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The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight
equilibriums is analyzed numerically in the general and in a simplified flight model. More
precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence
of bifurcations along the path of these equilibriums are researched in both models. Maneuvers
and appropriate piloting tasks for the touch-down moment are simulated in both models. The
computed results obtained in the models are compared in order to see if the movement concerning
the landing phase computed in the simplified model is similar to that computed in the general
model. The similarity we find is not a proof of the structural stability of the simplified system,
what as far we know never been made, but can increase the confidence that the simplified system
correctly describes the real phenomenon.
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1. Introduction

Frequently, we describe the evolution of real phenomena by systems of ordinary differential
equations. These systems express physical laws and geometrical connections, and often they
are obtained by neglecting some influences and quantities, which are assumed insignificant
with respect to the others. If the obtained simplified system correctly describes the real
phenomenon, then it has to be topologically equivalent to the system in which the small
influences and quantities (which have been neglected) are also included. Furthermore, the
simplified system has to be structurally stable. Therefore, when a simplified model of a real
phenomenon is build up, it is desirable to verify the structural stability of the system.
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Interest in oscillation susceptibility of an aircraft is generated by crashes of high-
performance fighter airplanes, such as the YF-22A and B-2, due to the oscillations that were
not predicted during the aircraft development [1]. Flying qualities and oscillation prediction
are based on linear methods and their quasilinear extensions [2]. These analyses cannot, in
general, predict the presence or the absence of oscillations, because of the large variety of
nonlinear interactions that have been identified as factors contributing to oscillations. Some
of these factors include pilot behavioral transitions, actuator rate limiting [3-5], and changes
in aircraft dynamics caused by transitions in operating conditions [6], gain scheduling,
and switching [7]. The oscillation susceptibility analysis in a nonlinear model involves the
computation of nonlinear phenomena including bifurcations (Hopf or fold bifurcations) that
leads sometimes to large changes in the stability of the aircraft.

Oscillation susceptibility analysis means the evaluation of the oscillation potential
of a given aircraft: identify characteristics of the pilot-aircraft interaction that may result
in oscillation, demonstrate the potential for oscillation by analysis and simulations using
appropriate piloting tasks and test maneuvers, distinguish aircraft configurations that are
less susceptible to oscillations from those that have high oscillations potential, and suggest to
reduce and/or eliminate oscillation susceptibility [1].

As an example in [1] the X-15 aircraft oscillation caused by the rate limiting and an
F/A-18 aircraft oscillation caused by nonlinear category III triggers are presented. The limit
cycle amplitudes are computed for the longitudinal flight equations of motion and large jump
in limit cycle amplitude indicating a significant change in the vehicle stability is revealed.

Our aim in this paper is to analyze numerically the oscillation susceptibility of
the ADMIRE aircraft in a longitudinal flight in a quasilinear (simplified) and a nonlinear
(general) flight model in landing phase, when the Automatic flight Control System (AFCS)
is decoupled. The equations governing such a flight and the conditions which assure the
existence of such a flight are presented. The equilibriums flights are analyzed numerically,
from the point of view of bifurcations which can appear due to the changes of the elevator
deflection. Appropriate piloting tasks and maneuvers for the touch-down moment are
established. The behavior of the aircraft is simulated in both models. The computed results
obtained in the models are compared in order to see if the simplified model correctly
describes the real flight. This is not a proof of the structural stability of the simplified system
but can increase the trust that the simplified system correctly describes the real phenomenon.

2. The General Nonlinear Model

The system of differential equations [8, 9], which describes the motion around the center of
gravity of a rigid aircraft, with respect to an xyz body-axis system, where xz is the plane of
symmetry, is
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The state parameters of this system are forward velocity V, angle of attack a, sideslip angle
B, roll rate p, pitch rate g, yaw rate r, Euler roll angle ¢, Euler pitch angle 6, and Euler yaw
angle ¢. The constants I, I, and I, are the moments of inertia about the x-, y-, and z-axis,
respectively, I is the product of inertia, g is the gravitational acceleration, and m is the mass
of the vehicle. The aero dynamical forces X, ¥, Z and moments L, M, N are functions of the
state parameters and the control parameters: 6, is the aileron deflection, 6, is the elevator
deflection, and 6, is the rudder deflection (the body flap, speed break, &., 6., are available as
additional controls but, for simplicity, they are set to 0 in the analysis to follow).

Definition 2.1. A flight with constant forward velocity V is defined as a flight for which V' =
const (i.e., V =0).
Proposition 2.2. In a flight with constant forward velocity Vthe following equalities hold:
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Proof. Replacing \O/ by 0 in the system (2.1), then (2.2) is obtained. O
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Proposition 2.3. If in a flight with constant forward velocity V one has p = 2n +1) - 7 /2, then the
following equalities hold:

8

(—1)"-r—v-sin9+ =0,
g . Y
o . . = 2.3
y sing COSG+m-V 0, (2.3)
(—1)"*1-p+§‘cosq)-cose+ =0.
\% m-V
Proof. Replacingﬁ =0and = (2n+1) -a/2in (2.2), then (2.3) is obtained. O

Proposition 2.4. If in a flight with constant forward velocity V one has f# (2n + 1) - or /2, then the
following equality holds:
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Y X 7 (2.4)

+—-sinff+ —-cosa-cosf+ — -sina-cosf =0.
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Proof. Equation (2.4) is the solvability (compatibility) condition of system (2.2) when 8 # (2n+
1) /2. O
Proposition 2.5. If f# (2n + 1) - o /2 and equality (2.4) holds, then the system (2.2) can be solved

with respect to a, B, obtaining the explicit system of differential equations, which describes the motion
of the aircraft in a flight, with constant forward velocity V:
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Proof. System (2.5) is obtained solving system (2.2) with respect to a, E and replacing in
system (2.1), then (2.1)4, (2.1)2, and (2.1)3 with the above obtained a and p. O

Definition 2.6. A longitudinal flight is defined as a flight for which

B=p=r=p=¢=0, 6a=06,=0. (2.6)

Proposition 2.7. A longitudinal flight is possible if and only if Y =L =N =0forf=p=r=¢ =
¢ =0and 6, =06, =0.

Proof. This result is obtained from (2.1) taking into account Definition 2.6. O

Proposition 2.8. The explicit system of differential equations which describes the motion of the
aircraft in a longitudinal flight is

o X Z
V=g-sin(a-0)+—-cosa+ — -sina,
m m

o X Z
a:q+§-cos(9—¢x)— —. ~sina+m -cosa,
(2.7)
o M
q= Iy 4
0=gq.
Proof. This result is obtained from (2.1) taking into account Definition 2.6. O

Remark 2.9. In system (2.7) X, Z, M depend only on a, g, 8, and 6. These dependences are
obtained replacing in the general expression of the aerodynamic forces and moments: f = p =
r=¢p=¢=0and 6, =06, =0.

Proposition 2.10. The explicit system of differential equations which describes the motion of the
aircraft in a longitudinal flight with constant forward velocity V is

o § _ _ X
a—q+v cos(0 —a) p

V-sina+ -cosa,
o M
- 2.8
q I, (2.8)
0=gq.

Proof. This system is obtained from (2.7) taking into account V = 0. O
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Proposition 2.11. A longitudinal flight with constant forward velocity is possible if the following
equalities hold:

Y=L=N=0 forf=p=r=¢p=¢=0, 6.=06,=0, (2.9)

g~sin(a—9)+§-coszx+£~sinzx:0. (2.10)
m m

Proof. This result is obtained from Proposition 2.7 and system (2.7), taking into account the

fact that V is equal to zero. U

Remark 2.12. Notice that in (2.8) and (2.10) X, Z, M depend on a, g, 0, 6., and V. Taking
into account (2.10), the system (2.8) can be written as

S—ar 8. ) - S in(@—a) - z 1

a—q+V cos(0 —a) v sin(6 — a) tana+m_v osa’
s M
=" 2.11
q Iy’ ( )
0=q.

Remark 2.13. In system (2.11), the functions Z = Z(a,q,0; 6., V) and M = M(a,q,0; 6.,V)
are considered known; 6, and V are parameters.

The system (2.11) describes the motion around the center of gravity of an aircraft in a
longitudinal flight with constant forward velocity V and defines the general nonlinear model.

3. The Simplified Model of the ADMIRE Aircraft

The ADMIRE aircraft is an Aero Data Model In a Research Environment. To describe the flight
of this vehicle with constant forward velocity V, the following explicit system of differential
equations is employed:

o 8
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Proposition 3.1. System (3.1) can be obtained from (2.5) substituting the general aero dynamical
forces and moments with those corresponding to the ADMIRE aircraft [10], assuming that a and f
are small and making the following approximations:

(2.5)1 cosp=1,—p-cosa-tanf=—-p-p;—r-sina-tanf=0;cosa = 1;sina =0,

(2.5); cosp=1

Ixz-(1x+12—1y)~0 (Iy—Iz)-Iz—I§z~_i L o,
LoL-L. LoL- I,
(3.2)
Lo+ (L-L) L Lo (y=L-L)
LoL-1 LoL-L.
Proof. The proof is given by computation. O

Proposition 3.2. The simplified system which governs the longitudinal flight with constant forward
velocity V of the ADMIRE aircraft is

o
a:q+§-cos9+za-a+z@-6e,

cO] :ma-a+mq-q+%-(m_&-cose—%-ag-sin9>+m56-6e, (3.3)

0=gq.

Proof. System (3.3) is obtained from the system (3.1) for f=p=r=¢p =0and 6, = 6, = 6. =
6cq = 0 and defines the simplified nonlinear model of the motion around the center of gravity
of the ADMIRE aircraft in a longitudinal flight with constant forward velocity V.

In system (3.3) g, V, za, Zs,, Ma, My, ms, ¢, Az, 4, Mg, are considered constants (see
Table 1). O
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Remark 3.3. According to the simplified nonlinear model the equilibriums in a longitudinal
flight with constant forward velocity are the solutions of the nonlinear system of equations:

q+{£/-cose+zu-a+25g-6e:0,
. g+ (7 _2 4 s .6, = (3.4)
M- @+ Mg -G+ 7 <ma cos 32 s1n6)+m5e 6. =0,
q=0.

System (3.4) defines the equilibriums manifold of the longitudinal flight with constant
forward velocity V.

Proposition 3.4. System (3.4) implies that a satisfies

A-a*>+B-6,-a+C-62+D =0, (3.5)
where A, B, C, D are given by
_ 2 2
A= <ma—m&-za> +%'a22-zu2,

B=2- (m,,,—m_;-za> . (mge—m_;-z@) +2-%22-a22-za-255,
(3.6)

2
C2 2

2
— 2
C=<m52—m‘;-z§e> +¥-a2 - zs,%,
2 2
g @ 2

D:_W'ﬁ'az'

Proof. Equation (3.5) is obtained replacing g = 0in (3.4); and (3.4), and eliminating 6 between
the so-obtained equations. O

For the numerical values given in Table 1, (3.5) has real solutions if and only if 6, €
[6e, 6.] where 6, = —0.04678233231992 [rad] = -2.681° and 6, = —0,.

The computed a4 (6,), 01(6), @2(6.), and 0,2(5,) solutions are represented on Figures 1
and 2.

The equilibrium manifold Ay is the union of the following two pieces:

Pr={(@1(60),0,01(6.)) : 6. € [60,8.] |, P2={(@26),0,6:(60)) : 6. € [6,5] }.
(3.7)
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Table 1: The values of the parameters used in the simplified system (3.3).

Parameter Value Units
Za -1.598075 rad/s
zs, -0.52089 rad/s
my, 1.72514652738 rad/s?
my -22.61196 rad/s?
a —-0.485 s7!
ms, -9.972922 —
ap 11.964 s72
\% 84.5 m/s
g 9.81 m/s?
My -5.26416 rad/s?
C -0.029 —
0.088 - O3
)
N2 -0j06 -0j04 -0j02 0 0,02 04 06
~0.088 od
-0.047 0.047
5. (rad)
— a1(6e)
az(6e)

Figure 1: The a;(6.) and a,(6,) coordinates of the equilibriums on the manifold Ay .

3.116

o

(rad)

-0j06 >004\—0 02 0 0J02 004 0{06
\
-2 \
-3.133 4
—-0.047 0.047
O, (rad)

7 91 (66)
92 (65)

Figure 2: The 0, (6,) + 2kor and 0,(6,) + 2kor coordinates of the equilibriums on the manifold .
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Figure 3: A transfer between two equilibriums, which belong to 0; (simulated in simplified model): 6, =
-0.03866 [rad] = 2.216° — &, = 0.03026 [rad] = 1.734°. a] = 0.07866974 [rad] = 4.509°; q; = O [rad/s];
07 = —0.428832 [rad] = 24.582° — a = 0.065516 [rad] = 3.755°; g4] = 0 [rad/s]; 6] = — 0.698066 [rad] =
-40.016°.

Proposition 3.5. The eigenvalues of the linearized system at an equilibrium are the solutions of the
equation:

—)L3+(za+mq)')tz+(ma+a23—za-mq)-l+ma'§-sinG—za'aB:O, (3.8)

where ay; = —(g/V) - [mg - sin6 — (c2/a) - az - cos 0].

Proof. The proof is given by computation. O
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rad/s

~ -0.006
=

-0.008

-0.01 -

(b)

0.6

02}
-02t0 50 100 Q200 250 300
06} £E)

()

6 (rad)

Figure 4: A transfer of an equilibrium, which belongs to /), into an equilibrium, which belongs to /;
(simulated in the simplified model): 6, = —0.03866 [rad] = 2.216° — 6, = 0.03026 [rad] = 1.734°. a;, =
0.064883 [rad] = 3.719%; g, = 0[rad/s]; 0, = 0.7674624 [rad] = 43.994° — af = 0.065516 [rad] = 3.755°;
qy = 0[rad/s]; 0] = -0.6980667 [rad] = —40.016° instead of a;, = 0.064883 [rad] = 3.719°; g, = O [rad/s];
0, = 0.7674624 [rad] = 43.994° — «a) = 0.046845 [rad] = 2.685°%; g5 = 0[rad/s]; 0 = 1.03669718 [rad] =
59.428°.

Proposition 3.6. For 6, € (@, 6_2) the equilibriums of D1 are exponentially stable and those of [, are
unstable.

Proof. These results were obtained computing the eigenvalues of the linearized system at the
equilibriums of pP; and at the equilibriums of 0,. More precisely, it was obtained that the
eigenvalues are negative real numbers at the equilibriums of f;, and two of the eigenvalues
are negative and the third is positive at the equilibriums of D,. O
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24t
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N 91
()

Figure 5: Oscillations when 6, = —0.04678 [rad] = -2.68° — & = -0.05 [rad] = -2.866° and the starting
point is a} = 0.0869742 [rad] = 4.985°; q; = 0 [rad/sec]; 0] = 0.159329 [rad] = 9.133°.

Proposition 3.7. At the equilibriums, which correspond to 6, and 6., two of the eigenvalues are

negative and one eigenvalue is equal to zero. Consequently, 6. and 6, are nonhyperbolic equilibrium
points (turning points).

Proof. The proof is given by computation. O

Remark 3.8. Transfers between two equilibriums which belong to a conex part of p; =
{(@1(6¢),0,01(6,)) : 6. € (O, 6.)} are possible by small changes of the elevator deflection



Differential Equations and Nonlinear Mechanics 13

01T
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[=}

—0.024 1

—0.036 1
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10 7

1500 2000 2500 3000

T2 £(s)
o=

(©)

Figure 6: Oscillations when 6, = —0.04678 [rad] = -2.681° — & = 0.048 [rad] = 2.751° and the starting
point is a; = 0.086974288 [rad] = 4.985°; q; = 0 [rad/sec]; 6] = 0.1593297 [rad] = 9.133°.

6, (Figure 3). On the other hand, a small change of the elevator deflection &, transfers an
equilibrium which belongs to D2 = {(a2(8),0,02(6¢)) : 6. € (¢,6¢)} into an equilibrium
which belongs to P (Figure 4).

Remark 3.9. The behavior of the ADMIRE aircraft changes when the maneuver §, — 6. is so
that 6, € (6,,6.) and 6 & (¢, 6.). Computation shows that after such a maneuver a and g
oscillate with the same period and 6 tends to +oo or —co (Figures 5 and 6).

Since the nonhyperbolic equilibriums at 6. and 6, seem to be fundamental for the
above behavior, we are going to prove that 6, is a saddle point bifurcation for the system

(3.3). An analogous proof holds for ..

Proposition 3.10. The nonhyperbolic equilibrium at 6, is a saddle point bifurcation.
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0.1
0.06 l

0029 o5 1/l15 2 A5 35 4 45 5 55
t(s) x10%

a (rad)
o
=)
N

0009210 05 1\/15 2 \265 35 4 45 5 55
= -0.019 t(s) %103
-
s

(b)

4 45 5 55
x10%

()

Figure 7: Resetting 6, from 6, = 0.048 [rad] = 2.751° < 6, to &, = —0.04678 [rad] = -2.681° after 3000 [s] of
oscillations a stable equilibrium is recovered.

Proof. Let us pose x = (a, q,0) and write the system (3.3) as x = f(x, 6.). Moreover, set Pe =
(21(6¢),0,01(6.)) = (a2(6.),0,62(5.)) the corresponding equilibrium point. As it has been
already checked that Pe is a nonhyperbolic equilibrium point, it is sufficient to verify that
w-Ds, f #0and w- D2 f(v,v) #0, where v and w are right and left eigenvalues corresponding
to the zero eigenvalues, respectively, and the derivatives are computed at Pe, 6. [11, page
148]. From (3.3) it follows that v = ((1/z4) - (g/V) - sin 6,0, DT and w = (ma/ (2« Mg —Mg),—
Za/(Za - My — my), 1) are right and left eigenvectors, respectively, corresponding to the zero
eigenvalue and

My + Z5, — Zg * Mg,

. D = ’
w - Ds. f Zg Mg — My
1 __
w-Dif(v,v) = m . [—{% -cos 0 -my, + {% . (md -cos O + %2 -a2-sin6> -z,x].
(3.9)
For the considered numerical data, given in Table 1, we have w - Dg,f = —0.489 #0 and w -
D2f(v,v) =2.255#0 . Therefore, Pe is a saddle-node bifurcation. O

Remark 3.11. Along the path of longitudinal flight equilibriums only saddle-point bifurcation
exists. There is no Hopf bifurcation.

Remark 3.12. In both cases, that is, decrease of the parameter 6, under 6. or increase of the

parameter 6, over 6,, we have a loss of steady state and occurrence of an oscillatory flight.
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Figure 8: Transfer from & = 0.0786697 [rad] = 4.509°; 4} = 0 [rad/s]; 6] = —0.428832 [rad] = —24.58° into a
state which is appropriate for the touch-down moment: 6" — a” = 0 and 6” > 0 (6" small).
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Computation shows that this loss is not catastrophic, because if 6, is reset, then a stable
equilibrium is recovered, as it is illustrated in Figure 7.

Remark 3.13. It is important to remark that the saddle-point bifurcation phenomenon
occurring at 6, is of practical interest. Using this phenomenon it is possible to transfer
the vehicle from a stable descending longitudinal flight equilibrium with constant forward
velocity (0 <0 and 0 — a < 0) into a state which is appropriate for the touch-down moment.

Definition 3.14. In a longitudinal flight with constant forward velocity an equilibrium is a
descending flight if 0 — a < 0.

Such an equilibrium is, for instance, a) 0.078669740237840 [rad] = 4.509°;
qy = Ofrad/s]; 6; = -0.428832005303479 [rad] —-24.582° and corresponds to &, =
—0.03866 [rad] = —2.216°. Moreover, it is stable descent flight equilibrium. By the maneuver
6, — 67 with 6] = -0.1 [rad] = 5.732° < &, the above state is transferred into a state which is
appropriate for the touch-down moment 0" —a” = 0 and 0” > 0 (0" small) (Figure 8).

Figure 8 shows that the maneuver &, = —0.03866 [rad] = -2.216° — § = -0.1 [rad] =
-5.13° made 20.16 [s] before the touch-down moment, transfers the aircraft in 20.16 seconds
from the stable descending flight equilibrium &} = 4.509°%; g} = 0; 6] = —24.5° into the state
a) = 0] = 6.94°, which is appropriate for the touch-down moment. This flare maneuver has
to be made when the aircraft is at H = 840 [m] altitude.

Remark 3.15. It is important to underline that the transfer period t depends strongly on the
initial value 6, and on the final value 6] of the elevator deflection.

If &, is fixed and 6/ decreases, then t decreases and a” = 6” increases.

For instance, when 6, = —0.03866 [rad] = —2.216°, we have

8" =-0.049 [rad] = -2.80°,  t=239.72[s], ' =6"=0.089[rad] =5.1°,
8! =-01[rad] = -573°, t=20.15[s], " =6"=0.1211rad] = 6.94°, (3.10)
8! =-02[rad] =-11.46°, t=815[s], a’=6"=0.184[rad] = 10.5°.

Moreover, if the time interval between the moment of the elevator deflection change (flare)
and the real touch-down moment is larger than the above presented periods of transitions,
then the touch-down moment could be catastrophic, due to the oscillations.

Conclusion

In the simplified model it can be shown numerically that there exists a range [6,, 6,] of the

values of the elevator deflection 6, such that to a value 6, from [66,6_6] a set of equilibriums
corresponds. Some of these equilibriums are stable and some of them are unstable. If &, 6" €
(@, 6_6) a change 6, — 0, of the elevator deflection 6, transfers the vehicle into a stable
equilibrium corresponding to &". If 8, € (6,,6,) and & < &, — k or 6! > &, + k with k > 0,
then the change 6, — & of the elevator deflection leads to an oscillatory movement of the
vehicle , which is noncatastrophic from mathematical point of view. This is due to a saddle
node bifurcation and can be useful for preparing the touch-down. Hopf bifurcations are not
present.
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Figure 9: A transfer between two equilibriums, which belong to p; (simulated in the general model):
6, = —0.03866 [rad] = 2.216° — 6, = 0.03026 [rad] = 1.734°. a} = 0.07866974 [rad] = 4.509°; 4} = 0 [rad/s];
07 = —0.428832 [rad] = 24.582° — af = 0.065516 [rad] = 3.755°; 4] = 0[rad/s]; 0] = -0.698066 [rad] =
-40.016°.

4. General Constant forward Velocity Longitudinal Flight Model of
the ADMIRE Aircraft

Proposition 4.1. The general constant forward velocity longitudinal flight model of the ADMIRE
aircraft is defined by the system of differential equations:
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e frd —_— —_— —_—— e 1 —_— . . . . 1

a=qg+ cos(0 —a) sin(@ —a) - tana + [za a+zg, 66] -
P . . _g A7, - — 2 . . g1 . 4.1
q=my-a+my-q+ % (ma cos B ap sm9> +ms, Oe, (4.1)

0=gq.

Proof. System (4.1) is obtained from the system (2.11), substituting the general aero
dynamical forces and moments with those corresponding to the ADMIRE aircraft. O

Remark 4.2. The simplified model (3.3) is obtained from (4.1), approximating cos a with 1
(small angle of attack & = 0). If the simplified system (3.3) describes correctly the real
phenomenon, then it has to be topologically equivalent to the system (4.1) [12]. Furthermore,
the simplified system (3.3) has to be structurally stable. As far we know, the structural
stability of the system (3.3) never was proved. What we intend to prove numerically in this
paragraph is that the steady states (stable and unstable) of system (4.1) are exactly the same
as those of system (3.3). Moreover, we show that the behavior of the aircraft described by
(4.1) is similar to that described by (3.3). This is not a proof of the structural stability of
the simplified system, but it is an increase of the believe that the simplified system (3.3)
describes correctly the real phenomenon and we are not in the case reported in [13]. In [13] it
was shown that the simplified system of differential equations which governs the motion of
the automatic—landing flight—experiment (ALFLEX) reentry vehicle, is neither structurally
stable, nor topologically equivalent to the general system governing the same motion. In
other words, the general and the simplified mathematical models of ALFLEX give different
images of the same reality.

Remark 4.3. According to the general nonlinear model, the equilibriums in a longitudinal
flight with constant forward velocity Vare solutions of the nonlinear system of equations:

q+%-cos(9—(x)—%-sin(G—a)-tana+[za~a+25e-6e]~ !

=0,
cosa

__ c .
mu~a+mq-q+§~<m;{-cos€—§~a2~sm6>+m55-6e:0, (4.2)

q=0.

System (4.2) defines the equilibrium manifold of the longitudinal flight with constant
forward velocity V in the general model.
System (4.2) implies that a, 0 satisfy

. 1
%-cos(@—a)—%'51n(9—a)'tana+[z,,,~a+25g'63]'

= 0’
cosa (43)

__ c i
mu'a+%o(m&-cose—;z~a2-sm6>+m56-6e=0.
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Since (4.3); can be written in the form

1
cosa

[— cosO+zy - a+zs, 5]:0, (4.4)

the system (4.3) has the same solutions as the system

é‘cos6+zu‘a+25e~63:0,

(4.5)
a+

ms - cosG—— a, - sm9>+m5 6. =0.

It follows in this way.

Proposition 4.4. In the case of the longitudinal flight with constant forward velocity of the ADMIRE
aircraft the equilibrium manifold My in the general model is the same as in the simplified model.

Proposition 4.5. The eigenvalues of the linearized system at equilibrium are the solutions of the
equation:

—)L3 + ([111 + mq) . )Lz + (ma + dpxz —ai - mq) A+ My - a3 —ay-axs =0, (46)
where
1
ap = {% -sin(0 — a) + % -cos(@—a) -tana — % -sin(6 — a) - oa
+ + [Za-a+zs, O] sm;x ,
cosa cos?a (4.7)
a;z = —% -sin(6 — a) — % -cos(6 — a) - tana,
_ 8 — . 2
ap =y [—md -sinf — - ® ~C059]
or
_ Z4 g sinf g sin(6-a) sina
M= osa TV cosa V cosa *lza-atzs -0l cos?a’
_8 sinb (4.8)
MW=V osa’
= —= [m -sin 0 + = .ap- cosG]

and a, q, and 0 are the coordinates of the equilibrium.

Proof. The proof is given by computation. O
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Figure 10: A transfer of an equilibrium, which belongs to [, into an equilibrium which belongs to 0;
(simulated in the general model): 6, = —0.03866 [rad] = 2.216° — &, = 0.03026 [rad] = 1.734°. a) =
0.064883 [rad] = 3.719%; g, = 0[rad/s]; 0, = 0.7674624 [rad] = 43.994° — af = 0.065516 [rad] = 3.755°;
qy = 0[rad/s]; 0] = -0.6980667 [rad] = —40.016° instead of a;, = 0.064883 [rad] = 3.719%; g, = O [rad/s];
6 = 0.7674624 [rad] = 43.994° — o} = 0.046845 [rad] = 2.685°; ¢} = 0 [rad/s]; 6 = 1.03669718 [rad] =
59.428°.

Table 2: The transfer periods of the transitions corresponding to the maneuver 6, = —0.03866 [rad] =
-2.216° — 6,
6/ [rad] -0.048 -0.05 -0.06 -0.08 -0.1 -0.5

Transfer period [s] 333 170 70 30 20 4
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Figure 11: Oscillations when &), = —0.04678 [rad] = -2.681° — & = —0.05 [rad] = —2.866° and the starting
point is a; = 0.0869742 [rad] = 4.985°%; q; = 0 [rad/sec]; 6] = 0.159329 [rad] = 9.133°.

Remark 4.6. Computing the roots of (4.6) at the equilibriums of P we find that these are
negative real numbers for 6, € (%, 6e), and for 6, = @ or 6, = 6, one of the roots is equal to

zero.
Computing the roots of (4.6) at the equilibriums of ), we find that two of them are

negative real numbers and one is strictly positive for 6. € (6, 6_6), and for 6, = 6, or 6, = 6.
one of the roots is equal to zero.

We conclude the following.
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Figure 12: Oscillations when &), = —0.04678 [rad] = -2.681° — &) = —0.05 [rad] = -2.866° and the starting
point is a} = 0.086974288 [rad] = 4.985°; q; = 0 [rad/sec]; 6] = 0.1593297 [rad] = 9.133°.

Proposition 4.7. An equilibrium is stable in the general model if and only if it is stable in the
simplified model. Moreover, 6., 6. are saddle-points in both models.

Remark 4.8. The same transfer maneuver between the same equilibriums which belong to a
conex part of 1 = {(a1(6.),0,61(6.)) : 6. € (%, 6.)}, simulated already in simplified model,
is simulated now in the framework of the general model in Figure 9.

The same transfer maneuver from an unstable equilibrium which belongs to P, =
{(a2(6¢),0,0,(6.)) : 6. € (@, 6_6)} into a stable equilibrium which belongs to p;, simulated
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Figure 13: Resetting 6, from 6, = 0.048 [rad] = 2.751° < &, to 6, = —0.04678 [rad] = ~2.681° after 3000 [s]
of oscillations a stable equilibrium is recovered.

already in simplified model, is simulated now in the framework of the general model in
Figure 10.

Remark 4.9. The above simulations show that from the point of view of this type of transfer,
the results obtained in general model are similar to those obtained in the simplified model.
More about transfer maneuvers can be found in [14].

Remark 4.10. The behavior of the ADMIRE aircraft, when the maneuver 6, — & is so that
6, € (@, 6.) and 6] ¢ (@, 6.), simulated in general model, is represented in Figures 11 and 12
and shows that this is similar to that obtained in the simplified model.

Remark 4.11. Moreover, the simulation in general model shows that the loss of stability, due to
maneuver, is noncatastrophic (from mathematical point of view), because if 6, is reset, then
a stable equilibrium is recovered; see Figure 13.

Remark 4.12. The bifurcation phenomenon at 6., present also in the general model, can be
used for the transfer of the aircraft from a stable descending longitudinal flight equilibrium
into a state which is appropriate for the touch-down moment. The simulation of such a
transfer is presented in Figure 14.

Remark 4.13. The flare maneuver has to be made also when the aircraft is at 840 [m] altitude,
but the transfer period, computed in the general model can be different, as it is shown in
Table 2.
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Figure 14: Transfer from &} = 0.0786697 [rad] = 4.509%; 4} = 0[rad/s]; 6} = —0.428832 [rad] = —24.58° into
a state which is appropriate for the touch-down moment 6” — a” = 0 and 6” > 0 (6" small).
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5. Conclusions

(i) Numerical computation shows that there exists a range [5e, 6.] of the elevator deflection

values 6,, such that to a value 6, from [66,6_6] the same set of equilibriums corresponds in
both models. o

(ii) An equilibrium is stable in the simplified model if and only if it is stable also in the
general model.

(iii) If 6,,06, € [é, 6_3], a change 6, — &, of the elevator deflection &, transfers the

e
vehicle into a stable equilibrium corresponding to 6, in both models.

(iv) If 8, € [6.,6,] and 6" < 6, — k or 8 > 6, + k with k > 0, then the change &, — &'
of the elevator deflection leads to a noncatastrophic oscillatory movement of the vehicle, in
both models. This is due to the saddle node bifurcation in both models and can be used for
preparing the touch-down in both models.

(v) In both models there is no Hopf bifurcation.

(vi) The similarity of the computed results increases the confidence that the simplified
model correctly describes the real longitudinal flight, but it is not a proof of the structural
stability of the simplified model. Such a proof would be welcome.
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