1,Ψ2)= 0,

[
B2222(Θ1,Ψ2)g,22

(
Θ1,Ψ2)]

,22−μ
(
Θ1,Ψ2)[ω(Θ1)]2

g
(
Θ1,Ψ2)= 0,

(4.5)

and by the periodic boundary conditions on the cell Λ(Θ) together with the continu-
ity conditions inside Λ(Θ); by ω(Θ1) we have denoted the free vibration frequency. By
averaging the above equations over Λ(Θ) we obtain 〈μhα〉(Θ1)= 〈μg〉(Θ1)= 0.

Thus, [h1
α(Θ1,Ψ2),g1(Θ1,Ψ2)],[h2

α(Θ1,Ψ2),g2(Θ1,Ψ2)], . . . is a sequence of eigenfunc-
tions related to the sequence of eigenvalues [ω2

α,ω2]1, [ω2
α,ω2]2, . . . . In the modeling
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procedure this sequence is restricted to the N ≥ 1 eigenfunctions. Moreover, in most
problems the analysis will be restricted to the simplest case N = 1 in which we take into
account only the lowest natural vibration modes (in directions tangent and normal to �)
related to (4.5).

In this paper it is assumed that hA1 = hA2 and hence we denote hA ≡ hA1 = hA2 .

Step 5. Substituting the right-hand sides of (4.4) into (4.2) and (4.3) and setting d∗ =
hA(Θ1,Ψ2), p∗ = gA(Θ1,Ψ2), A= 1,2, . . . ,N , in (4.3), on the basis of the tolerance averag-
ing assumption we arrive at the tolerance model of uniperiodic cylindrical shells for problems
of dynamics and dynamical stability. In the next subsection the equations of this model
will be given and discussed.

4.2. Governing equations of the nonasymptotic model. In the previous subsection, ap-
plying the tolerance averaging of Kirchhoff-Love second-order shell equations we have
arrived at the tolerance model of dynamic and stability problems for shells having a periodic
structure along one direction tangent to the shell midsurface.

Under the following extra denotations:

D̃αβγδ ≡ 〈Dαβγδ
〉

, DAαβγ ≡ 〈DαβγδhA,δ
〉

, D
Aαβγ ≡ l−1〈Dαβγ1hA

〉
,

LAαβ ≡ l−2bγδ
〈
DαβγδgA

〉
, B̃αβγδ ≡ 〈Bαβγδ

〉
, KAαβ ≡ 〈BαβγδgA,γδ

〉
,

K
Aαβ ≡ l−1〈Bαβ1δgA,δ

〉
,

�
K

Aαβ

≡ l−2〈Bαβ11gA
〉

,

CABβγ ≡ 〈DαβγδhA,αh
B
,δ

〉
, C

ABβγ ≡ l−1〈Dαβγ1hA,αh
B
〉

,

FABβ ≡ l−2bγδ
〈
DαβγδhA,αg

B
〉

, C̃ABβγ ≡ l−2〈D1βγ1hAhB
〉

,

F
ABβ ≡ l−3bγδ

〈
D1βγδhAgB

〉
, SAB ≡ 〈BαβγδgA,αβg

B
,γδ

〉
,

L
AB ≡ l−4bαβbγδ

〈
DαβγδgAgB

〉
,

�
R
AB

≡ l−1〈B1βγδgA,βg
B
,γδ

〉
,

R̃AB ≡ l−2〈B11γδgA,γδg
B
〉

, R
AB ≡ l−3〈B1β11gA,βg

B
〉

,

�
R
AB

≡ l−4〈B1111gAgB
〉

, S̃AB ≡ l−2〈B1γ1δgA,γg
B
,δ

〉
,

TAB ≡ l−2〈gA,2gB,2〉,
�
T
AB

≡ l−3〈gA,2gB〉,
�
T
AB

≡ l−2〈gA,2gB,1〉,

˜̃TAB

≡ l−2〈gA,11g
B
〉

, T̃AB ≡ l−3〈gA,1gB〉, T
AB ≡ l−4〈gAgB〉,

μ̃≡ 〈μ〉, μ̃AB ≡ l−2〈μhAhB〉, μAB ≡ l−4〈μgAgB〉,

P̃Aβ ≡ l−1〈 f̃ βhA〉, P̃A ≡ l−2〈 f̃ gA〉,

(4.6)

this model is represented by
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(i) the constitutive equations:

Nαβ = D̃αβγδ
(
Uγ,δ − bγδW

)
+DBαβγQB

γ + lD
Bαβγ

QB
γ,1− l2LBαβVB,

Mαβ = B̃αβγδW,γδ +KBαβVB + 2lK
Bαβ

VB
,1 + l2

�
K

Bαβ

VB
,11,

HAβ =DAβγδ
(
Uγ,δ − bγδW

)
+CABβγQB

γ + lC
ABβγ

QB
γ,1− l2FABβVB,

H
Aβ ≡ lD

Aβγδ(
Uγ,δ − bγδW

)
+ lC

ABβγ
QB

γ + l2C̃ABβγQB
γ,1− l3F

ABβ
VB,

GA ≡−l2LAγδ(Uγ,δ − bγδW
)

+KAαβW,αβ− l2FABγQB
γ − l3F

ABγ
QB

γ,1

+
(
SAB + l4L

AB
)
VB + 2l

�
R
AB

VB
,1 + l2R̃ABVB

,11,

G̃A = l2
�
K

Aαβ

W,αβ + l2R̃ABVB + 2l3R
AB
VB

,1 + l4
�
R
AB

VB
,11,

G
A = lK

Aαβ
W,αβ + l

�
R
AB

VB + 2l2S̃ABVB
,1 + l3R

AB
VB

,11,

(4.7)

(ii) the system of three averaged partial differential equations of motion for macrodis-
placements Uα(Θ, t), W(Θ, t):

N
αβ
,α − μ̃aαβÜα + f

β
0 = 0, M

αβ
,αβ− bαβN

αβ +N
αβ
W,αβ + μ̃Ẅ − f0 = 0, (4.8)

(iii) the system of 3N partial differential equations for the fluctuation variables QB
α (Θ, t),

VB(Θ, t), B = 1,2, . . . ,N :

l2μ̃ABaγβQ̈B
γ +HAβ−H

Aβ
,1 − lP̃Aβ = 0,

l4μABV̈B +GA + G̃A
,11− 2G

A
,1 +N

11
(
l2 ˜̃TAB

VB + 2l3T̃ABVB
,1 + l4T

AB
VB

,11

)

+ 2N
12
(
l3
�
T
AB

VB
,1 + l2

�
T
AB

VB
)
−N

22
l2TABVB − l2P̃A = 0, A,B = 1,2, . . . ,N ,

(4.9)

where some terms depend explicitly on the period length l.
The above model has a physical sense provided that the basic unknowns Uα(Θ, t),

W(Θ, t),QA
γ (Θ, t),VA(Θ, t) ∈ SVΛ(T), A = 1,2, . . . ,N , that is, they are Λ-slowly varying

functions of Θ2 -midsurface parameter.

It can be observed that in the tolerance models (4.8), (4.9) we deal with N
αβ

(t) > 0 if

N
αβ

(t) are compressive forces.
Taking into account (4.1) and (4.4) the shell displacement fields can be approximated

by means of formulae

uα(Θ, t)	Uα(Θ, t) +hA
(
Θ1,Ψ2)QA

α (Θ, t),

w(Θ, t)	W(Θ, t) + gA
(
Θ1,Ψ2)VA(Θ, t), A= 1,2, . . . ,N ,

(4.10)
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where the approximation	 depends on the number of terms hA(Θ1,Ψ2)QA
α (Θ, t), gA(Θ1,

Ψ2)VA(Θ, t).
The characteristic features of the derived models are the following.

(i) The model takes into account the effect of the cell size on the overall shell dynam-
ics and stability; this effect is described by coefficients dependent on the period
length l.

(ii) The model equations involve averaged coefficients which are independent of Θ2-
midsurface parameter (i.e., they are constant in direction of periodicity) and are
slowly varying functions of Θ1.

(iii) The number and form of boundary conditions for the macrodisplacements
Uα(Θ, t), W(Θ, t) are the same as in the classical shell theory governed by (2.2)–
(2.4). The boundary conditions for the fluctuation variables QA

γ (Θ, t), VA(Θ, t)
should be defined only on the boundaries Θ1 = const.

(iv) It is easy to see that in order to derive the governing equations (4.7)–(4.9), we
have to postulate a priori periodic-shape (mode-shape) functions hA(Θ1,Ψ2),
gA(Θ1,Ψ2), A= 1,2, . . . ,N , which can be derived from the periodic finite element
method discretization of the cell or obtained as solutions to the periodic eigen-
value problem describing free vibrations of the cell, given by (4.5). Moreover,
for uniperiodic shells the shape (mode-shape) functions are periodic in only one
direction; in this work they are l-periodic functions only of the Θ2-midsurface
parameter.

Assuming that the cylindrical shell under consideration has material and geometri-
cal properties independent of Θ1 we obtain governing equations (4.7)–(4.9) with con-
stant averaged coefficients. Moreover, in this case the mode-shape functions hA, gA, A=
1,2, . . . ,N , are also independent of Θ1-midsurface parameter.

For a homogeneous shell μ(Θ), Dαβγδ(Θ) and Bαβγδ(Θ), Θ∈Ω, are constant and be-
cause 〈μhA〉 = 〈μgA〉 = 0 we obtain 〈hA〉 = 〈gA〉 = 0, and hence 〈hA,α〉 = 〈gA,α〉 = 〈gA,αβ〉 = 0.
In this case (4.8) reduce to the well-known linear-elastic shell equations of motion for
macrodisplacements Uα(Θ, t), W(Θ, t), and independently for QA

α (Θ, t), VA(Θ, t) we ar-

rive at a system of N differential equations. In the case under the condition f̃ β = f̃ = 0
and for initial conditionsQA

α (Θ, t0)=VA(Θ, t0)=0,A=1,2, . . . ,N , we obtain QA
α =VA=0;

hence the constitutive equations (4.7) and equations of motion (4.8) reduce to the start-
ing equations (2.3) and (2.4), respectively.

In the next section the homogenized model of uniperiodic cylindrical shells under
consideration will be derived as a special case of (4.7)–(4.9).

5. Governing equations of the asymptotic model

The simplified model of uniperiodic cylindrical shells, called homogenized or asymptotic,
can be derived directly from the tolerance model (4.7)–(4.9) by a limit passage l→ 0, that
is, by neglecting the terms which depend on the period length l. Hence, (4.9) yield

CABβγQB
γ =−DAβγδ

(
Uγ,δ − bγδW

)
, SABVA =−KBγδW,γδ. (5.1)
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From the positive definiteness of the strain energy it follows that N ×N matrix of
elements SAB is nonsingular, and the linear transformation determined by components
CABβγ is invertible. Hence a solution to (5.1) can be written in the form

QB
γ =−GBC

γη D
Cημϑ

(
Uμ,ϑ− bμϑW

)
, VA =−EABKBγδW,γδ , (5.2)

where GAB
αβ and EAB are defined by GAB

αβ C
BCβγ = δ

γ
αδAC, EABSBC = δAC.

Setting

D
αβγδ
eff ≡ D̃αβγδ −DAαβηGAB

ηξ D
Bξγδ , B

αβγδ
eff ≡ B̃αβγδ −KAαβEABKBγδ (5.3)

and substituting the expression (5.2) into the constitutive equations (4.7)1,2, in which the
underlined terms are neglected, we arrive at the homogenized (asymptotic) shell model
governed by

(i) equations of motion:

D
αβγδ
eff

(
Uγ,δα− bγδW,α

)−〈μ〉aαβÜα + f
β

0 = 0,

B
αβγδ
eff W,αβγδ − bαβD

αβγδ
eff

(
Uγ,δ − bγδW

)
+N

αβ
W,αβ + 〈μ〉Ẅ − f0 = 0,

(5.4)

(ii) constitutive equations:

Nαβ =D
αβγδ
eff

(
Uγ,δ − bγδW

)
, Mαβ =−Bαβγδ

eff W,γδ , (5.5)

where D
αβγδ
eff , B

αβγδ
eff are called the effective stiffnesses.

The above obtained homogenized model governed by (5.4), (5.5) is not able to de-
scribe the length-scale effect on the overall shell behavior being independent of the period
length l.

In order to show differences between the results obtained from the tolerance uniperi-
odic shell model (4.7)–(4.9) and from the homogenized model (5.4), (5.5), free vibrations
of a special case of uniperiodic cylindrical shell will be analyzed in the next section.

6. Applications

The objective of this section is to determine and investigate free vibrations of an open cir-
cular cylindrical shell with L1, L2 as its axial length and arc length along the lines of prin-
cipal curvature of the shell midsurface, respectively, and with δ, R as its constant thickness
and its midsurface curvature radius, respectively. The shell is reinforced by two families
of densely spaced ribs, which are parallel to the generatrix of cylindrical surface and are
periodically distributed along the lines of the shell midsurface principal curvature (cf.
Figure 6.1). The stiffeners of both kinds are assumed to have constant rectangular cross-
sections with A1, A2 as their areas and with I1, I2 as their moments of inertia. Moreover,
the gravity centers of the stiffener cross-sections are situated on the shell midsurface.

It is assumed that both the shell and stiffeners are made of homogeneous isotropic
materials; and let us denote by E, ν Young’s modulus and Poisson’s ratio of the shell ma-
terial, respectively, and by E1, E2 Young’s moduli of the rib materials. At the same time μ0
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δ

l

l << L2

Θ2

Θ1

L2

L 1

Figure 6.1. A shell with two families of uniperiodically spaced ribs.

δ

l << L2

a1, a2 << l

δ1a1

l/2
a2

δ2l/2

a1δ1

Θ2

Θ1

E1, A1, I1, μ1
E, μ0

E2, A2, I2, μ2

E1, A1, I1, μ1

Figure 6.2. A fragment of the stiffened shell cross-section.

stands for the constant shell mass density per midsurface unit area and μ1, μ2 stand for
the constant mass densities of the stiffeners per the stiffener unit length (cf. Figure 6.2).

Let Θ1, Θ2 be axial and arc coordinates on the shell midsurface �, respectively, and let
Θ2-coordinate lines coincide with the lines of principal curvature of this surface.

It is assumed that the edges of the shell lie on the coordinate lines Θ1 = 0, Θ1 = L1 and
Θ2 = 0, Θ2 = L2 and that all four edges are simply supported.

In agreement with considerations in Section 2, on OΘ1Θ2-plane we define l as the
period of the stiffened shell structure in Θ2-direction, which represent the distance (i.e.,
the arc length measured along the lines of midsurface principal curvature) between axes
of two neighboring ribs belonging to the same family (cf. Figures 6.1 and 6.2). It means
that the axes of undeformed stiffeners are situated on the linesΘ2 = n1l, n1 = 0,1,2, . . . ,M,
and Θ2 = n2l+ l/2, n2 = 0,1,2, . . . , (M− 1), L2 = (M− 1)l, where (2M− 1) is the number
of stiffeners (cf. Figure 6.1).

The period l has to satisfy the conditions δ� l� L2. It means that the number of
stiffeners has to be very large. We also assume that L1 ≥ L2; it follows that l satisfies the
condition l� L1.
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Θ2

The symmetry axis
of the cell

Ψ2

Ψ2
�

〈
�

l

2
,
l

2

�

a1

2a2

a1

2

l

2
l

2

Figure 6.3. A periodicity cell along the OΘ2-axis direction on OΘ1Θ2-plane, a1,a2 � l.

Denoting by a1, a2 the widths of the ribs (cf. Figure 6.2) we assume that a1, a2 � l and
hence the torsional rigidity of stiffeners can be neglected.

The tensile and bending rigidities of the stiffeners are constant. The rigidities of the
shell are also constant and described by the components of the shell stiffness tensors

D
αβγδ
0 , B

αβγδ
0 given by

D
αβγδ
0 =DHαβγδ , B

αβγδ
0 = BHαβγδ , (6.1)

where

D = Eδ(
1− ν2

) , B = Eδ3

12
(
1− ν2

) ,

Hαβγδ = 0.5
[
aαγaβδ + aαδaβγ + ν

(∈αγ∈βδ +∈αδ∈βγ
)]

,

(6.2)

with aαγ, ∈αγ as contravariant first midsurface tensor and Ricci bivector, respectively. Af-
ter some manipulations we obtain the following expressions for the nonzero components
of tensor Hαβγδ :

H1111 =H2222 = 1, H1122 =H2211 = ν,

H1212 =H1221 =H2121 =H2112 = 1− ν

2
.

(6.3)

We define the periodicity cell Λ on OΘ1Θ2-plane by means of Λ ≡ (−l/2, l/2), Λ(Θ1,
Θ2) ≡ (Θ1,Θ2 − l/2,Θ1,Θ2 + l/2), (Θ1,Θ2) ∈ΩΛ, ΩΛ := {Θ ∈Ω,Λ(Θ) ∈Ω}. The cell Λ
is shown in Figure 6.3. Setting Ψ2 ∈ 〈−l/2, l/2〉, we assume that the cell Λ has a symmetry
axis for Ψ2 = 0.

The periodically ribbed shell under consideration will be treated as a nonstiffened shell
with constant thickness δ, made of a certain nonhomogeneous material. Let us denote by
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Dαβγδ , Bαβγδ , and μ the stiffness tensors and mass density of this nonribbed shell, re-
spectively. The shell’s tensile D1111 and bending B1111 stiffnesses in the axial direction are
l-periodic function in Θ2, being independent of Θ1, and are different from tensile D2222

and bending B2222 rigidities in circumferential direction, being constant functions. The
shell’s mass density μ is l-periodic function in Θ2, being independent of Θ1.

Under assumption that the torsional rigidity of stiffeners is neglected, the components
of the shell stiffness tensors Dαβγδ , Bαβγδ , except for D1111, B1111, are constant and given by

Dαβγδ =D
αβγδ
0 , Bαβγδ = B

αβγδ
0 . Inside the cell Λ, the tensile rigidity D1111(Ψ2) and bending

rigidity B1111(Ψ2) take the following form:

D1111(Ψ2)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D1111
0 =D for Ψ2 ∈

(
− l

2
,
l

2

)
−{0},

E1A1

2
for Ψ2 =− l

2
and Ψ2 = l

2
,

E2A2 for Ψ2 = 0,

B1111(Ψ2)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B1111
0 = B for Ψ2 ∈

(
− l

2
,
l

2

)
−{0},

E1I1

2
for Ψ2 =− l

2
and Ψ2 = l

2
,

E2I2 for Ψ2 = 0.

(6.4)

Inside the cell Λ, the shell mass density is given by

μ
(
Ψ2)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ0 for Ψ2 ∈
(
− l

2
,
l

2

)
−{0},

μ1 for Ψ2 =− l

2
and Ψ2 = l

2
,

μ2 for Ψ2 = 0.

(6.5)

Taking into account definition (2.1) we obtain for functions D1111(Ψ2), B1111(Ψ2),
μ(Ψ2) given above the following averaged values:

D̃1111 ≡ 〈D1111〉= D+
(
E1A1 +E2A2

)
l

,

B̃1111 ≡ 〈B1111〉= B+
(
E1I1 +E2I2

)
l

,

μ̃≡ 〈μ〉 = μ0 +

(
μ1 +μ2

)
l

.

(6.6)

In order to investigate free vibrations, we assume that the external forces f β, f are

equal to zero. We also assume that N
αβ

(t)= 0.
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Considerations will be restricted to the transverse vibrations of the shell; it means that
the forces of inertia in directions tangential to the shell midsurface will be neglected.

For the sake of simplicity, we restrict our considerations to the first terms in series
hA(·)QA

α (·, t), gA(·)VA(·, t), A= 1,2, . . . ,N , that is, A=N = 1. Hence, we introduce only
two l-periodic mode-shape functions h(Ψ2)≡ h1(Ψ2), g(Ψ2)≡ g1(Ψ2), Ψ2 ∈ 〈−l/2, l/2〉,
which have to satisfy condition 〈μh〉 = 〈μg〉 = 0 and the values of which are of order
O(l) and O(l2), respectively. Functions h(Ψ2), g(Ψ2) can be obtained as solutions to pe-
riodic eigenvalue problem on the cell given by (4.5) and hence they are referred to the
lowest natural vibration modes in directions tangent and normal to the shell midsurface,
respectively.

Taking into account the symmetric form of the cell (cf. Figure 6.3) we assume that the
shape function h(Ψ2) is antisymmetric on the cell Λ while the shape function g(Ψ2) is
symmetric.

Taking into account the fact that, except for D1111, B1111, the components of the shell
stiffness tensors Dαβγδ , Bαβγδ are constant and that the functions h(Ψ2), g(Ψ2) are inde-
pendent of Θ1 as well as bearing in mind the symmetric form of the cell and the sym-
metric form of function g(Ψ2) as well as antisymmetric form of function h(Ψ2), it can be
shown that only the following averages in (4.6) are different from zero: D̃αβγδ , B̃αβγδ , LA11,

LA22,
�
K

A11

,
�
K

A22

, CAB11, CAB22, C̃AB11, C̃AB22, FAB2, SAB, L
AB

, R̃AB,
�
R
AB

, S̃AB, A,B = 1. Un-
der assumption A= B =N = 1 we introduce the following denotations for these nonzero
averages:

L11 ≡ LA11, L22 ≡ LA22,
�
K

11

≡
�
K

A11

,
�
K

22

≡ �
K

A22
,

C11 ≡ CAB11, C22 ≡ CAB22, C̃11 ≡ C̃AB11, C̃22 ≡ C̃AB22, F2 ≡ FAB2,

S≡ SAB, L≡ L
AB

, R̃≡ R̃AB,
�
R≡

�
R
AB

, S̃≡ S̃AB, A,B = 1.
(6.7)

We also denote Q1(Θ)≡Q1
1(Θ), Q2(Θ)≡Q1

2(Θ), V(Θ)≡V 1(Θ), Θ≡ (Θ1,Θ2).
Bearing in mind the conditions and denotations given above we will derive below the

formulae for free vibration frequencies of the considered uniperiodic shell by using both
the tolerance model given by (4.7)–(4.9) and the homogenized model presented by (5.4),
(5.5).

6.1. The tolerance model. Now, the governing equations (4.8), (4.9) of the tolerance
model are separated into independent equation for Q1(Θ, t) : C11Q1 − l2C̃11Q1,11 = 0,
which yields Q1 = 0, and the system of five equations for macrodisplacements U1(Θ, t),
U2(Θ, t), W(Θ, t) and fluctuation variables Q2(Θ, t), V(Θ, t), Θ ≡ (Θ1,Θ2), being Λ-
slowly-varying functions in Θ2

D̃1111U1,11 +D
[
(1− ν)2−1U1,22 + (1 + ν)2−1U2,12 + νR−1W,1

]− l2L11V,1 = 0,

D
[
(1 + ν)2−1U1,12 + (1− ν)2−1U2,11 +U2,22 +R−1W,2

]− l2L22V,2 = 0,
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DR−1(νU1,1 +U2,2 +R−1W
)

+ B̃1111W,1111 +B
(
2W,1122 +W,2222

)
+ μ̃Ẅ

+ l2
�
K

11

V,1111 + l2
�
K

22

V,1122−R−1l2L22V = 0,

C22Q2− l2C̃22Q2,11− l2F2V = 0,

− l2L11U1,1− l2L22(U2,2 +R−1W
)

+ l2
�
K

11

W,1111 + l2
�
K

22

W,2211

− l2F2Q2 +
(
S+ l4L

)
V + 2l2

(
R̃− 2S̃

)
V,11 + l4

�
RV,1111 + l4μV̈ = 0,

(6.8)

where some terms depend explicitly on the period length l; the averages D̃1111, B̃1111, μ̃
are defined by (6.6) and the remaining ones are given by (6.7) and (4.6).

It is easy to see that all coefficients of the above equations are constant.
Solutions to (6.1) satisfying boundary conditions for a simply supported shell can be

assumed in the form (see [1])

U1 = Ũ1 cos
(
αΘ1)sin

(
βΘ2)cos(ωt), U2 = Ũ2 sin

(
αΘ1)cos

(
βΘ2)cos(ωt),

Q2 = Q̃2 sin
(
αΘ1)sin

(
βΘ2)cos(ωt), W = W̃ sin

(
αΘ1)sin

(
βΘ2)cos(ωt),

V = Ṽ sin
(
αΘ1)sin

(
βΘ2)cos(ωt),

(6.9)

where α= π/L1, β = π/L2.
Substituting the right-hand sides of (6.9) into (6.1) we obtain the system of five linear

homogeneous algebraic equations for Ũ1, Ũ2, Q̃2, W̃ , Ṽ . For a nontrivial solution the de-
terminant of the coefficients of these equations must equal zero. In this manner we arrive
at the characteristic equation for the lowest frequency ω of the transverse free vibrations
of the shell. Setting ωtm ≡ ω and introducing the following notations:

ã1 ≡ α2D̃1111 +β2D(1− ν)2−1, ã2 ≡ αβD(1 + ν)2−1,

ã3 ≡−αDνR−1, ã4 ≡D
[
α2(1− ν)2−1 +β2], ã5 ≡−βDR−1,

ã6 ≡ α4B̃1111 +B
(
2α2β2 +β4)+DR−2,

(6.10)

ã≡−(ã2
)2(

ã1
)−1

+ ã4, b̃ ≡−ã2ã3
(
ã1
)−1

+ ã5, c̃ ≡−ã2
(
ã1
)−1

αL11 +βL22,

d̃ ≡−(ã3
)2(

ã1
)−1

+ ã6, ẽ ≡−ã3
(
ã1
)−1

αL11−R−1L22 +α2β2
�
K

22

,

f̃ ≡−α2(ã1
)−1(

L11)2− (F2)2(
C22)−1

[
1 +α2l2C̃22(C22)−1

]−1
+L

+ l−4S
[

1 + 2α2l2(2S̃− R̃)S−1 +α4l4
�
RS−1

]
,

(6.11)
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this equation has the following form:

(
ωtm

)4− (ωtm
)2
[

1
μ

(
f̃ − c̃ 2

ã

)
+

1
μ̃

(
d̃− b̃2

ã

)]
+

1
μ̃μ

[
f̃

(
d̃− b̃2

ã

)
+
c̃

ã

(
2b̃ ẽ− d̃ c̃

)
−ẽ 2

]
= 0.

(6.12)

In the above equation the period length l is comprised in the term f̃ .
Because the shell under consideration satisfies the condition l/L1 � 1, that is, αl� 1,

in the sequel the simplified form of (6.12) will be applied, in which the terms

(αl)2C̃ 22(C22)−1
, 2(αl)2(2S̃− R̃

)
S−1, (αl)4

�
RS̃−1 (6.13)

can be neglected as small in comparison with unity. Hence, after setting

f̃ ′ ≡ −α2(ã1
)−1(

L11)2− (F2)2(
C22)−1

+L, (6.14)

the term f̃ in (6.12), which is defined by (6.11)6, simplifies to

f̃ ≈ f̃ ′ + l−4S. (6.15)

Taking into account (6.14) and (6.15) and using the notations

η ≡ f̃ ′ − c̃ 2

ã
, η̃ ≡ d̃− b̃2

ã
, ξ ≡ f̃ ′

(
d̃− b̃2

ã

)
+
c̃

ã

(
2b̃ ẽ− d̃ c̃

)− ẽ 2, (6.16)

we obtain from (6.12) the following formulae for fundamental lower free vibration fre-
quency (ωtm− )2 and for the additional higher free vibration frequency (ωtm

+ )2, caused by the
uniperiodic structure of the shell under consideration

(
ωtm
−
)2 = 1

2

(
S

μl4
+
η

μ
+
η̃

μ̃

)
− 1

2

√√√√√
(

S

μl4
+
η

μ
+
η̃

μ̃

)2

− 4
μ̃μ

(
Sη̃

l4
+ ξ

)
,

(
ωtm

+

)2 = 1
2

(
S

μl4
+
η

μ
+
η̃

μ̃

)
+

1
2

√√√√√
(

S

μl4
+
η

μ
+
η̃

μ̃

)2

− 4
μ̃μ

(
Sη̃

l4
+ ξ

)
.

(6.17)

The results depend on the period length l.

6.2. The homogenized model. In order to evaluate obtained results, let us consider the
above problem within the homogenized (i.e., asymptotic) model. From (6.1), after ne-
glecting the terms of orders O(l2) and O(l4), we obtain the following governing relations
of the homogenized model:

D̃1111U1,11 +D
[
(1− ν)2−1U1,22 + (1 + ν)2−1U2,12 + νR−1W,1

]= 0,

D
[
(1 + ν)2−1U1,12 + (1− ν)2−1U2,11 +U2,22 +R−1W,2

]= 0,

DR−1(νU1,1 +U2,2 +R−1W
)

+ B̃1111W,1111 +B
(
2W,1122 +W,2222

)
+ μ̃Ẅ+= 0.

(6.18)
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The obtained above model is not able to describe the length-scale effect on the overall
shell dynamics being independent of the period length l.

It is easy to see that there are no fluctuation variables in the asymptotic model (6.18)
derived here. It means that U1 = u1, U2 = u2, W = w, and hence the governing equa-
tions (6.18) coincide with the well-known equations of dynamic problems for stringer-
stiffened cylindrical shells; see [1].

The solutions to (6.18) can be assumed in the form (6.9)1,2,4. Substituting the solutions
to (6.18) we obtain the system of three linear homogeneous algebraic equations in Ũ1, Ũ2,
W̃ . For Ũ1 �= 0, Ũ2 �= 0, W̃ �= 0 we arrive at the formula for the lowest frequency ω of the
transverse free vibrations of the shell. Setting ωhm ≡ ω, this formula has the form

(
ωhm

)2 = η̃

μ̃
, (6.19)

where μ̃ and η̃ are given by (6.6)3 and (6.16)2, respectively.
It is easy to see that in the above formula the cell size is neglected and that in the

framework of the asymptotic model it is not possible to determine the additional higher
free vibration frequency, caused by the periodic structure of the shell.

In the next subsection a comparison of the results obtained in Sections 6.1 and 6.2 will
be presented.

6.3. A comparison of results. In order to compare the lower free vibration frequency
given by (6.17)1, which has been derived from the tolerance model with that given by
(6.19) obtained from the homogenized model, let us denote ε ≡ l4. Under this notation
and after some manipulations, the first one from (6.17) takes the form

(
ωtm
−
)2 = 1

2

(
S

με
+
η

μ
+
η̃

μ̃

)
− S

2με

√√√√1 +

(
2η
S
− 2μη̃

μ̃S

)
ε+

(
η

S
+
μη̃

μ̃S
− 4μ
μ̃S2

ξ

)
ε2. (6.20)

Let us observe that the constant ε can be treated as a small parameter. Representing the
square root in the above formula for (ωtm− )2 in the form of the power series with respect
to ε, we obtain

(
ωtm
−
)2 = η̃

μ̃
+O(ε). (6.21)

Taking into account (6.19), we arrive finally at the interrelation

(
ωtm
−
)2 = (ωhm

)2
+O

(
l4
)

(6.22)

between the values of squares of free vibration frequencies (ωtm− )2 and (ωhm)2 obtained
within frameworks of the tolerance and homogenized models, respectively. It means that
the differences between lower value of the free vibration frequency derived from the toler-
ance model and free vibration frequency obtained from the asymptotic one are negligibly
small. Thus, in this case, the effect of the period length l on the free vibrations of the shell
under consideration can be neglected and we can use the asymptotic model represented
by (5.4), (5.5) instead of the nonasymptotic tolerance model given by (4.7)–(4.9).
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6.4. Conclusions. Summarizing the results obtained in this section it can be concluded
that

(i) contrary to homogenized (asymptotic) model, the proposed non-asymptotic one
describes the effect of the period length l on the shell dynamics;

(ii) in the framework of the nonasymptotic tolerance model proposed in this contri-
bution, the fundamental lower and additional higher free vibration frequencies can
be derived. The higher free vibration frequency, caused by a periodic structure
of the stiffened shell cannot be determined using the homogenized (i.e., asymp-
totic) model;

(iii) differences between lower values of the free vibration frequencies derived from
the tolerance model and free vibration frequencies obtained from the asymptotic
one are negligibly small; the squares of free vibration frequencies calculated from
the asymptotic model are approximations of order O(l4) of the squares of lower
free vibration frequencies derived from the tolerance model, that is, (ωtm− )2 =
(ωhm)2 +O(l4). Thus the effect of the period length l on the shell dynamics can
be neglected and hence the homogenized model given by (5.4), (5.5) is sufficient
from the point of view of calculation for the problem of determining the free
vibration frequencies of uniperiodically densely stiffened cylindrical shells under
consideration.

7. Final remarks

The subject matter of this contribution is a thin linear-elastic cylindrical shell having a
periodic structure (a periodically varying thickness and/or periodically varying elastic
and inertial properties) in one direction tangent to the undeformed shell midsurface �.
Shells of this kind are termed uniperiodic. Moreover, it is assumed that the uniperiodic
cylindrical shells, being objects of our considerations, are composed of a very large num-
ber of identical elements and every such element is treated as a shallow shell. It means
that the period of inhomogeneity is very large compared with the maximum shell thick-
ness and very small as compared to the midsurface curvature radius as well as the smallest
characteristic length dimension of the shell midsurface in the periodicity direction. This
uniperiodic structure of cylindrical shells considered here can be related to the periodi-
cally spaced dense system of ribs as shown in Figure 1.1.

For the uniperiodic cylindrical shells the known governing equations of the Kirchhoff-
Love shell theory involve periodic highly oscillating and noncontinuous coefficients.
Hence, in most cases direct application of these equations to analyze engineering prob-
lems in periodic shells is very complicated, particularly from the computational view-
point. That is why the aim of this contribution was to propose a new nonasymptotic model
of uniperiodic cylindrical shells for problems of dynamics and dynamical stability, which has
constant coefficients in direction of periodicity and hence can be applied as a proper
analytical tool for investigations of engineering problems in the shell under considera-
tions. Moreover, the proposed model takes into account the effect of periodicity cell size
on the global shell dynamics and dynamical stability as well as stationary stability, called
the length-scale effect, which is neglected in the known homogenized models derived by
asymptotic methods.
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In order to derive the model equations the tolerance averaging procedure given in [21],
has been applied to governing equations of the Kirchhoff-Love second-order shell the-
ory for thin linear-elastic cylindrical shells, that is, to (2.2)–(2.4). The proposed averaged
model called the tolerance model of dynamic and dynamical stability problems for uniperi-
odic cylindrical shells is represented by a system of partial differential equations (4.8), (4.9)
with coefficients which are constant in the direction of periodicity. The basic unknowns
are the macrodisplacements Uα, W and the fluctuation variables QA

α , VA, A = 1,2, . . . ,N ,
which have to be slowly-varying functions with respect to the cell and certain tolerance
system. This requirement imposes certain restrictions on the class of problems described
by the model under consideration. In order to obtain the governing equations the mode-
shape (shape) functions hA, gA, A= 1,2, . . . ,N , should be derived from the periodic finite
element method discretization of the cell or obtained as solutions to periodic eigenvalue
problem on the cell given by (4.5). This eigenvalue problem describes free periodic vi-
brations of the cell, and hence the eigenfunctions hA, gA, A= 1,2, . . . ,N , represent the ex-
pected forms of the oscillating part of free vibration modes of the periodicity cell. More-
over, in most problems the analysis is restricted to the simplest case N = 1 in which we
take into account only the lowest natural vibration modes (in directions tangent and nor-
mal to the shell midsurface) related to the smallest free vibration frequencies. Let us note
that the model proposed here can be treated as a certain generalization of the models
given in [17, 18].

The derived model has been used in this paper to investigate free vibrations of uniperi-
odically densely stringer-stiffened cylindrical shell. From the illustrative example it fol-
lows that in the framework of the nonasymptotic model proposed in this contribution,
not only the fundamental lower but also the additional higher free vibration frequencies
can be determined and analyzed. These additional higher free vibration frequencies de-
pend on the period length and cannot be derived from the asymptotic models. Moreover,
differences between values of fundamental lower free vibration frequencies derived from
the tolerance model and those obtained from the asymptotic one are negligibly small. It
means that the effect of the period length on the free vibrations of the considered shell
can be neglected and hence, the homogenized (asymptotic) model is sufficient from the
point of view of calculation for this dynamic problem.

Problems related to various applications of the proposed equations (4.7)–(4.9) to dy-
namics and dynamical stability of uniperiodic cylindrical shells and determination of the
mode-shape functions from periodic eigenvalue problem given by (4.5) are reserved for
a separate paper.
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[20] C. Woźniak, On dynamics of substructured shells, Journal of Theoretical and Applied Mechanics
37 (1999), 255–265.
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