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We establish long-time and large-data existence of a weak solution to the problem de-
scribing three-dimensional unsteady flows of an incompressible fluid, where the viscosity
and heat-conductivity coefficients vary with the temperature. The approach reposes on
considering the equation for the total energy rather than the equation for the tempera-
ture. We consider the spatially periodic problem.
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1. Introduction

Viscosity plays an important role in most of the problems of fluid dynamics. In the sim-
plest case when the viscous stress tensor S is a linear function of the fluid velocity gradient,
the principle of material frame indifference yields

S= μ
(
∇xu +∇xut − 2

3
div uI

)
+ ζ div uI, (1.1)

where u is the fluid velocity, and μ and ζ are scalar quantities termed the shear viscosity
coefficient and the bulk viscosity coefficient, respectively.

If the fluid is considered incompressible, the velocity is subject to the well-known con-
straint

div u= 0. (1.2)

If, in addition, the fluid is homogeneous, the mass balance equation results in the fact that
the fluid density is everywhere equal to a positive constant denoted by ρ. The motion of
the fluid is then described by the equation representing the balance of linear momentum
that takes the form

ρ
(
∂tu + u ·∇xu

)
+∇x p = divS + ρf , (1.3)

where p is the pressure, and f denotes a given external force density.

Hindawi Publishing Corporation
Differential Equations and Nonlinear Mechanics
Volume 2006, Article ID 90616, Pages 1–14
DOI 10.1155/DENM/2006/90616

http://dx.doi.org/10.1155/S1687409906906169


2 NSEs with temperature-dependent transport coefficients

If, moreover, the fluid is heat conductive, the above equations have to be supplemented
with the equation

cVρ
(
∂tθ + u ·∇xθ

)
+ div q= S :∇xu, (1.4)

where θ stands for the absolute temperature, cV is the specific heat, and q is the heat flux
obeying, conformably to (1.1), Fourier’s law,

q=−κ∇xθ, (1.5)

with the heat conductivity coefficient κ. The so-called dissipation function S :∇xu, omit-
ted frequently in many mathematical models, represents the irreversible transfer of the
mechanical energy into heat.

The simplest situation to consider, as a paradigm of the above-described problem, is
that of a layer of depth h > 0 placed between two horizontal boundaries located at x3 = 0
and x3 = h, where we prescribe the no-stick boundary conditions for the velocity:

u3
(
t,x1,x2,0

)= u3
(
t,x1,x2,h

)= 0 ∀(x1,x2
)∈R2,

{(
S
(
t,x1,x2,0

)
[0,0,−1]

)× [0,0,−1]= 0(
S
(
t,x1,x2,h

)
[0,0,1]

)× [0,0,1]= 0

}
∀(x1,x2

)∈R2,
(1.6)

and the no-flux boundary conditions for θ:

∂x3θ
(
t,x1,x2,0

)= ∂x3θ
(
t,x1,x2,h

)= 0 ∀(x1,x2)∈R2. (1.7)

Moreover, all quantities we deal with are supposed to be spatially periodic in x1 and x2

with periods h1 and h2, respectively.
The main objective of the present paper is to study the physically relevant case, where

the transport coefficients μ and κ are effective functions of the absolute temperature θ.
More specifically, we suppose that

μ,κ∈ C2[0,∞), 0 < μ≤ μ(θ)≤ μ, 0 < κ≤ κ(θ)≤ κ ∀θ ∈ [0,∞). (1.8)

Clearly, the bulk viscosity becomes irrelevant under the incompressibility condition (1.2).
It is easy to observe (cf. Ebin [5]) that the boundary conditions (1.6)–(1.7) can be

conveniently reformulated in terms of spatial periodicity on R3 supplemented with addi-
tional symmetry properties. Taking, for simplicity, h= π, h1 = h2 = 2π, we can consider
the state variables u(t,·), θ(t,·) defined on the three-dimensional torus �3 = [−π,π]3 :=
{(x1,x2,x3); xi ∈ [−π,π],∀i = 1,2,3}, where we identify the points (−π,x2,x3) with
(π,x2,x3) and so forth, that are 2π-periodic in x1 and x2 and satisfy

{
ui
(
t,x1,x2,x3

)= ui
(
t,x1,x2,−x3

)
, i= 1,2,

u3
(
t,x1,x2,x3

)=−u3
(
t,x1,x2,−x3

)
}

∀(x1,x2,x3
)∈�3, (1.9)

θ
(
t,x1,x2,x3)= θ

(
t,x1,x2,−x3

) ∀(x1,x2,x3
)∈�3. (1.10)
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Moreover, without loss of generality, we set CVρ = 1 and, for the sake of simplicity,
f ≡ 0.

The existence of global-in-time solutions for system (1.2)–(1.4) supplemented with
the initial data

u(0,x)= u0(x), θ(0,x)= θ0(x), x ∈�3 (1.11)

is an open problem, even in the class of the weak solutions introduced for the standard
Navier-Stokes system by Leray [9]. The main stumbling block is represented by the dissi-
pative term

S :∇xu= μ(θ)
2

∣∣∇xu +∇xut
∣∣2

, (1.12)

being the only source of a priori estimates on the velocity gradient∇xu, and, at the same
time, a quantity which is only weakly lower semicontinuous in ∇xu. Consequently, (1.4)
has to be replaced by the inequality

∂tθ + u ·∇xθ + div q≥ S :∇xu (1.13)

related clearly to the local (kinetic) energy inequality

∂t

(
1
2
|u|2

)
+ div

((
1
2
|u|2 + p

)
u
)
−div(Su) + S :∇xu≤ 0 (1.14)

that is known to hold for the so-called suitable weak solutions of the Navier-Stokes sys-
tem introduced by Caffarelli et al. [1]. Of course, such a problem does not occur when
there are better a priori estimates on the velocity gradient as it is the case for, say, some
non-Newtonian fluids (see Consiglieri [2] or Nečas and Roubı́ček [12]) or in two space
dimensions (see Consiglieri et al. [3]). Note also that the issue of smoothness of the solu-
tions to an approximative problem (neglecting the convective terms in (1.3) and (1.4)) is
addressed by Shilkin in [13].

The question whether or not (1.14) may hold as a strict inequality is completely open
and has been discussed even for the classical Navier-Stokes and Euler equations by many
authors (see Duchon and Robert [4], Eyink [6], and Nagasawa [11] for the most recent
results). The problem is nontrivial, and the correct answer would certainly represent a
highly desired piece of information in the mathematical theory of the Navier-Stokes sys-
tem. Here, it seems worth-noting that a strict inequality in (1.14) would definitely imply
the same for (1.13) as the total energy of the system has to be conserved.

Our strategy is to replace (1.4) by the balance of total energy that has clear physical
background. Similarly, as the notion of local energy inequality introduced in [1], the total
energy balance requires to know the pressure that is frequently omitted in the analysis
of incompressible fluids (by restricting to the spaces of test functions that are free of
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divergence). The resulting system consists of three equations:

∂tu + div(u⊗u) +∇x p = div
(
μ(θ)

(∇xu +∇xut
))

, (1.15)

∂t

(
1
2
|u|2 + θ

)
+ div

((
1
2
|u|2 + p+ θ

)
u
)
−Δ�(θ)= div

(
μ(θ)

(∇xu +∇xut
)

u
)
,

(1.16)

div u= 0, (1.17)

that can be supplemented with an “entropy” inequality:

∂tθ + div(θu)−Δ�(θ)≥ μ(θ)
2

∣∣∇xu +∇xut
∣∣2

, (1.18)

where we have set

�(θ)=
∫ θ

0
κ(z)dz. (1.19)

In the framework of weak (distributional) solutions, inequality (1.18) may be viewed as
an extra admissibility condition.

The reason for writing κ(θ)∇xθ = ∇x�(θ) is due to the lack of suitable a priori es-
timates to render the quantity κ∇xθ locally integrable (cf. (1.24) below). On the other
hand, the weak formulation allows us to write

∫
�3
Δ�(θ)ϕ dx =

∫
�3

�(θ)Δϕ dx, (1.20)

where the right-hand side makes sense for any “test” function ϕ∈ C2(�3).
The main objective of the present paper is to establish the following existence result.

Theorem 1.1. Let μ and κ satisfy hypothesis (1.8). Furthermore suppose that

u0 ∈ L2(�3;R3), θ0 ∈ L1(�3) (1.21)

enjoy the symmetry properties specified in (1.9), (1.10), and that

div u0 = 0, ess inf
x∈�3

θ0(x) > 0. (1.22)

Then there exist functions (u,θ, p) such that

u∈ L2(0,T ;W1,2(�3;R3))∩C
(
[0,T];L2

weak

(
�3;R3)), (1.23)

{
θ ∈ L∞

(
0,T ;L1

(
�3
))

, θ(t,x) > 0 for a.a. (t,x)∈ (0,T)×�3,

θα/2 ∈ L2
(
0,T ;W1,2

(
�3
))

for any (positive) α < 1,

}
(1.24)

t �−→
∫

�3

(
1
2

∣∣u(t)
∣∣2

+ θ(t)
)
ϕdx ∈ C

(
[0,T]

) ∀ϕ∈ C(Ω) (1.25)

p ∈ L5/3((0,T)×�3), (1.26)



E. Feireisl and J. Málek 5

belonging to the symmetry class (1.9), (1.10), and satisfying system (1.15)–(1.18) in �′

((0,T)×�3), together with the initial conditions

u(0)= u0,
1
2

∣∣u(0)
∣∣2

+ θ(0)= 1
2

∣∣u0
∣∣2

+ θ0,

ess liminf
t→0+

∫
�3
θ(t)ϕ dx ≥

∫
�3
θ0ϕ dx for any ϕ∈�

(
�3), ϕ≥ 0.

(1.27)

The paper is organized as follows. In Section 2, we introduce a family of approximate
problems solvable by the standard techniques. Following Leray’s original idea, we use
smoothing operators applied to the velocity field appearing in the convective term. At
the same time, the (modified) momentum equation is solved via the standard Faedo-
Galerkin approximations while the temperature is expressed through (1.4).

In Section 3, we derive uniform estimates on the sequence of approximate solutions
introduced in Section 2. In particular, these estimates prevent the approximate solutions
to “blow up” in a finite time. From this point of view, the most delicate quantity to deal
with seems to be the temperature θ, for which the energy equation (1.4) has to be refor-
mulated in the spirit of the theory of renormalized solutions, where the desired estimates
are obtained through interpolation techniques.

As a next step, we obtain the “second” level approximate solutions resulting from the
Faedo-Galerkin scheme (see Section 4). These quantities are shown to solve a system sim-
ilar to (1.15)–(1.18), where the velocity field appearing in the convective terms in (1.15),
(1.16) is still replaced by its regularization.

Finally, getting rid of the regularized terms we complete the proof of Theorem 1.1 in
Section 5.

2. The Faedo-Galerkin approximation scheme

Given the periodic boundary conditions, it is convenient to use the Faedo-Galerkin ap-
proximation scheme in order to solve (1.15), where the temperature is obtained through
the heat equation (1.4). To this end, we introduce the Fourier series representation of a
function v:

v(t,x)=
∑

k∈Z3

[v]k(t)exp(ik · x) where [v]k(t)= 1
|�3|

∫
�3
v(t, y)exp(−ik · y)dy.

(2.1)

Accordingly, Helmholtz’s projection � onto the space of solenoidal (divergenceless) func-
tions can be written as

[
�[v]

]
k = [v]k− k

|k|2 k · [v]k, k∈ Z3, v ∈ L2(�3;R3). (2.2)

Set

Xn,div =
{

w |�[w]=w, [w]k = 0∀k, |k| > n
}
. (2.3)
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For a given M > 0, we introduce the regularizing operators

[v]|k|≤M =
∑
|k|≤M

[v]k exp(ik · x) (2.4)

and look for the approximate fields un ∈ C([0,Tn]; Xn,div) and θn that are determined
through the system of equations

d

dt

∫
�3

un ·w dx =−
∫

�3
μ
(
θn
)(∇xun +∇xut

n

)
:∇xw dx

+
∫

�3

(
un⊗

[
un
]
|k|≤M

)
:∇xw dx to be valid ∀w ∈ Xn,div,

(2.5)

∂tθn + div
(
θnun

)−div
(
κ
(
θn
)∇xθn

)= μ(θn)
2

∣∣∇xun +∇xut
n

∣∣2
, (2.6)

completed by the set of initial conditions

un(0)= un,0 =
∑
|k|≤n

[
u0
]

k exp(ik · x)−→ u0 in L2(�3), (2.7)

θn(0)= θn,0, (2.8)

with θn,0 ∈ C∞(�3) satisfying (1.10),

inf
n∈N ,x∈�3

θn,0 > 0, θn,0 −→ θ0 in L1(�3). (2.9)

As for solvability of the parabolic equation (2.6), we report (and sketch the proof of)
the following (classical) result.

Lemma 2.1. Given un ∈ C([0,T];Xn,div), θn,0 ∈ L∞(�3) fulfilling (2.9), there exists a unique
function

θn ∈ L∞
(
(0,T)×�3)∩L2(0,T ;W1,2(�3)) (2.10)

solving (2.6) in �′((0,T)×�3) and satisfying the initial condition (2.8).
Furthermore,

θn(t,x)≥ ess inf
y∈�3

θn,0(y) for a.a. t ∈ (0,T), x ∈�3, (2.11)

and a “renormalized” equation

∂tH
(
θn
)

+ div
(
H
(
θn
)

un
)−div

(
H′(θn)κ(θn)∇xθn

)

= 1
2
H′(θn)μ(θn)∣∣∇xun +∇xut

n

∣∣2−H′′(θn)κ(θn)∣∣∇xθn
∣∣2

(2.12)

holds in �′((0,T)×�3) for any H ∈ C2[0,∞).
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Proof. (i) To begin with, observe that any distributional solution of (2.6) belongs to the
class C([0,T]; L2(�3)); whence (2.8) makes sense.

(ii) Now it is easy to see that two arbitrary distributional solutions θ1
n, θ2

n of (2.6) satisfy

1
2

∥∥θ1
n

(
t2
)− θ2

n

(
t2
)∥∥2

L2(�3) + c1

∫ t2

t1

∫
�3

∣∣∇xθ
1
n−∇xθ

2
n

∣∣2
dxdt

≤ 1
2

∥∥θ1
n

(
t1
)− θ2

n

(
t1
)∥∥2

L2(�3) + c2

∫ t2

t1

∫
�3

∣∣θ1
n− θ2

n

∣∣2
dxdt for any 0≤ t1 < t2 ≤ T ,

(2.13)

where c1, c2 depend only on un, esssup|θin|, i= 1,2, esssup|∇θ2
n|, and the structural con-

stants μ, μ, κ, κ appearing in hypothesis (1.8). In particular, any distributional solution of
(2.6) belonging to the class (2.10) is uniquely determined by the initial data.

(iii) In order to establish the existence of solution, we can for example start with ap-
proximating the functions μ, κ by smooth ones and regularizing un in time to solve the
resulting problem with the help of the classical theory (see Ladyzhenskaya et al. [8]).

At this stage, the lower bound claimed in (2.11) as well as an upper bound, depending
on un, esssup|θn,0|, and μ, follow directly from the maximum principle. Furthermore
regular solutions obey automatically the (regularized) equation (2.12).

Finally it is easy to show that the solutions of the regularized problems are bounded in
the space specified in (2.10) independently of the degree of regularization. Consequently,
the Lions-Aubin lemma can be applied in order to show that this sequence admits a limit
θn—the unique solution of (2.6), (2.8) satisfying (2.11), (2.12). The reader may wish to
consult Feireisl [7, Section 7.3.2.], or Consiglieri et al. [3] for more details. �

By virtue of Lemma 2.1, the absolute temperature θn appearing in the second inte-
gral on the right-hand side of (2.5) can be expressed through (2.6), (2.8) for any given
un ∈ C([0,T];Xn,div). Accordingly, problem (2.5)–(2.8) can be solved via the standard
Caratheodory theory, at least on a (possibly) short time interval (0,Tn). Since un is con-
tinuously differentiable on (0,Tn) we can pick w = un(t) in (2.5) to obtain the identity
(that gives rise to the “kinetic” energy balance)

1
2
d

dt

∫
�3

∣∣un

∣∣2
dx+

∫
�3

μ
(
θn
)

2

∣∣∇xun +∇xut
n

∣∣2
dx = 0. (2.14)

This particularly leads to the estimate

sup
t∈[0,Tn)

∥∥un(t)
∥∥
L2(�3) ≤

∥∥u0
∥∥
L2(�3) ∀n= 1,2, . . . , (2.15)

that immediately implies that the existence time Tn is independent of n. More specifically,
we can take Tn = T ; whence, keeping n and M fixed, we have established the existence of
solutions (un,θn) := (un,M ,θn,M) to the approximative problem (2.5)–(2.8).
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To conclude we make yet another observation. Setting

Xn =
{

w | [w]k = 0∀k, |k| > n
}

, (2.16)

we notice that (2.5) can be written as

d

dt

∫
�3

un ·w dx =
∫

�3
pn div w dx+

∫
�3

(
un⊗

[
un
]
|k|≤M

)
:∇xw dx

−
∫

�3
μ
(
θn
)(∇xun +∇xut

n

)
:∇xw dx valid ∀w ∈ Xn,

(2.17)

where the approximate pressure term pn is (uniquely) determined through

pn =
(∇xΔ

−1∇x
)

:
[
μ
(
θn
)(∇xun +∇xut

n

)− (un⊗
[

un
]
|k|≤M

)]
. (2.18)

Here the inverse Laplace operator Δ−1 is considered on the space of spatially periodic
functions with zero mean; whence (∇xΔ−1∇x) may be viewed as a pseudodifferential
operator

[(∇xΔ
−1∇x

)
v
]

k =
k⊗k
|k|2 [v]k, k∈ Z3. (2.19)

In particular, as a direct consequence of the Calderon-Zygmund theory,

(∇xΔ
−1∇x

)
: Lp

(
�3)−→ Lp

(
�3;R3×3) is bounded for any 1 < p <∞. (2.20)

3. Uniform estimates

Our aim is to derive estimates on the sequence of approximate solutions (un, pn,θn) :=
(un,M , pn,M ,θn,M) constructed in the preceding section. These estimates are of two types:
some of them will be uniform not only with respect to n but also to M, while others will
be independent of n only. For the estimates of the first group, we will use the absolute
positive constant K to bound all of them, while the estimates depending on M will be
denoted by C = C(M) independent of n.

First of all, by virtue of hypothesis (1.8), relation (2.14) gives rise to the standard energy
estimates:

∥∥un

∥∥
L∞(0,T ;L2(�3;R3)) ≤ K , (3.1)

‖un‖L2(0,T ;W1,2(�3;R3)) ≤ K . (3.2)

Note that (3.1) and (3.2) imply, using standard interpolation inequalities, that

∥∥un

∥∥
L10/3(0,T ;L10/3(�3;R3)) ≤ K. (3.3)
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Consequently,

∥∥un⊗
[

un
]
|k|≤M

∥∥
L5/3(0,T ;L5/3(�3;R3×R3)) ≤ K. (3.4)

Since the truncated function [un]|k|≤M is for M fixed smooth, we also have

∥∥un⊗
[

un
]
|k|≤M

∥∥
L10/3(0,T ;L10/3(�3;R3×R3)) ≤ C(M). (3.5)

Next, we come to the estimates for the pressures pn := pn,M . In virtue of (2.20) and
estimates (3.2), (3.4), (3.5), it follows from formula (2.18) that

∥∥pn∥∥L5/3(0,T ;L5/3(�3;R)) ≤ K , (3.6)

∥∥pn∥∥L2(0,T ;L2(�3;R)) ≤ C(M) . (3.7)

Combining (3.2), (3.4), (3.6) with (2.17), we deduce that

∥∥∂tun

∥∥
L5/2(0,T ;W−1,5/2(�3;R3)) ≤ K , (3.8)

and, similarly, relations (3.2), (3.5), and (3.7) yield

∥∥∂tun

∥∥
L2(0,T ;W−1,2(�3;R3)) ≤ C(M). (3.9)

Finally, we derive suitable estimates for the temperatures θn := θn,M . It follows from
(3.2) and hypothesis (1.8) that the source term on the right-hand side of (2.6) is bounded
in L1((0,T)×�3); whence, taking (2.9) into account, we obtain

∥∥θn∥∥L∞(0,T ;L1(�3)) ≤ K. (3.10)

Furthermore, we can use the renormalized equation (2.12) in order to deduce

∫ T

0

∫
�3

∣∣H′′(θn)∣∣∣∣∇xθn
∣∣2

dxdt ≤ K , (3.11)

for any concave increasing H ∈ C2[0,∞). In particular, as we already know that θn are
bounded from below uniformly in n, we can choose H(θ)= θα to obtain

∥∥∇xθ
α/2
n

∥∥
L2(0,T ;L2(�3;R3)) ≤ K (3.12)

for any 0 < α < 1, which, together with (3.10), implies that

∥∥θα/2n

∥∥
L2(0,T ;W1,2(�3)) ≤ K for any 0 < α < 1. (3.13)

Now, by virtue of the embedding relation W1,2(�3)↩L6(�3), the estimate (3.13) yields

∥∥θαn
∥∥
L1(0,T ;L3(�3)) ≤ K for any 0 < α < 1. (3.14)
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Using then the interpolation inequality

‖z‖qLq(�3) ≤ c‖z‖(3−q)/2
L1(�3) ‖z‖3(q−1)/2

L3(�3) , (3.15)

together with (3.10) and (3.14), we conclude that

∥∥θαn
∥∥
L5/3(0,T ;L5/3(�3)) ≤ K for any 0 < α < 1, (3.16)

which implies

∥∥θn∥∥Lq(0,T ;Lq(�3)) ≤ K for any q ∈
[

1,
5
3

)
. (3.17)

Making use of the renormalized equation (2.12) again, this time with H(θ) = θα/2, we
conclude from the above estimates that

∥∥∂tθα/2n

∥∥
L1(0,T ;W−1,r′ (�3)) ≤ K for any r > 3, r′ := r− 1

r
. (3.18)

4. The limit passage for n→∞ (M fixed)

Based on the estimates derived in Section 3 we can select a suitable subsequence of (un, pn,
θn) and find (u, p,θ) := (uM , pM ,θM) such that

un −→ u weakly in L2(0,T ;W1,2(�3;R3)), (4.1)

un −→ u ∗ -weakly in L∞
(
0,T ;L2(�3;R3)),

∂tun −→ ∂tu weakly in L2(0,T ;W−1,2(�3;R3)), (4.2)

pn −→ p weakly in L2(0,T ;L2(�3)), (4.3)

θα/2n −→ θα/2 weakly in L2(0,T ;W1,2(�3)), (4.4)

∂tθ
α/2
n −→ ∂tθ

α/2 ∗ -weakly in M
(
0,T ;W−1,r′(�3)) := (C0

(
0,T ;W1,r(�3)))∗.

(4.5)

In addition, we get from (2.11)

θα/2n (t,x)≥
[

ess inf
y∈�3

θn,0(y)
]α/2

for a.a. t ∈ (0,T), x ∈�3. (4.6)

As a consequence of the standard Lions-Aubin compactness lemma, (4.1) and (4.2)
imply

un −→ u strongly in L2(0,T ;L2(�3;R3)), (4.7)
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in particular we can assume

un(t)−→ u(t) strongly in L2(�3;R3) for a.a. t ∈ [0,T]. (4.8)

Similarly, using an appropriate generalization of the Lions-Aubin result (see Simon
[14], e.g.) one concludes from (4.4) and (4.5) that

θα/2n −→ θα/2 strongly in L2(0,T ;L2(�3)). (4.9)

This, together with (3.16) and (3.17), yields

θn −→ θ strongly in Lq
(
0,T ;Lq

(
�3)) for any q ∈

[
1,

5
3

)
. (4.10)

Now, since div un = 0 we get from (4.1) that

div u= 0. (4.11)

Note also that u ∈ L2(0,T ;W1,2(�3;R3)), ∂tu ∈ L2(0,T ;W−1,2(�3;R3)); whence u ∈ C
([0,T];L2(�3;R3)), in particular, the initial condition makes sense.

In view of (4.1)–(4.10), it is a routine matter to take the limit for n→∞ in (2.17) to
obtain (since u, p, and θ are depending on M we write, for a later use, uM instead of u,
and so forth in the limit equation)

∂tuM + div
(

uM ⊗
[

uM
]
|k|≤M

)
+∇x pM

= div
(
μ
(
θM
)(∇xuM +∇xut

M

))
in L2(0,T ;W−1,2(�3;R3)), (4.12)

uM(0)= u(0)= u0. (4.13)

Since u= uM is an admissible test function in (4.12), we deduce the energy equality of
the form

∥∥u(t)
∥∥2
L2(�3) +

∫ t

0

∫
�3
μ(θ)

∣∣∇xu +∇xut
∣∣2

dxdτ = ∥∥u0
∥∥2
L2(�3). (4.14)

On the other hand, it follows from (2.14) that

∥∥un(t)
∥∥2
L2(�3) +

∫ t

0

∫
�3
μ
(
θn
)∣∣∇xun +∇xut

n

∣∣2
dxdτ = ∥∥u0n

∥∥2
L2(�3). (4.15)

Thus, taking the limit in (4.15) for n→∞, using (4.8) and (2.7), and comparing the result
with (4.14), we obtain

lim
n→∞

∫ T

0

∫
�3
μ
(
θn
)∣∣∇xun +∇xut

n

∣∣2
dxdτ =

∫ T

0

∫
�3
μ(θ)

∣∣∇xu +∇xut
∣∣2

dxdτ. (4.16)
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Obviously, relation (4.16) together with hypothesis (1.8) imply that

∇xun −→∇xu strongly in L2(0,T ;L2(�3;R3×R3)). (4.17)

By virtue of (4.16), and compactness established for un and θn, specifically (4.7) and
(4.10), we can take the limit in (2.6) to conclude that (we write again θM instead of θ,
etc.)

∂tθM + div
(
θMuM

)−Δ�
(
θM
)= μ

(
θM
)

2

∣∣∇xuM +∇xut
M

∣∣2
in �′((0,T)×�3).

(4.18)

Finally, as for any Φ∈�((0,T)×�3) the quantity uMΦ represents an admissible test
function in (4.12), we can add the result of such an operation to (4.18) in order to infer
that

∂t

(∣∣uM

∣∣2

2
+ θM

)
+ div

(∣∣uM

∣∣2

2

[
uM
]
|k|≤M

)
+ div

((
pM + θM

)
uM
)

−Δ�
(
θM
)−div

(
μ
(
θM
)

2

(∇xuM +∇xut
M

)
uM

)
= 0 in �′((0,T)×�3).

(4.19)

5. The limit passage for M→∞
Given the uniform (with respect to M) estimates established in Section 3, the last part
of the proof of Theorem 1.1 is rather standard. Indeed as the approximate solutions
(uM , pM ,θM), fulfilling (4.11), (4.12), (4.19), and (4.18), are limits of weakly converg-
ing sequences, relations (3.1), (3.2), (3.6), (3.8), (3.10), (3.13), and (3.18) remain valid
for (uM , pM ,θM).

Using the same arguments as in Section 4, we find subsequences of (uM , pM ,θM) and
(u, p,θ) such that

uM −→ u weakly in L2(0,T ;W1,2(�3;R3)), ∗-weakly in L∞
(
0,T ;L2(�3;R3)),

(5.1)

∂tuM −→ ∂tu weakly in L5/2(0,T ;W−1,5/2(�3;R3)), (5.2)

pM −→ p weakly in L5/3(0,T ;L5/3(�3)), (5.3)

θα/2M −→ θα/2 weakly in L2(0,T ;W1,2(�3)), (5.4)

∂tθ
α/2
M −→ ∂tθ

α/2 weakly in M
(
0,T ;W−1,r′(�3)) with r > 3. (5.5)

Moreover, we have

uM −→ u strongly in Lq
(
0,T ;Lq

(
�3;R3))∀q ∈

[
1,

5
3

)
,

uM(t)−→ u(t) strongly in L2(�3;R3) for a.a. t ∈ [0,T].

(5.6)
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In addition, similarly to Section 4, we can deduce

θα/2M −→ θα/2 strongly in L2(0,T ;L2(�3)) (5.7)

leading to

θM −→ θ strongly in Lq
(
0,T ;Lq

(
�3)) for any q ∈

[
1,

5
3

)
; (5.8)

whence, in particular,

θM(t)−→ θ(t) strongly in L1(�3) for a.a. t ∈ [0,T]. (5.9)

Observing that

(∣∣uM

∣∣2

2
+ pM

)
uM are bounded in L10/9(0,T ;L10/9(�3;R3)),

θMuM are bounded in Lq
(
0,T ;Lq

(
�3;R3)) ∀q ∈

[
1,

10
3

)
,

μ
(
θM
)(∇xuM +∇xut

M

)
uM are bounded in L5/4(0,T ;L5/4(�3;R3)),

(5.10)

we can let M →∞ in (4.12), and (4.19) in order to show (with help of (5.6), (5.8), and
(5.9)) that (1.15), (1.17) hold in �′((0,T)×�3). Furthermore, as convex functionals are
weakly lower semicontinuous, it is easy to see that (4.18) gives rise to (1.18) in �′((0,T)×
�3).

As the remaining statements claimed in Theorem 1.1 are standard (the reader can be
referred, e.g., to [10]), the proof is now complete.
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