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This paper is concerned with the existence of bounded positive solution for the semilinear elliptic
problemΔu = λp(x)f(u) inΩ subject to some Dirichlet conditions, whereΩ is a regular domain in
R
n (n ≥ 3)with compact boundary. The nonlinearity f is nonnegative continuous and the potential

p belongs to some Kato class K(Ω). So we prove the existence of a positive continuous solution
depending on λ by the use of a potential theory approach.

1. Introduction

In this paper, we study the existence of positive bounded solution of semilinear elliptic
problem

Δu = λp(x)f(u) in Ω,

u

∂Ω
= αϕ,

lim
|x|→+∞

u(x) = β (if Ω is unbounded),

(P)

whereΩ is a C1,1-domain in R
n (n ≥ 3)with compact boundary, α and β are fixed nonnegative

constants such that α + β > 0, and β = 0 when Ω is bounded. The parameter λ is nonnegative,
and the function ϕ is nontrivial nonnegative and continuous on ∂Ω.
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Numerous works treated semilinear elliptic equations of the type

Δu = F(x, u) in D,

u(x) = Φ(x) on ∂D,

lim
|x|→+∞

u(x) = b > 0.

(Q)

For the case of nonpositive function F, many results of existence of positive solutions are
established in smooth domains or in R

n, for instance, see [1–5] and the references therein.
In the case where F changes sign, many works can be cited, namely, the work of

Glover and McKenna [6], whose used techniques of probabilistic potential theory for solving
semilinear elliptic and parabolic differential equations in R

n. Ma and Song [7] adapted the
same techniques of those of Glover and McKenna to elliptic equations in bounded domains.
More precisely, the hypotheses in [6, 7] require in particular that F(x, u) = F(u) and on each
compact, there is a positive constant A such that −Au ≤ F(u) ≤ 0.

In [8], Chen et al. used an implicit probabilistic representation together with
Schauder’s fixed point theorem to obtain positive solutions of the problem (Q). In fact, the
authors considered a Lipschitz domainD in R

n (n ≥ 3), with compact boundary and imposed
to the function F to satisfy on D × (0, b), b ∈ (0,+∞]

−U(x)t ≤ F(x, t) ≤ V (x)f(t), (1.1)

where f is nonnegative Borel measurable function defined on (0, b) and the potentials U,V
are nonnegative Green-tight functions in D. In particular, the authors showed the existence
of solutions of (Q) bounded below by a positive harmonic function.

In [9], Athreya studied (Q) with the singular nonlinearity F(x, t) = g(t) ≤ max(1, t−α),
0 < α < 1, in a simply connected boundedC2-domainD inR

n, n ≥ 3. He showed the existence
of solutions bounded below by a given positive harmonic function h0, under the boundary
condition Φ ≥ (1 +A)h0, where A is a constant depending on h0, α, and D.

Recently, Hirata [20] gave a Chen-Williams-Zhao type theorem for more general
regular domains D. More precisely, the author imposed to the function F to satisfy

|F(x, u)| ≤ V (x)u−μ, μ > 0, (1.2)

where the potential V belongs to a class of functions containing Green-tight ones. We remark
that the class of functions introduced by Hirata coincides with the classical Kato class
introduced for smooth domains in [10, 11].

In this paper, we will consider F(x, u) = λp(x)f(u). We impose to the potential p
to be in a new Kato class K(Ω) (see Definition 1.1 below), which contains the Green-tight
functions and the classical Kato class used by Hirata. More precisely, we will prove using
potential theory’s tools, the existence of positive solution for (P). Moreover, we will give
global behaviour for the solution.

So, in the remainder of this introduction, we will give some results related on potential
theory, and we will prove others. In the second section, we will give the main theorem and
some examples of applications.
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Let us recall that B(Ω) is the set of Borel measurable functions inΩ and C0(Ω) is the set
of continuous ones vanishing at ∂Ω ∪ {∞}. The exponent + means that only the nonnegative
functions are considered.

We denote byHΩϕ the bounded continuous solution of the Dirichlet problem

Δu = 0 in Ω,

u = ϕ on ∂Ω,

lim
|x|→+∞

u(x) = 0, if Ω is unbounded,

(1.3)

where the function ϕ is nontrivial nonnegative continuous on ∂Ω. In the remainder of this
paper, we denote h = 1 −HΩ1, and we remark that h = 0 when Ω is bounded.

Let us recall some notations and notions concerning essentially the potential theory.

(i) For f ∈ B+(Ω), we denote by Vf the potential defined in Ω by

Vf(x) =
∫
Ω
G
(
x, y

)
f
(
y
)
dy, (1.4)

where G is the Green function of the Laplace operator Δ on Ω with Dirichlet
conditions.

(ii) We recall that if f ∈ L1
loc(Ω) and Vf ∈ L1

loc(Ω), then we have Δ(Vf) = −f in Ω (in
the sense of distributions), see [10, page 52].

(iii) Let (Xt, t > 0) be the Brownian motion in R
n and Px be the probability measure on

the Brownian continuous paths starting at x. For p ∈ B+(Ω), we define the kernel
Vp by

Vpf(x) = Ex
(∫ τΩ

0
e−

∫ t
0 p(Xs)dsf(Xt)dt

)
, (1.5)

where Ex is the expectation on Px and τΩ = inf{t > 0 : Xt /∈Ω}. If p ∈ B+(Ω) is such
that Vp <∞, the kernel Vp satisfies (see [10, 12])

V = Vp + Vp
(
pV

)
= Vp + V

(
pVp

)
. (1.6)

So for, each u ∈ B(Ω) such that V (p|u|) <∞, we have

(
u − Vp

(
pu

))(
u + V

(
pu

))
=
(
u + V

(
pu

))(
u − Vp

(
pu

))
= u. (1.7)

(iv) We recall that a function f : [0,∞) → R is called completely monotone if
(−1)nf (n) ≥ 0, for each n ∈ N. Moreover, if f is completely monotone on [0,∞),
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then by [13, Theorem 12a], there exists a nonnegative measure μ on [0,∞) such
that

f(t) =
∫∞

0
exp(−tx)dμ(x). (1.8)

So, using this fact and the Hölder inequality, we deduce that if f is completely
monotone from [0,∞) to (0,∞), then Log(f) is a convex function.

(v) Let f ∈ B+(Ω) be such that Vf <∞. From (1.5), it is easy to see that for each x ∈ Ω,
the function t → Vtqf(x) is completely monotone on [0,∞).

Now, we recall some properties relating to the Kato class K(Ω).

Definition 1.1 (see [14, 15]). A Borel measurable function p in Ω belongs to the class K(Ω) if
p satisfies

lim
α→ 0

(
sup
x∈Ω

∫
Ω∩B(x,α)

ρ
(
y
)

ρ(x)
G
(
x, y

)∣∣p(y)∣∣dy
)

= 0,

lim
M→∞

(
sup
x∈Ω

∫
Ω∩(|y|≥M)

ρ
(
y
)

ρ(x)
G
(
x, y

)∣∣q(y)∣∣dy
)

= 0 (if Ω is unbounded),

(1.9)

where ρ(x) = min(1, δ(x)) and δ(x) is the Euclidean distance between x and ∂Ω.

Remark 1.2. WhenΩ is a bounded domain, thenwe can replace ρ(x) by δ(x) and the condition
(1.9) is superfluous.

Proposition 1.3 (See [14, 15]). Let p be a nonnegative function in K(Ω). Then one has

(i) ‖p‖Ω := supx∈Ω
∫
Ω ρ(y)/ρ(x)G(x, y)p(y)dy <∞,

(ii) the potential Vp ∈ C0(Ω).

Proposition 1.4 (see [16, 17]). Let p be a nonnegative function belonging to K(Ω). Then, one has

(i)

αp = sup
x,y∈Ω

∫
Ω

G(x, z)G
(
z, y

)
G
(
x, y

) p(z)dz <∞, (1.10)

(ii) for any nonnegative superharmonic function v in Ω, one has

∫
Ω
G
(
x, y

)
v
(
y
)
p
(
y
)
dy ≤ αpv(x), ∀x ∈ D. (1.11)
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Proposition 1.5. Let v be a nonnegative superharmonic function in Ω and p be a nonnegative
function in K(Ω). Then, for each x ∈ Ω such that 0 < v(x) <∞, one has

exp
(−αp)v(x) ≤ v(x) − Vp(pv)(x) ≤ v(x). (1.12)

Proof. Let v be a nonnegative superharmonic function, then by [18, Theorem 2.1, page 164],
there exists a sequence (vk)k of nonnegativemeasurable functions inΩ such that the sequence
(Vvk)k defined in Ω by

Vvk(x) :=
∫
Ω
G
(
x, y

)
vk

(
y
)
dy (1.13)

increases to v.
Let x ∈ Ω such that 0 < v(x) < ∞. Then, there exists k0 ∈ N such that 0 < Vvk(x) < ∞,

for k ≥ k0.
Now, for a fixed k ≥ k0, we consider the function κ(t) = Vtpvk(x). Since the function κ

is completely monotone on [0,∞), then log(κ) is convex on [0,∞). Therefore,

κ(0) ≤ κ(1) exp
(
−κ

′(0)
κ(0)

)
, (1.14)

which means

Vvk(x) ≤ Vpvk(x) exp
(
V
(
pVvk

)
(x)

Vvk(x)

)
. (1.15)

Hence, it follows from Proposition 1.4 (i) that

exp(−αv)Vvk(x) ≤ Vpvk(x). (1.16)

Consequently, from (1.6), we obtain that

exp
(−αp)Vvk(x) ≤ Vvk(x) − Vp(pVvk(x))(x) ≤ Vvk(x). (1.17)

By letting k → +∞, we deduce the result.

2. Main Result

In this section, we will give an existence result for the problem (P). Assume the following
assumptions.

(A1) The function p is nonnegative and belongs to K(Ω).
(A2) The function f is a nonnegative, continuous on [0,+∞) and satisfies ∀c > 0, ∃a ≥ 0

such that, ∀0 ≤ s < t ≤ c, f(t) − f(s) ≤ a(t − s).
(A3) σ0 = infx∈Ω(αHΩϕ(x) + βh(x))/f(0)Vp(x) > 0.
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Remark 2.1. Let f be inC1([0,+∞)), then for a := max(supt∈[0,c]f
′(t), 0), the function f satisfies

(A2). In particular, if f is nonincreasing, then a = 0 holds.

Consider the function θ : λ → λ exp(λaαp), where αp is the constant associated to the
potential p defined by (1.10). It is obvious to see that θ is bijective from [0,+∞) to [0,+∞).

Theorem 2.2. Assume that the hypotheses (A1)–(A3) are satisfied. Then, for each λ ∈ [0, θ−1(σ0)),
the problem (P) has a positive continuous bounded solution satisfying

(
1 − θ(λ)

σ0

)
exp

(−λaαp)(αHΩϕ + βh
) ≤ u ≤ αHΩϕ + βh. (2.1)

Remark 2.3. We remark that if f satisfies the hypothesis (A2) and f(0) = 0, we take σ0 = +∞,
in this case for each λ ∈ R+, the problem (P) has a positive bounded solution satisfying

exp
(−λaαp)(αHΩϕ + βh

) ≤ u ≤ αHΩϕ + βh. (2.2)

Now, let us give some examples of applications of the above theorem.

Example 2.4. Assume that (A1) is satisfied. Let μ ≥ 1. Then, for each λ ∈ R+, the following
problem

Δu = λp(x)uμ in Ω,

u(x) = αϕ(x) on ∂Ω,

lim
|x|→+∞

u(x) = β

(2.3)

admits a positive continuous bounded solution. Indeed, for each c > 0, one verifies that for
a = μcμ−1, the function f(t) = tμ satisfies (A2).

Example 2.5. Let μ ≥ 0. Assume (A1) and (A3). Consider the following:

Δu = λp(x)(1 + u)−μ in Ω,

u(x) = αϕ(x) on ∂Ω,

lim
|x|→+∞

u(x) = β, u > 0.

(2.4)

Then, the function f(t) = (1 + t)−μ is in C1([0,+∞)) and decreasing. By Remark 2.1, the
hypothesis (A2) is satisfied for a = 0. So that for each λ ∈ [0, σ0), (2.4) has a positive
continuous bounded solution satisfying

(
1 − λ

σ0

)(
αHΩϕ + βh

) ≤ u ≤ αHΩϕ + βh. (2.5)
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Example 2.6. Let Ω be a C1,1-bounded domain and suppose that the hypothesis (A2) is
satisfied. Let g be a nonnegative function in Lq(Ω) such that q > n/2 and suppose that
μ < 1 − n/q. Then,

Δu = λ
g(x)
δ(x)μ

f(u) in Ω,

u(x) = αϕ(x) on ∂Ω
(2.6)

has a positive continuous solution.
Let us verify the assumptions (A1) and (A3). From [16, Proposition 2.3], the function

p = g/δ(·)μ ∈ K(Ω), and so the hypothesis (A1) is satisfied. From [16, Proposition 2.7(iii)],
there exists a constant c1 > 0 such that we have for each x ∈ Ω

Vp(x) ≤ c1δ(x). (2.7)

Now, since ϕ is nontrivial continuous function at ∂Ω, then there exists c2 > 0, such that one
has on Ω

HΩϕ(x) ≥ c2
∥∥ϕ∥∥1δ(x). (2.8)

Thus, σ0 = infx∈Ω(HΩϕ(x)/f(0)Vp(x)) > 0 and so the assumption (A3) is satisfied.

Example 2.7. Let Ω = B(0, 1)
c
be the exterior of the unit ball in R

n (n ≥ 3). Suppose that the
hypothesis (A2) is satisfied. Let γ, μ ∈ R such that γ < 1 < 2 < n < μ. Then,

Δu = λ
1

|x|μ−γ(|x| − 1)γ
f(u) in Ω,

u(x) = αϕ(x) in ∂Ω,

lim
|x|→+∞

u(x) = β

(2.9)

has a positive continuous solution.
From [14], the function p(x) = 1/|x|μ−γ(|x| − 1)γ ∈ K(Ω) and so the assumption (A1)

is satisfied. Moreover, from [14, Proposition 3.5], there exists a constant c1 > 0 such that one
has

Vp(x) ≤ c1 |x| − 1

|x|n−1
. (2.10)

Now, from [19, page 258], there exists a constant c2 > 0 such that one has on Ω

αHΩϕ(x) + βh(x) ≥ c2 |x| − 1

|x|n−1
. (2.11)
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Thus, σ0 = infx∈Ω((αHΩϕ(x) + βh(x))/f(0)Vp(x)) ≥ c2/c1 > 0 and so the assumption (A3) is
satisfied.

In the next, we will give the proof of Theorem 2.2.

Proof of the Main Theorem. Let p ∈ K+(Ω) and put w := αHΩϕ + βh. Let c = ‖ω‖∞ > 0, then
from (A2), there exists a ≥ 0, such that the function ψ : t → at+f(0)−f(t) is a nondecreasing
function on [0, c]. Let σ0 be the constant given by (A3), and let λ ∈ [0, θ−1(σ0)) where θ(λ) :=
λ exp(λaαp). Put q := λap. Consider the nonempty bounded convex set given by

Λ :=
{
u ∈ B+(Ω) :

(
1 − θ(λ)

σ0

)
exp

(−λaαp)w ≤ u ≤ w
}
. (2.12)

Let T be the operator defined on Λ by

Tu := w − Vq
(
qw

) − λf(0)Vqp + λVq(pψ(u)). (2.13)

We claim that the operator T maps Λ to itself. Indeed, by (A2) and using the monotony of the
function ψ, we have for u ∈ Λ

Tu = w − Vq
(
λp

(
aw + f(0)

))
+ λVq

(
pψ(u)

)
= w − Vq

(
λp

(
ψ(w) + f(w)

))
+ λVq

(
pψ(u)

)
≤ w − λVq

(
pf(w)

)
+ λVq

(
p
(
ψ(u) − ψ(w)

))
≤ w.

(2.14)

On the other hand, by using Proposition 1.5 and (A3), we have

Tu ≥ exp
(−λaαp)w − λf(0)Vqp + λVq

(
pψ(u)

)
≥ exp

(−λaαp)w − λf(0)Vp

≥ exp
(−λaαp)w − λ

σ0
w

=
(
1 − θ(λ)

σ0

)
exp

(−λaαp)w.

(2.15)

Hence, TΛ ⊂ Λ.
Next, we prove that the operator T is nondecreasing on Λ. Let u1, u2 ∈ Λ such that

u1 ≤ u2, then by hypothesis (A2), we obtain

Tu2 − Tu1 = λVqp
(
ψ(u2) − ψ(u1)

) ≥ 0. (2.16)
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Now, consider the sequence (uk)k defined by

u0 = w − λaVq
(
pw

) − λf(0)Vq(p), (2.17)

and uk+1 = Tuk for k ∈ N.
It is obvious to see that u0 ∈ Λ and u1 = Tu0 ≥ u0. Thus, using the fact that Λ is

invariant under T and the monotony of T , we deduce that

(
1 − θ(λ)

σ0

)
exp

(−λaαp)w ≤ u0 ≤ u1 ≤ · · · ≤ uk ≤ w. (2.18)

Hence, the sequence (uk)k converges to a function u ∈ Λ.
Therefore, from the monotone convergence theorem and the fact that ψ is continuous,

the sequence (Tuk)k converges to Tu. So,

u := w − Vq
(
qw

) − λf(0)Vqp + λVq(pψ(u)), (2.19)

or equivalently

(
u − Vq

(
qu

))
=
(
w − Vq

(
qw

)) − Vq(λpf(u)). (2.20)

Applying the operator (I+V (q·)) to both sides of the above equality and using (1.6) and (1.7),
we conclude that u satisfies

u = αHΩϕ + βh − λV (
pf(u)

)
. (2.21)

Finally, let us verify that u is a solution of the problem (P). Using the fact that p ∈ K+(Ω) and
f(u) is bounded on [0, c], we obtain pf(u) ∈ K+(Ω). So, Proposition 1.3 (ii) yields V (pf(u)) ∈
C0(Ω) which implies with the continuity of the harmonic continuous function w that u is
continuous on Ω. This completes the proof.
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[15] H. Mâagli and M. Zribi, “On a new Kato class and singular solutions of a nonlinear elliptic equation
in bounded domains of R

n,” Positivity, vol. 9, no. 4, pp. 667–686, 2005.
[16] F. Toumi, “Existence of positive solutions for nonlinear boundary value problems in bounded

domains of R
n,” Abstract and Applied Analysis, vol. 2006, Article ID 95480, 18 pages, 2006.

[17] F. Toumi and N. Zeddini, “Existence of positive solutions for nonlinear boundary-value problems in
unbounded domains of R

n,” Electronic Journal of Differential Equations, vol. 2005, 14 pages, 2005.
[18] S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory. Probability and Mathematical

Statistic, Academic Press, New York, NY, USA, 1978.
[19] D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer Monographs in Mathematics,

Springer, London, UK, 2001.
[20] K. Hirata, “On the existence of positive solutions of singular nonlinear elliptic equations with

Dirichlet boundary conditions,” Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp.
885–891, 2008.


