
Hindawi Publishing Corporation
Differential Equations and Nonlinear Mechanics
Volume 2009, Article ID 748794, 11 pages
doi:10.1155/2009/748794

Research Article
Effects of Magnetic Field and Nonlinear
Temperature Profile on Marangoni Convection in
Micropolar Fluid

M. N. Mahmud,1 R. Idris,2 and I. Hashim3

1 Malaysian Institute of Chemical & Bioengineering Technology, Universiti Kuala Lumpur,
78000 Alor Gajah Melaka, Malaysia

2 Department of Mathematics, Faculty of Science & Technology, Universiti Malaysia Terengganu,
21030 Kuala Terengganu, Malaysia

3 Centre for Modelling & Data Analysis, School of Mathematical Sciences, Universiti KebangsaanMalaysia,
43600 UKM Bangi Selangor, Malaysia

Correspondence should be addressed to I. Hashim, ishak h@ukm.my

Received 20 May 2009; Accepted 8 December 2009

Recommended by Tasawar K. Hayat

The combined effects of a uniform vertical magnetic field and a nonuniform basic temperature
profile on the onset of steady Marangoni convection in a horizontal layer of micropolar fluid are
studied. The closed-form expression for the Marangoni number M for the onset of convection,
valid for polynomial-type basic temperature profiles upto a third order, is obtained by the use of
the single-term Galerkin technique. The critical conditions for the onset of convection have been
presented graphically.

Copyright q 2009 M. N. Mahmud et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Convective flow in a thin layer of fluid, free at the upper surface and heated from below, is
of fundamental importance and a prototype to a more complex configuration in experiments
and industrial processes. The convective flows in a liquid layer can be driven by buoyancy
forces due to temperature gradients and/or thermocapillary (Marangoni) forces caused by
surface tension gradients. Thermal convective problems have long been studied extensively
since the pioneering experimental and theoretical works of Bénard [1], Rayleigh [2], and
Pearson [3]. The instability problems have been studied in several other directions (cf. [4–
18]).

Most of the previous studies were concerned with convection in Newtonian fluids.
However, much less work has been done on convection in non-Newtonian fluids such
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as the micropolar fluids. The theory of micropolar fluids, as developed by Eringen
[19], has been a field of sprightly research for the last few decades especially in many
industrially important fluids like paints, polymeric suspensions, colloidal fluids, and also
in physiological fluids such as normal human blood and synovial fluids. Rama Rao [20]
studied the effect of a magnetic field on convection in a micropolar fluid. The onset of
convection as overstable motions in a micropolar fluid was examined in [21]. Sharma
and Gupta [22] studied convection in micropolar fluids in a porous medium. Ramdath
[23] considered buoyancy-and thermocapillary-driven (Bénard-Marangoni) convection in
a layer of micropolar fluid. The effect of throughflow on Marangoni convection in
micropolar fluids was analyzed in [24]. Siddheshwar and Sri Krishna [25] presented both
linear and nonlinear analyses of convection in a micropolar fluid occupying a porous
medium. Sunil et al. [26] studied the effect of rotation on convection in a micropolar
ferrofluid.

There has also been much less work focused on the effect of nonuniform temperature
gradient on convection. Friedrich and Rudraiah [27] studied the combined effects of
nonuniform temperature gradients and rotation on Marangoni convection. The combined
effects of nonuniform temperature gradients and a magnetic field on Marangoni convection
were investigated by Rudraiah et al. [28]. The work of Friedrich and Rudraiah [27] was
further extended to include the effect of buoyancy by Rudraiah and Ramachandramurthy
[29]. Dupont et al. [30] studied the effect of a cubic quasisteady temperature profile
on Marangoni convection. The effects of nonuniform temperature gradients on the onset
of oscillatory Marangoni and Bénard-Marangoni convection in a magnetic field were
analyzed in [31, 32], respectively. Chiang [33] investigated the effect of Dupont et al.
[30] temperature profile on the onset of stationary and oscillatory Bénard-Marangoni
convection.

Thermal convection in micropolar fluids has also been studied. Rudraiah and
Siddheshwar [34] analyzed the effects of nonuniform temperature gradients of parabolic-
and stepwise-types on the onset of Marangoni convection in a micropolar fluid. This study
was later extended by Siddheshwar and Pranesh [35] to include the effect of a magnetic
field and buoyancy forces. Very recently, Idris et al. [36] studied the effect of Dupont et al.
[30] cubic temperature profile on the onset of Bénard-Marangoni convection in a micropolar
fluid.

In this paper, we shall investigate the combined effects of Dupont et al. [30] cubic
temperature profile and a magnetic field on the onset of Marangoni convection in a
micropolar fluid. The single-term Galerkin technique [37] is employed to obtain a closed-
form expression of M (Marangoni number) for the onset of convection. Comparisons with
the other polynomial-type temperature profiles normally used by previous investigators shall
be undertaken.

2. Mathematical Formulation

We wish to examine the stability of a horizontal layer of quiescent micropolar fluid of
thickness d in the presence of a magnetic field. We assume that the layer is bounded below
by a rigid boundary, which is kept at a constant temperature, and above by a perfectly
insulated, flat free surface. Moreover, the spin-vanishing boundary condition is assumed at
the boundaries.

The governing equations for the problem are the continuity equation, conservation
of momentum, conservation of angular momentum, conservation of energy, and magnetic
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induction, compare [19, 34, 35]:
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where −→q is the velocity, −→ω is the spin, T is the temperature,
−→
H is the magnetic field, P =

p+μmH2/2 is the hydromagnetic pressure, ζ is the coupling viscosity coefficient, η is the shear
kinematic viscosity coefficient, I is the moment of inertia, λ′ and η′ are the bulk and shear spin
viscosity coefficients, β is the micropolar heat conduction coefficient, Cv is the specific heat, χ
is the thermal conductivity, and γm = 1/μmσm is the magnetic viscosity (where σm electrical
conductivity and μm magnetic permeability). All the viscosity coefficients, heat conduction
coefficient and thermal conductivity are thermodynamically restricted on the assumption of
Clausius-Duhem inequality (see Eringen [19]) and are all positive quantities.

The surface tension σ at the free upper surface is

σ = σ0 − σ1(T − T0), (2.2)

where σ0 is the unperturbed value of σ and σ1 = −(dσ/dT)T0
. The perturbation (2.1) are
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Following the classical lines of linear stability theory, the linearised and dimensionless
governing equations are

(1 +N1)∇4W +N1∇2Ωz +Q
Pr
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where W , Ωz, Θ, and Hz are, respectively, the amplitudes of the infinitesimal perturbations
of velocity, spin, temperature, and magnetic field, N1 = ζ/(ζ + η) is the coupling parameter
(0 ≤ N1 ≤ 1 ), N3 = η′/(ζ + η) is the couple stress parameter (0 ≤ N3 ≤ m, m: finite,
real), N5 = β/(ρ0Cvd

2) is the micropolar heat conduction parameter (0 ≤ N5 ≤ n, n: finite,
real), Q = μmH

2
0d

2/[(ζ + η)γm] is the Chandrasekhar number, Pr = (ζ + η)/χ is the Prandtl
number, Pm = (ζ+η)/γm is the magnetic Prandtl number, and f(z) is a nondimensional basic
temperature gradient satisfying the condition

∫1
0f(z)dz = 1.

The infinitesimal perturbations W , Ωz, Θ, and Hz are assumed to be periodic waves
and hence these permit a normal mode solution in the following form:

[W,Ωz,Θ,Hz] = [W(z),Ωz(z),Θ(z),Hz(z)]exp
[
i
(
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, (2.5)

where l and m are horizontal components of the wave number −→a .
Substituting (2.5) into (2.4), we get
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where D ≡ d/dz.
Eliminating Hz between (2.6) and (2.9), we obtain
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(
D2 − a2)2

W +N1
(
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Equations (2.7), (2.8), and (2.10) are solved subject to the linearized and dimensionless
boundary conditions:

W = D2W + a2MΘ = DΘ = Ω = 0atz = 1,

W = DW = Θ = Ω = 0atz = 0,
(2.11)



Differential Equations and Nonlinear Mechanics 5

Table 1: Reference steady-state temperature gradients.

Model Reference steady-state f(z) a∗1 a∗2 a∗3
temperature gradient

1 Linear 1 1 0 0
2 Inverted parabolic 2(1 − z) 0 −1 0
3 Cubic 1 3(z − 1)2 0 0 1
4 Cubic 2 0.6 + 1.02(z − 1)2 0.6 0 0.34

where M = σ1ΔTd/μχ is the Marangoni number (where ΔT is the temperature difference
between the two boundaries).

Following [30], we consider the steady state temperature profile given by

Tb = TOS − a1(z − d) − a2(z − d)2 − a3(z − d)3, (2.12)

which precisely represents an experimental data, where (−) denotes dimensional quantities,
TOS is the temperature at the upper free surface, and ai, i = 1, 2, 3 are constants. In
nondimensional form, the f(z) in this case is given by

f(z) = a∗1 + 2a∗2(z − 1) + 3a∗3(z − 1)2. (2.13)

The case a∗1 = 1, a∗2 = 0, and a∗3 = 0 recovers the classical linear basic state temperature
distribution. The different temperature gradients studied in this paper are listed in Table 1.

3. Solution of the Linearized Problem

Equations (2.7), (2.8), and (2.10) subject to the boundary conditions (2.11) constitute an
eigenvalue problem. To solve the resulting eigenvalue problem, a single-term Galerkin
expansion technique [37] is used to encompass a vast parameter space. Also, the technique
employed yields sufficiently accurate and useful results for the purpose in hand with
minimum of mathematics [37].

First we multiply (2.7), (2.8) and (2.10) by Ω, Θ, andW , respectively. Then we integrate
the resulting equations by parts with respect to z from 0 to 1. By using the boundary
conditions (2.11) and taking Ω = AΩ1(z), Θ = BΘ1(z), and W = CW1(z), and in which
A, B, and C are constants and Ω1(z) = z(1 − z), Θ1(z) = z(2 − z), and W1(z) = z2(1 − z2) are
trial functions, yields the eigenvalue M in the form

M =

[〈
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2
〉
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〉][
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(
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〈
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〉)
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, (3.1)
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Now with f(z) as given in (2.13), we rewrite the expression (3.1) in the closed-form
expression for M:
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We remark that (3.3) is valid for all polynomial-type basic temperature profiles up to a third
order. The critical Marangoni number, Mc, for the onset of convection is the global minimum
of M over a ≥ 0.

4. Discussion

The critical Marangoni number Mc which attains its minimum at a2
c is computed from (3.3)

for different volumes of Q, N1, N3, and N5 and the results are depicted in Figures 1, 2, and 3.
We recover the results of Rudraiah and Siddheshwar [34] for the linear and inverted parabolic
temperature gradients when Q = 0. We observe that as N1 or N5 increases, Mc also increases.
Obviously, the onset of convection will be delayed by increasing the concentration of the
microelements or heat induced into the fluid by the microelements. But, an increase in N3

leads to a decrease in microrotation, and hence the system becomes more unstable. Also it is
observed that Model 4 (Cubic 2), with a∗1 = 0.6, a∗2 = 0, a∗3 = 0.34 as used by Dupont et al.
[30], is less stabilizing than Model 2 (Inverted parabolic), that is, Mc4 < Mc2. Based on our
results, Model 3 (Cubic 1) with a∗1 = 0, a∗2 = 0, a∗3 = 1 is shown to be the most stabilizing of all
the considered types of temperature gradients, that is, Mc1 < Mc4 < Mc2 < Mc3.

Figures 4–6 illustrate the variations of the critical Marangoni number Mc with the
Chandrasekhar number Q for some assigned values of N1, N3, and N5, respectively. The
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Figure 1: Plot of Mc versus N1 with N3 = 2 and N5 = 1, A: Linear. Q = 0; B: Linear, Q = 100; C: Cubic 2,
Q = 0; D: Cubic 2, Q = 100; E: Inv. Parabolic, Q = 0; F: Inv. Parabolic, Q = 100; G: Cubic 1, Q = 0; H: Cubic
1, Q = 100.
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Figure 2: Plot of Mc versus N3 with N1 = 0.1 and N5 = 1.0, A: Linear, Q = 0; B: Linear, Q = 50; C: Cubic 2,
Q = 0; D: Cubic 2, Q = 50; E: Inv. Parabolic, Q = 0; F: Inv. Parabolic, Q = 50, G: Cubic 1, Q = 0, H: Cubic 1,
Q = 50.

results indicate that Mc is generally an increasing function of Q. From Figure 4, we notice
that the increase in the concentration of the microelements is to stabilize the system by
superposing on the effect of the magnetic field. Figure 5 shows that the effect of N3 on the
system is very small compared to the effects of the other microelements. As before, Model 3
(Cubic 1) with a∗1 = 0, a∗2 = 0, a∗3 = 1 is shown to be the most stabilizing of all the considered
types of temperature gradients, that is, Mc1 < Mc4 < Mc2 < Mc3.
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Figure 3: Plot of Mc versus N5 with N1 = 0.1 and N3 = 2.0, A: Linear, Q = 0; B: Linear, Q = 50; C: Cubic 2,
Q = 0; D: Cubic 2, Q = 50; E: Inv. Parabolic, Q = 0; F: Inv. Parabolic, Q = 50; G: Cubic 1, Q = 0; H: Cubic 1,
Q = 50.
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Figure 4: Plot of Mc versus Q for different temperature gradients with N3 = 2.0andN5 = 1.0.

5. Conclusion

The problem of Marangoni convection in a micropolar fluid in the presence of a cubic basic
state temperature profile and a vertical magnetic field has been studied theoretically. The
results indicate that it is possible to delay the onset of convection by the application of a cubic
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Figure 5: Plot of Mc versus Q for different temperature gradients with N1 = 0.1andN5 = 1.0.
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Figure 6: Plot of Mc versus Q for different temperature gradients with N1 = 0.1andN3 = 2.0.

basic state temperature profile. In addition, the presence of a magnetic field is to suppress
Magnetomarangoni convection and hence leads to a more stable system. As expected, the
presence of the micron-sized suspended particles adds to the stabilizing effect of the magnetic
field.
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