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We consider the existence and uniqueness of positive solution to nonzero boundary values
problem for a coupled system of fractional differential equations. The differential operator is taken
in the standard Riemann-Liouville sense. By using Banach fixed point theorem and nonlinear
differentiation of Leray-Schauder type, the existence and uniqueness of positive solution are
obtained. Two examples are given to demonstrate the feasibility of the obtained results.

1. Introduction

Fractional differential equation can describe many phenomena in various fields of science
and engineering such as control, porous media, electrochemistry, viscoelasticity, and
electromagnetic. There are many papers dealing with the existence and uniqueness of
solution for nonlinear fractional differential equation; see, for example, [1–5]. In [1], the
authors investigated a singular coupled system with initial value problems of fractional
order. In [2], Su discussed a boundary value problem of coupled system with zero boundary
values. By means of Schauder fixed point theorem, the existence of the solution is obtained.
The nonzero boundary values problem of nonlinear fractional differential equations is more
difficult and complicated. No contributions exist, as far as we know, concerning the existence
of positive solution for coupled system of nonlinear fractional differential equations with
nonzero boundary values.

In this paper, we consider the existence and uniqueness of positive solution to
nonzero boundary values problem for a coupled system of nonlinear fractional differential
equations:
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Dαu(t) + f(t, v(t)) = 0, 0 < t < 1,

Dβv(t) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ),

v(0) = 0, v(1) = bv(ξ),

(1.1)

where 1 < α < 2, 1 < β < 2, 0 � a, b � 1, 0 < ξ < 1, f, g : [0, 1] × [0,+∞) → [0,+∞) are
given functions, and D is the standard Riemann-Liouville differentiation. By using Banach
fixed point theorem and nonlinear differentiation of Leray-Schauder type, some sufficient
conditions for the existence and uniqueness of positive solution to the above coupled
boundary values problem are obtained.

The rest of the paper is organized as follows. In Section 2, we introduce some basic
definitions and preliminaries used in later. In Section 3, the existence and uniqueness of
positive solution for the coupled boundary values problem (1.1) will be discussed, and
examples are given to demonstrate the feasibility of the obtained results.

2. Basic Definitions and Preliminaries

In this section, we introduce some basic definitions and lemmas which are used throughout
this paper.

Definition 2.1 (see [6, 7]). The fractional integral of order α (α > 0) of a function y : (0,∞) →
R is given by

Iαy(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided that the right side is pointwise defined on (0,∞).

Definition 2.2 (see [6, 7]). The fractional derivative of order α > 0 of a continuous function
y : (0,∞) → R is given by

Dαy(t) =
1

Γ(n − α)

(
d

dt

)n∫ t

0
(t − s)n−α−1y(s)ds, (2.2)

where n = [α] + 1 provided that the right side is pointwise defined on (0,∞).

Remark 2.3 (see [3]). The following properties are useful for our discussion:

(1) IαDαu(t) = u(t) −∑N
k=1 Ckt

α−k, Dαu(t) ∈ C(0, 1)
⋂
L(0, 1), Ck ∈ R, N = [α] + 1,

(2) DαIαu(t) = u(t),

(3) Dαtγ = Γ(γ + 1)/Γ(γ + 1 − α)tγ−α, α > 0, γ > −1, γ > α − 1, t > 0.
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Lemma 2.4 (the nonlinear alternative of Leray and Schauder type [8]). Let E be a Banach space
with C ⊆ E closed and convex. Let U be a relatively open subset of C with 0 ∈ U and let T : U → C
be a continuous and compact mapping. Then either

(a) the mapping T has a fixed point inU, or

(b) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λTu.

Consider

Dαu(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ),
(2.3)

then one has the following lemma.

Lemma 2.5. Let y ∈ C[0, 1] and 1 < α < 2, then u(t) is a solution of BVP (2.3) if and only if u(t) is
a solution of the integral equation:

u(t) =
∫1

0
G1(t, s)y(s)ds, (2.4)

where

G1(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t(1 − s)]α−1 − atα−1(ξ − s)α−1 − (t − s)α−1
(
1 − aξα−1

)
(
1 − aξα−1

)
Γ(α)

, 0 � s � t � 1, s � ξ,

[t(1 − s)]α−1 − (t − s)α−1
(
1 − aξα−1

)
(
1 − aξα−1

)
Γ(α)

, 0 < ξ � s � t � 1,

[t(1 − s)]α−1 − atα−1(ξ − s)α−1(
1 − aξα−1

)
Γ(α)

, 0 � t � s � ξ � 1,

[t(1 − s)]α−1(
1 − aξα−1

)
Γ(α)

, 0 � t � s � 1, ξ � s.

(2.5)

Proof. Assume that u(t) is a solution of BVP (2.3), then by Remark 2.3, we have

u(t) = −Iαy(t) + C1t
α−1 + C2t

α−2

= −
∫ t

0

(t − s)α−1

Γ(α)
y(s)ds + C1t

α−1 + C2t
α−2.

(2.6)

By (2.3), we have

C2 = 0, C1 =
∫1

0

(1 − s)α−1

Γ(α)
(
1 − aξα−1

)y(s)ds − a

∫ ξ

0

(ξ − s)α−1

Γ(α)
(
1 − aξα−1

)y(s)ds. (2.7)
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Therefore, we obtain

u(t) = −
∫ t

0

(t − s)α−1

Γ(α)
y(s)ds +

∫1

0

tα−1(1 − s)α−1

Γ(α)
(
1 − aξα−1

)y(s)ds − a

∫ ξ

0

tα−1(ξ − s)α−1

Γ(α)
(
1 − aξα−1

)y(s)ds

=
∫1

0
G1(t, s)y(s)ds.

(2.8)

Conversely, if u(t) is a solution of integral equation (2.4), using the relation Dαtα−m =
0, m = 1, 2, . . . ,N, where N is the smallest integer greater than or equal to α [3, Remark 2.1],
we have

Dαu(t) = −Dα

(∫ t

0

(t − s)α−1

Γ(α)
y(s)ds

)

+Dαtα−1
[∫1

0

(1 − s)α−1

Γ(α)
(
1 − aξα−1

)y(s)ds − a

∫ ξ

0

(ξ − s)α−1

Γ(α)
(
1 − aξα−1

)y(s)ds
]

= −DαIαy(t) = −y(t).

(2.9)

A simple computation showed u(0) = 0, u(1) = au(ξ). The proof is complete.

Let

G2(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t(1 − s)]β−1 − btβ−1(ξ − s)β−1 − (t − s)β−1
(
1 − bξβ−1

)
(
1 − bξβ−1

)
Γ
(
β
) , 0 � s � t � 1, s � ξ,

[t(1 − s)]β−1 − (t − s)β−1
(
1 − bξβ−1

)
(
1 − bξβ−1

)
Γ
(
β
) , 0 < ξ � s � t � 1,

[t(1 − s)]β−1 − btβ−1(ξ − s)β−1(
1 − bξβ−1

)
Γ
(
β
) , 0 � t � s � ξ � 1,

[t(1 − s)]β−1(
1 − bξβ−1

)
Γ
(
β
) , 0 � t � s � 1, ξ � s,

(2.10)

we call G(t, s) = (G1(t, s), G2(t, s)) Green’s function of the boundary value problem (1.1).

Lemma 2.6. Let 0 � a, b � 1, then the function G(t, s) is continuous and satisfies

(1) G(t, s) > 0, for t, s ∈ (0, 1),

(2) G(t, s) � G(s, s), for t, s ∈ (0, 1).
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Proof. It is easy to prove that G(t, s) is continuous on [0, 1] × [0, 1], here we omit it. Now we
prove G1(t, s) > 0. Let

g1(t, s) =
[t(1 − s)]α−1 − atα−1(ξ − s)α−1 − (t − s)α−1

(
1 − aξα−1

)
(
1 − aξα−1

)
Γ(α)

, 0 < s � t � 1, s � ξ,

g2(t, s) =
[t(1 − s)]α−1 − (t − s)α−1

(
1 − aξα−1

)
(
1 − aξα−1

)
Γ(α)

, 0 < ξ � s � t � 1,

g3(t, s) =
[t(1 − s)]α−1 − atα−1(ξ − s)α−1(

1 − aξα−1
)
Γ(α)

, 0 < t � s � ξ � 1,

g4(t, s) =
[t(1 − s)]α−1(
1 − aξα−1

)
Γ(α)

, 0 < t � s � 1, ξ � s.

(2.11)

We only need to prove g1(t, s) > 0, 0 < s � t � 1, s � ξ. Since

[t(1 − s)]α−1 − atα−1(ξ − s)α−1 − (t − s)α−1
(
1 − aξα−1

)

= tα−1[(1 − s)]α−1 − a(ξ − s)α−1 −
(
1 − s

t

)α−1(
1 − aξα−1

)
,

(2.12)

set g(t) = (1 − s)α−1 − a(ξ − s)α−1 − (1 − s/t)α−1(1 − aξα−1), we have

g ′(t) = −(α − 1)
(
1 − s

t

)α−2 s
t2

(
1 − aξα−1

)
� 0, for 0 < s < t � 1, s � ξ. (2.13)

Then g(t) is decreasing on (0, 1). Meanwhile,

g(1) = (1 − s)α−1 − a(ξ − s)α−1 − (1 − s)α−1
(
1 − aξα−1

)

= aξα−1
[
(1 − s)α−1 −

(
1 − s

ξ

)α−1]
> 0, 0 < s < t � 1, s � ξ.

(2.14)

Therefore, g1(t, s) > 0, for 0 < s < t � 1, s � ξ. Clearly g1(t, s) > 0, t = s, so g1(t, s) >
0, s, t ∈ (0, 1). It is easy to show that g2(t, s) > 0, g3(t, s) > 0, g4(t, s) > 0. Hence, G1(t, s) >
0, s, t ∈ (0, 1).

Similarly, G2(t, s) > 0, s, t ∈ (0, 1). The proof of (1) is completed.
Let

g2(t) =
[t(1 − s)]α−1 − (t − s)α−1

(
1 − aξα−1

)
(
1 − aξα−1

)
Γ(α)

, 0 < ξ � s � t � 1, (2.15)
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then,

g ′
2(t) =

(α − 1)tα−2[(1 − s)]α−1 − (1 − s/t)α−2
(
1 − aξα−1

)
(
1 − aξα−1

)
Γ(α)

, 0 < ξ � s < t � 1,

[(1 − s)]α−1 − (1 − s/t)α−2
(
1 − aξα−1

)

� [(1 − s)]α−1 − (1 − s)α−2
(
1 − aξα−1

)

= [(1 − s)]α−2
(
aξα−1 − s

)
� 0, 0 < ξ � s < t � 1,

(2.16)

therefore,

g ′
2(t) � 0, 0 < ξ � s < t � 1. (2.17)

So, g2(t, s) is decreasing with respect to t. Similarly, g1(t, s) is decreasing with respect to t.
Also g3(t, s) and g4(t, s) are increasing with respect to t. We obtain that G1(t, s) is decreasing
with respect to t for s � t and increasing with respect to t for t � s.

With the use of the monotonicity of G1(t, s), we have

max
0�t�1

G1(t, s) = G1(s, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[s(1 − s)]α−1 − a[s(ξ − s)]α−1

Γ(α)
(
1 − aξα−1

) , s ∈ (0, ξ],

[s(1 − s)]α−1

Γ(α)
(
1 − aξα−1

) , s ∈ [ξ, 1).

(2.18)

Similarly,

max
0�t�1

G2(t, s) = G2(s, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[s(1 − s)]β−1 − b[s(ξ − s)]β−1

Γ
(
β
)(
1 − bξβ−1

) , s ∈ (0, ξ],

[s(1 − s)]β−1

Γ
(
β
)(
1 − bξβ−1

) , s ∈ [ξ, 1).

(2.19)

The proof of (2) is completed.

3. Main Result

In this section, we will discuss the existence and uniqueness of positive solution for boundary
value problem (1.1).

We define the space X = {u(t) | u(t) ∈ C[0, 1]} endowed with ‖u‖X = max0�t�1|u(t)|,
Y = {v(t) | v(t) ∈ C[0, 1]} endowed with ‖u‖Y = max0�t�1|v(t)|.

For (u, v) ∈ X × Y , let ‖(u, v)‖X×Y = max{‖u‖X, ‖v‖Y}.
Define P = {(u, v) ∈ X × Y | u(t) � 0, v(t) � 0} , then the cone P ⊂ X × Y .
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From Lemma 2.5 in Section 2, we can obtain the following lemma.

Lemma 3.1. Suppose that f(t, v) and g(t, u) are continuous, then (u, v) ∈ X × Y is a solution of
BVP (1.1) if and only if (u, v) ∈ X × Y is a solution of the integral equations

u(t) =
∫1

0
G1(t, s)f(s, v(s))ds,

v(t) =
∫1

0
G2(t, s)g(s, u(s))ds.

(3.1)

Let T : X × Y → X × Y be the operator defined as

T(u, v)(t) =

(∫1

0
G1(t, s)f(s, v(s))ds,

∫1

0
G2(t, s)g(s, u(s))ds

)

=: (T1v(t), T2u(t)),

(3.2)

then by Lemma 3.1, the fixed point of operator T coincides with the solution of system (1.1).

Lemma 3.2. Let f(t, v) and g(t, u) be continuous on [0, 1] × [0,∞) → [0,∞), then T : P → P
defined by (3.2) is completely continuous.

Proof. Let (u, v) ∈ P , in view of nonnegativeness and continuity of functions G(t, s), f , and g,
we conclude that T : P → P is continuous.

LetΩ ∈ P be bounded, that is, there exists a positive constant h > 0 such that ‖(u, v)‖ �
h for all (u, v) ∈ Ω.

Let

M = max
{∣∣f(t, v(t))∣∣ + 1 : 0 � t � 1, 0 � v � h

}
,

N = max
{∣∣g(t, u(t))∣∣ + 1 : 0 � t � 1, 0 � u � h

}
,

(3.3)

then we have

|T1v(t)| =
∣∣∣∣∣
∫1

0
G1(t, s)f(s, v(s))ds

∣∣∣∣∣ � M

∫1

0
G1(s, s)ds,

|T2u(t)| =
∣∣∣∣∣
∫1

0
G2(t, s)g(s, u(s))ds

∣∣∣∣∣ � N

∫1

0
G2(s, s)ds.

(3.4)

Hence, ‖T(u, v)‖ � max{M∫1
0G1(s, s)ds,N

∫1
0G2(s, s)ds}. T(Ω) is uniformly bounded.

SinceG1(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous on [0, 1]× [0, 1].
Thus, for fixed s ∈ [0, 1] and for any ε > 0, there exists a constant δ > 0, such that any
t1, t2 ∈ [0, 1] and |t1 − t2| < δ,

|G1(t1, s) −G1(t2, s)| < ε/M. (3.5)
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Then

|T1(v)(t2) − T1(v)(t1)| � M

∫1

0
|G1(t2, s) −G1(t1, s)|ds < ε. (3.6)

Similarly,

|T2(u)(t2) − T2(u)(t1)| � N

∫1

0
|G2(t2, s) −G2(t1, s)|ds < ε. (3.7)

For the Euclidean distance d on R2, we have that if t1, t2 ∈ [0, 1] are such that |t2 − t1| < δ, then

d(T(u, v)(t2), T(u, v)(t1)) =
√
(T1v(t2) − T1v(t1))2 + (T2u(t2) − T2u(t1))2 <

√
2ε. (3.8)

That is to say, T(P) is equicontinuous. By the means of the Arzela-Ascoli theorem, we have
T : P → P is completely continuous. The proof is completed.

Theorem 3.3. Assume that f(t, v) and g(t, u) are continuous on [0, 1]×[0,∞) → [0,∞), and there
exist two positive functions m(t), n(t) that satisfy

(H1) |f(t, v2) − f(t, v1)| � m(t)|v2 − v1|, for t ∈ [0, 1], v1, v2 ∈ [0,∞),

(H2) |g(t, u2) − g(t, u1)| � n(t)|u2 − u1|, for t ∈ [0, 1], u1, u2 ∈ [0,∞).

Then system (1.1) has a unique positive solution if

ρ =
∫1

0
G1(s, s)m(s)ds < 1, θ =

∫1

0
G2(s, s)n(s)ds < 1. (3.9)

Proof. For all (u, v) ∈ P , by the nonegativeness of G(t, s) and f(t, v), g(t, u), we have
T(u, v)(t) � 0. Hence, T(P) ⊆ P.

‖T1v2 − T1v1‖ = max
t∈[0,1]

|T1v2 − T1v1|

= max
t∈[0,1]

∣∣∣∣∣
∫1

0
G1(t, s)

[
f(s, v2(s)) − f(s, v1(s))

]
ds

∣∣∣∣∣

�
∫1

0
G1(s, s)m(s)ds‖v2 − v1‖

� ρ‖v2 − v1‖.

(3.10)

Similarly,

‖T2u2 − T2u1‖ � θ‖u2 − u1‖. (3.11)
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We have,

‖T(u2, v2) − T(u1, v1)‖ � max
(
ρ, θ

)‖(u2, v2) − (u1, v1)‖. (3.12)

From Lemma 3.2, T is completely continuous, by Banach fixed point theorem, the operator
T has a unique fixed point in P , which is the unique positive solution of system (1.1). This
completes the proof.

Theorem 3.4. Assume that f(t, v) and g(t, u) are continuous on [0, 1] × [0,∞) → [0,∞) and
satisfy

(H3) |f(t, v(t))| � a1(t) + a2(t)|v(t)|,

(H4) |g(t, u(t))| � b1(t) + b2(t)|u(t)|,

(H5) A1 =
∫1
0G1(s, s)a2(s)ds < 1, 0 < B1 =

∫1
0G1(s, s)a1(s)ds < ∞,

(H6) A2 =
∫1
0G2(s, s)b2(s)ds < 1, 0 < B2 =

∫1
0G2(s, s)b1(s)ds < ∞.

Then the system (1.1) has at least one positive solution (u, v) in

C =
{
(u, v) ∈ P | ‖(u, v)‖ < min

(
B1

1 −A1
,

B2

1 −A2

)}
. (3.13)

Proof. Let C = {(u, v) ∈ X × Y : ‖(u, v)‖ < r} with r = min(B1/(1 − A1), B2/(1 − A2)), define
the operator T : C → P as (3.2).

Let (u, v) ∈ C, that is, ‖(u, v)‖ < r. Then

‖T1v‖ = max
t∈[0,1]

∣∣∣∣∣
∫1

0
G1(t, s)f(s, v(s))ds

∣∣∣∣∣

�
∫1

0
G1(s, s)(a1(s) + a2(s)|v(s)|)ds

≤
∫1

0
G1(s, s)a1(s)ds +

∫1

0
G1(s, s)a2(s)ds‖v‖

= B1 +A1‖v‖ � r.

(3.14)

Similarly, ‖T2u‖ � r, so ‖T(u, v)‖ � r, T(u, v) ⊆ C. From Lemma 3.2 T : C → C is
completely continuous.

Consider the eigenvalue problem

(u, v) = λT(u, v), λ ∈ (0, 1). (3.15)
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Under the assumption that (u, v) is a solution of (3.15) for a λ ∈ (0, 1), one obtains

‖u‖ = ‖λT1v‖

= λmax
t∈[0,1]

∣∣∣∣∣
∫1

0
G1(t, s)f(s, v(s))ds

∣∣∣∣∣

<

∫1

0
G1(s, s)(a1(s) + a2(s)|v(s)|)ds

=
∫1

0
G1(s, s)a1(s)ds +

∫1

0
G1(s, s)a2(s)ds‖v‖

= B1 +A1‖v‖ � r.

(3.16)

Similarly, ‖v‖ = ‖λT2u‖ < r, so ‖(u, v)‖ < r, which shows that (u, v)/∈ ∂C. By Lemma 2.4, T
has a fixed point in C. We complete the proof of Theorem 3.4.

Example 3.5. Consider the problem

D7/4u(t) + f(t, v(t)) = 0, 0 < t < 1,

D3/2v(t) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
1
2
u

(
1
2

)
,

v(0) = 0, v(1) =
3
4
v

(
1
2

)
,

(3.17)

where

f(t, v(t)) =
tv(t)

(1 + t)(1 + v(t))
, g(t, u(t)) = arctan

t

1 + t
|sinu(t)|. (3.18)

Set v1(t), v2(t), u1(t), u2(t) ∈ [0,∞) and t ∈ [0, 1], then we have

∣∣f(t, v2(t)) − f(t, v1(t))
∣∣ � t

1 + t
|v2(t) − v1(t)|,

∣∣g(t, u2(t)) − g(t, u1(t))
∣∣ � arctan

t

1 + t
|u2(t) − u1(t)|.

(3.19)
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Therefore,

ρ=
∫1

0
G1(s, s)m(s)ds �

∫1

0
G1(s, s)ds

=
1

Γ(7/4)
(
1 − (1/2)7/4

)
{∫1/2

0
[s(1 − s)]3/4ds−

∫1/2

0

1
2

[
s

(
1
2
−s

)]3/4
ds+

∫1

1/2
[s(1−s)]3/4ds

}

=
2
(
1 + (1/2)7/4

)
5

· Γ(3/4)
Γ(1/2)

<
4
5
< 1,

θ=
∫1

0
G2(s, s)n(s)ds � π

4

∫1

0
G2(s, s)ds

=
π

4
1

Γ(3/2)
(
1−(3/4)(1/2)1/2

)
{∫1/2

0
[s(1−s)]1/2ds−

∫1/2

0

3
4

[
s

(
1
2
−s

)]1/2
ds+

∫1

1/2
[s(1−s)]1/2ds

}

=
π

4

[
1 − (3/4)(1/2)2

]
[
1 − (3/4)(1/2)1/2

] · Γ(3/2)
Γ(3)

≈0.6018 < 1.
(3.20)

With the use of Theorem 3.3, BVP (3.17) has a unique positive solution.

Example 3.6. Consider the problem

D7/4u(t) + f(t, v(t)) = 0, 0 < t < 1,

D3/2v(t) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
1
2
u

(
1
2

)
,

v(0) = 0, v(1) =
3
4
v

(
1
2

)
,

(3.21)

where

f(t, v(t)) = t2 +
t

1 + t
ln(1 + v(t)), g(t, u(t)) = 10 +

t2

20
+ u(t). (3.22)

We have

∣∣f(t, v(t))∣∣t2 + t

1 + t
· |v(t)|, ∣∣g(t, u(t))∣∣ �

(
10 +

t2

20

)
+ |u(t)|. (3.23)
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Hence,

A1 =
∫1

0
G1(s, s)a2(s)ds �

∫1

0
G1(s, s)ds =

2
(
1 + (1/2)7/4

)
5

· Γ(3/4)
Γ(1/2)

< 1,

B1 =
∫1

0
G1(s, s)a1(s)ds =

∫1

0
G1(s, s) · s2ds < ∞,

A2 =
∫1

0
G2(s, s)b2(s)ds =

∫1

0
G2(s, s)ds ≈ 0.7666 < 1,

B2 =
∫1

0
G2(s, s)b1(s)ds =

∫1

0
G2(s, s)

(
10 +

s2

20

)
ds < ∞.

(3.24)

By Theorem 3.4, BVP (3.21) has at least one positive solution in

C =
{
(u, v) ∈ P | ‖u, v‖ < min

(
B1

1 −A1
,

B2

1 −A2

)}
. (3.25)
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