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The aim of this paper is to study the dynamics of predator-prey interaction in a chemostat to
determine whether including a discrete delay to model the time between the capture of the prey
and its conversion to viable biomass can introduce oscillatory dynamics even though there is
a globally asymptotically stable equilibrium when the delay is ignored. Hence, Holling type I
response functions are chosen so that no oscillatory behavior is possible when there is no delay. It
is proven that unlike the analogous model for competition, as the parameter modeling the delay is
increased, Hopf bifurcations can occur.

1. Introduction

The chemostat, also known as a continuous stir tank reactor (CSTR) in the engineering
literature, is a basic piece of laboratory apparatus used for the continuous culture of microor-
ganisms. It has potential applications for such processes as wastewater decomposition and
water purification. Some ecologists consider it a lake in a laboratory. It can be thought of
as three vessels, the feed bottle that contains fresh medium with all the necessary nutrients,
the growth chamber where the microorganisms interact, and the collection vessel. The fresh
medium from the feed bottle is continuously added to the growth chamber. The growth
chamber is well stirred and its contents are then removed to the collection vessel at a rate that
maintains constant volume. For a detailed description of the importance of the chemostat and
its application in biology and ecology, one can refer to [1, 2].

The following system describes a food chain in the chemostat where a predator
population feeds on a prey population of microorganisms that in turn consumes a
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nonreproducing nutrient that is assumed to be growth limiting at low concentrations

ṡ(t) =
(
s0 − s(t)

)
D0 −

x(t)f(s(t))
η

,

ẋ(t) = x(t)
(
−D + f(s(t))

)
−
y(t)g(x(t))

ξ
,

ẏ(t) = −Δy(t) + y(t)g(x(t)).

(1.1)

Here s(t) represents the concentration of the growth limiting nutrient, x(t) the density of the
prey population, and y(t) the density of the predator population. Parameter s0 denotes the
concentration of the growth limiting nutrient in the feed vessel, D0 the dilution rate, η(ξ) the
growth yield constant, D(Δ) the sum of the dilution rate D0 and the natural species specific
death rate of the prey (predator) population, respectively. Here f(s) denotes the functional
response of the prey population on the nutrient and g(x) denotes the functional response of
the predator on the prey.

Butler et al. [3] considered the coexistence of two competing predators feeding on a
single prey population growing in the chemostat. As a subsystem of their model, they studied
the global stability of system (1.1) with both f(s) and g(x) taking the form of Holling type II.
They proved that under certain conditions the interior equilibrium is globally asymptotically
stable with respect to the interior of the positive cone. However, they also proved that for
certain ranges of the parameters there is at least one nontrivial limit cycle and conjectured
that the limit cycle is unique and would be a global attractor with respect to the noncritical
orbits in the open positive octant. This conjecture was partially solved by Kuang [4]. He
showed that there is a range of parameters for which a unique periodic orbit exists and
roughly located the position of the limit cycle.

Bulter and Wolkowicz [5] studied predator mediated coexistence in the chemostat
assuming D0 = D = Δ. Model (1.1) was studied as a submodel. For general monotone
response functions, Bulter and Wolkowicz showed that (1.1) is uniformly persistent if the
sum of the break even concentrations of substrate and prey is less than the input rate of the
nutrient s0. However they showed that it is necessary to specify the form of the response
functions in order to discuss the global dynamics of the model. If f(s) is modelled by Holling
type I or II and g(x) by Holling type I, Bulter and Wolkowicz proved that (1.1) could have up
to three equilibrium points and that there is a transfer of global stability from one equilibrium
point to another as different parameters are varied making conditions favorable enough for
a new population to survive. In this case, there are no periodic solutions. However, even
if f(s) is given by Holling type I, if g(x) is given by Holling type II, they showed that a
Hopf bifurcation can occur in (1.1), and numerical simulations indicated that the bifurcating
periodic solution was asymptotically stable.

We include a time delay in (1.1) to model the time between the capture of the prey
and its conversion to viable biomass. Our aim is to show that such a delay can induce
nontrivial periodic solutions in a model where there is always a globally asymptotically
stable equilibrium when delay is ignored, and hence no such periodic solutions are possible
otherwise. For this reason we select the response functions of the simplest form; that is,
we choose the Holling type I form for both f(s) and g(x), so that (1.2) always has a
globally asymptotically stable equilibrium when the conversion process is assumed to occur
instantaneously. It is interesting to note that in the analogous model of competition between
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two species in the chemostat, delay cannot induce oscillatory behavior for any reasonable
monotone response functions (see Wolkowicz and Xia [6]).

With delay modelling the time required for the predator to process the prey after it has
been captured, the model is given by

ṡ(t) =
(
s0 − s(t)

)
D0 −

x(t)f(s(t))
η

,

ẋ(t) = x(t)
(
−D + f(s(t))

)
−
y(t)g(x(t))

ξ
,

ẏ(t) = −Δy(t) + e−Δτy(t − τ)g(x(t − τ)).

(1.2)

For t ∈ [−τ, 0],

s(0) = s0 ∈ int R+,
(
x(t), y(t)

)
=
(
φ, ψ
)
∈ C

(
[−τ, 0], int R

2
+

)
. (1.3)

Here variables s(t), x(t), y(t), and parameters s0, D0, η, ξ, D0, D, and Δ have the same
interpretation as for model (1.1). Note therefore that D � D0, and Δ � D0. The additional
parameter τ is a nonnegative constant modelling the time required for the conversion
process. Hence, e−Δτy(t − τ) represents the concentration of the predator population in the
growth chamber at time t that were available at time t − τ to capture prey and were able
to avoid death and washout during the τ units of time required to process the captured
prey.

We analyze the stability of each equilibrium and prove that the coexistence equilibrium
can undergo Hopf bifurcations. Numerical simulations appear to show that (1.2) can have a
stable periodic solution bifurcating from the coexistence equilibrium as the delay parameter
increases from zero. This periodic orbit can then disappear through a secondary Hopf
bifurcation as the delay parameter increases further.

2. Scaling of the Model and Existence of Solutions

Suppose that functions f(s) and g(s) are of Holling type I form, that is, f(s) = αs (α > 0) and
g(x) = kx (k > 0). System (1.2) reduces to

ṡ(t) =
(
s0 − s(t)

)
D0 −

αx(t)s(t)
η

,

ẋ(t) = x(t)(−D + αs(t)) −
kx(t)y(t)

ξ
,

ẏ(t) = −Δy(t) + ke−Δτy(t − τ)x(t − τ).

t > 0, (2.1)
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Introducing the following change of variables gives:

t̆ = D0t, s̆
(
t̆
)
=
s(t)
s0

, x̆
(
t̆
)
=
x(t)
s0η

, y̆
(
t̆
)
=
y(t)
ξs0η

,

τ̆ = D0τ, D̆ =
D

D0
, Δ̆ =

Δ
D0

, k̆ =
ks0η

D0
, ᾰ =

αs0

D0
,

ds̆
(
t̆
)

dt̆
=

1
s0

ds(t)
dt

dt
dt̆

=
1

s0D0

ds(t)
dt

=
1

s0D0

((
s0 − s(t)

)
D0 −

αx(t)s(t)
η

)

= 1 − s(t)
s0
− αs

0

D0

x(t)
s0η

s(t)
s0

= 1 − s̆
(
t̆
)
− ᾰx̆

(
t̆
)
s̆
(
t̆
)
,

dx̆
(
t̆
)

dt̆
=

1
s0η

dx(t)
dt

dt
dt̆

=
1

s0ηD0

dx(t)
dt

=
1

s0ηD0

(
x(t)(−D + αs(t)) −

kx(t)y(t)
ξ

)

=
x(t)
s0η

(
− D
D0

+
αs0

D0

s(t)
s0

)
−
ks0η

D0

x(t)
s0η

y(t)
s0ηξ

= x̆
(
t̆
)(
−D̆ + ᾰs̆

(
t̆
))
− k̆x̆

(
t̆
)
y̆
(
t̆
)
,

dy̆
(
t̆
)

dt̆
=

1
s0ηξ

dy(t)
dt

dt
dt̆

=
1

s0ηξD0

dy(t)
dt

=
1

s0ηξD0

(
−Δy(t) + ke−Δτy(t − τ)x(t − τ)

)

=
−Δy(t)
s0ηξD0

+
ke−Δτ

s0ηξD0
y(t − τ)x(t − τ)

=
−Δ
D0

y(t)
s0ηξ

+
ks0η

D0
e−(Δ/D0)D0τ

y(t − τ)
s0ηξ

x(t − τ)
s0η

= −Δ̆y̆
(
t̆
)
+ k̆e−Δ̆τ̆ y̆

(
t̆ − τ̆

)
x̆
(
t̆ − τ̆

)
.

(2.2)

With this change of variables, omitting the ˘’s for convenience, system (2.1) becomes

ṡ(t) = 1 − s(t) − αx(t)s(t),

ẋ(t) = x(t)(−D + αs(t)) − ky(t)x(t),

ẏ(t) = −Δy(t) + ke−Δτy(t − τ)x(t − τ),

(2.3)
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where Δ � 1 and D � 1, with initial data given by (1.3). For biological significance, a point is
assumed to be an equilibrium point of (2.3) only if all of its components are nonnegative.

Let τ = 0. Model (2.3) reduces to a special case of the model considered in [7]. IfD > α,
the model has only one equilibrium point (1, 0, 0) and it is globally asymptotically stable. If
D < α and 1−D/α−ΔD/k < 0, the model has a second equilibrium point (D/α, (α−D)/αD, 0)
and it is globally asymptotically stable. When 1 − D/α − ΔD/k > 0, the model has a third
equilibrium point (k/(k+αΔ),Δ/k, α/(k+αD)−D/k) and it is the global attractor. Therefore,
model (2.3) has no periodic solutions when the time delay is ignored. If g(x) is of Holling
type II form, Butler and Wolkowicz [5] proved that a Hopf bifurcation is possible resulting
in a periodic solution for a certain range of parameter values. We emphasize again here, that
it is for this reason that in this paper we restrict our attention to the simplest case for both
response functions, that is, Holling type I, in order to see whether delay can be responsible
for periodic solutions in (1.2).

Theorem 2.1. Assuming (s0, φ(θ), ψ(θ)) ∈ int R+ × C([−τ, 0], int R
2
+), then there exists a unique

solution (s(t), x(t), y(t)) of (2.3) passing through (s0, φ(θ), ψ(θ)) with s(t) > 0, x(t) > 0 and
y(t) > 0 for t ∈ [0,∞). The solution is bounded. In particular, given any ε0 > 0, x(t) < 1 + ε0 for all
sufficiently large t.

Proof. For t ∈ [0, τ], one has t − τ ∈ [−τ, 0], x(t − τ) = φ(t − τ), and y(t − τ) = ψ(t − τ). System
(2.3) becomes

ṡ(t) = 1 − s(t) − αx(t)s(t),

ẋ(t) = x(t)(−D + αs(t)) − ky(t)x(t),

ẏ(t) = −Δy(t) + ke−Δτφ(t − τ)ψ(t − τ),

(2.4)

a system of nonautonomous ordinary differential equations with initial conditions s(0) = s0,
x(0) = φ(0), and y(0) = ψ(0). Since the right-hand side of (2.4) is differentiable in both x
and y, by Theorems 2.3, 3.1, and Corollary 4.3 in Miller and Michel [8], there exists a unique
solution defined on [0, τ] satisfying (2.4). By using the method of steps in Bellman and Cooke
[9], it can be shown that the solution through (s0, φ(θ), ψ(θ)) is defined for all t � 0.

Now we prove s(t) > 0 for all t > 0. From the first equation of (2.3),

ṡ(t) = 1 − s(t) − αx(t)s(t). (2.5)

Proceed using the method of contradiction. Suppose that there exists a first t
 such that s(t
) =
0 and s(t) > 0 for t ∈ [0, t∗). Then ṡ(t
) � 0. But from the first equation of (2.3)

ṡ(t
) = 1 − s(t
) − αx(t
)s(t
) = 1 > 0, (2.6)

a contradiction.
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To prove x(t) > 0 for t ∈ [0,∞), assume there is a first t > 0 such that x(t) = 0, and
x(t) > 0 for t ∈ [0, t). Divide both sides of the second equation of (2.3) by x(t) and integrate
from 0 to t, to obtain

x
(
t
)
= φ(0) exp

(∫ t
0

(
−D + αs(t) − ky(t)

)
dt

)
> 0, (2.7)

contradicting x(t) = 0.
To show that y(t) is positive on [0,∞), suppose that there exists t
 > 0 such that y(t
) =

0, and y(t) > 0 for t ∈ [0, t∗). Then ẏ(t
) � 0. From the third equation of (2.3), we have

ẏ(t
) = −Δy(t
) + ke−Δτy(t
 − τ)x(t
 − τ)

= ke−Δτy(t
 − τ)x(t
 − τ) > 0,
(2.8)

a contradiction.
To prove the boundedness of solutions, define

ω(t) = s(t) + x(t) + eΔτy(t + τ) − 1, for t � 0. (2.9)

It follows that

ω̇(t) = 1 − s(t) −Dx(t) −ΔeΔτy(t + τ)

� 1 − s(t) − x(t) − eΔτy(t + τ)

� −ω(t),

(2.10)

where the first inequality holds since D � 1, Δ � 1, x(t) > 0 and y(t + τ) > 0. It follows that

s(t) + x(t) + eΔτy(t + τ) � 1 +
(
s0 + x(0) + eΔτy(τ) − 1

)
e−t −→ 1 as t −→ ∞. (2.11)

Therefore, the solution (s(t), x(t), y(t)) is bounded, and given any ε0 > 0, x(t) < 1 + ε0 for all
sufficiently large t.

3. Equilibria and Stability

Model (2.3) has three equilibrium points: E1 = (1, 0, 0), E2 = (D/α, (α −D)/αD, 0), and

E+ =
(
s+(τ), x+(τ), y+(τ)

)
=
(

1
1 + (αΔ/k)eΔτ

,
Δ
k
eΔτ ,

α

k + αΔeΔτ
− D
k

)
. (3.1)

We call E1 the washout equilibrium, E2 the single species equilibrium, and E+ the coexistence
equilibrium. For the sake of biological significance, E+ exists (distinct from E2) if and only if
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its third coordinate y+(τ) = (αs+(τ) − D)/k > 0, that is, s+(τ) > D/α, or equivalently, τ lies
between 0 and τc, where

τc =
1
Δ

ln
(
k

Δ

(
1
D
− 1
α

))
. (3.2)

Note that if (k/Δ)(1/D − 1/α) � 1, the equilibrium E+ does not exist for any τ (�0), and if
(k/Δ)(1/D − 1/α) = 1, then E+ = E2.

The linearization of (2.3) about an equilibrium (s, x, y) is given by

⎡
⎢⎢⎣
ż1(t)

ż2(t)

ż3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 − αx −αs 0

αx −D + αs − ky −kx
0 0 −Δ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1(t)

z2(t)

z3(t)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0 0

0 0 0

0 keΔτy keΔτx

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1(t − τ)
z2(t − τ)
z3(t − τ)

⎤
⎥⎥⎦.

(3.3)

The associated characteristic equation is given by

det

⎡
⎢⎢⎣
−1 − αx − λ −αs 0

αx −D + αs − ky − λ −kx
0 ke−Δτ−λτy −Δ + ke−Δτ−λτx − λ

⎤
⎥⎥⎦ = 0. (3.4)

Direct calculation of the left-hand side of (3.4) gives

(
−Δ + ke−(Δ+λ)τx − λ

){
(−1 − αx − λ)

(
−D + αs − ky − λ

)
+ α2sx

}

+ kxke−(Δ+λ)τy(−1 − αx − λ)

= (−Δ − λ)
{
(1 + αx + λ)

(
D − αs + ky + λ

)
+ α2sx

}
+ e−(Δ+λ)τkx

×
{
ky(−1 − αx − λ) + (1 + αx + λ)

(
D − αs + ky + λ

)
+ α2sx

}

= (−Δ − λ)
{
(1 + αx + λ)

(
D − αs + ky + λ

)
+ α2sx

}

+ e−(Δ+λ)τkx
{
(1 + αx + λ)(D − αs + λ) + α2sx

}

= (−Δ − λ)
{
(λ + 1)

(
λ +D + ky

)
+ αx

(
λ +D + ky

)
− αs(λ + 1)

}

+ e−(Δ+λ)τkx{(λ + 1)(λ +D) + αx(λ +D) − αs(λ + 1)}.

(3.5)
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For convenience, define

P(λ) := (−Δ − λ)
{
(λ + 1)

(
λ +D + ky

)
+ αx

(
λ +D + ky

)
− αs(λ + 1)

}

+ e−(Δ+λ)τkx{(λ + 1)(λ +D) + αx(λ +D) − αs(λ + 1)}.
(3.6)

Theorem 3.1. Equilibrium E1 is stable if α < D and unstable if α > D.

Proof. Evaluating the characteristic equation at E1 gives

P(λ)|E1
= −(Δ + λ)(λ + 1)(λ +D − α) = 0. (3.7)

The eigenvalues −1 and −Δ are both negative. The third eigenvalue is −D + α. Therefore the
equilibrium E1 is stable if α < D and unstable if α > D.

Remark 3.2. If α < D, then there is only one equilibrium, E1. If α > D, equilibrium E2 also
exists.

Lemma 3.3. Assume α > D. The characteristic equation evaluated at E2 has two negative
eigenvalues, and the remaining eigenvalues are solutions of

(λ + Δ)e(λ+Δ)τ = k
(

1
D
− 1
α

)
. (3.8)

In addition, the characteristic equation evaluated at E2 has zero as an eigenvalue if and only if τ = τc.

Proof. Assume α > D. Equilibrium E2 exists. Consider the characteristic equation at E2. Since
(α −D)/αD = (1 − s)/αs at E2,

P(λ)|E2
= {(λ + 1)(λ +D) + αx(λ +D) − αs(λ + 1)}

×
(
−λ −Δ + e−(Δ+λ)τkx

)

=
{
(λ + 1)(λ +D) +

1 − s
s

(λ +D) −D(λ + 1)
}

×
(
−λ −Δ + e−(Δ+λ)τk

α −D
αD

)

=
{
λ(λ + 1) − (λ +D) +

λ +D
s

}(
−λ −Δ + k

α −D
αD

e−(Δ+λ)τ
)

= −
(
λ2 +

α

D
λ + α −D

)(
λ + Δ − kα −D

αD
e−(Δ+λ)τ

)

= − e−(Δ+λ)τ(λ − λ1)(λ − λ2)
(
(λ + Δ)e(Δ+λ)τ − k

(
1
D
− 1
α

))
= 0,

(3.9)

where λ1 + λ2 = −α/D and λ1λ2 = α − D > 0. Therefore, λ1 and λ2 have negative real parts.
The rest of the eigenvalues are roots of (3.8).
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Assuming that λ = 0 is a root of (3.8), we have

ΔeΔτ = k
(

1
D
− 1
α

)
. (3.10)

Solving for τ gives

τ =
1
Δ

ln
(
k

Δ

(
1
D
− 1
α

))
= τc. (3.11)

Theorem 3.4. Assume that D � 1, Δ � 1, k > 0, α > 0, and (k/Δ)(1/D − 1/α) � 1 so that
τc � 0. Equilibrium E2 is locally asymptotically stable if τ > τc and unstable if τ < τc. If D = 1, then
equilibrium E2 is globally asymptotically stable for τ > (1/Δ) ln(k/Δ).

Proof. Assume that τ > τc. Assumptions k > 0, Δ � 1, and (k/Δ)(1/D − 1/α) � 1 imply
1/D > 1/α, or equivalently α > D. By Lemma 3.3, to prove that equilibrium E2 is locally
asymptotically stable, one only needs to show that (3.8) admits no root with nonnegative real
part.

Consider the real roots of (3.8) first. Note that 1/D > 1/α. Equation (3.8) has no
solution for λ � −Δ. Otherwise the left-hand side would be less than zero, but the right-hand
side would be greater than zero. Assume λ > −Δ. The left-hand side of (3.8) is a monotone
increasing function in both λ and τ , takes value 0 at λ = −Δ, and goes to positive infinity as
λ → +∞ or τ → +∞. By Lemma 3.3, when τ = τc, then λ = 0 is a solution of (3.8). Thus for
τ > τc, any real root λ of (3.8) must satisfy −Δ < λ < 0.

For any τ = τ̃ < τc, we have (λ + Δ)e(λ+Δ)τ |τ=τ̃ ,λ=0 < k(1/D − 1/α) and limλ→+∞(λ +
Δ)e(λ+Δ)τ̃ = +∞. Therefore there exists at least one λ = λ̃ > 0 such that (τ̃ , λ̃) is a solution of
(3.8). Equilibrium E2 is unstable if τ < τc.

In what follows, we prove that if τ > τc all complex eigenvalues of (3.8) have negative
real parts. Suppose that λ + Δ = γ + iβ (β > 0) is a solution of (3.8). Using the Euler formula,
we have

γ cos
(
βτ
)
− β sin

(
βτ
)
+ i
(
γ sin

(
βτ
)
+ β cos

(
βτ
))

= k
(

1
D
− 1
α

)
e−γτ . (3.12)

Equating the real parts and imaginary parts of the equation, we have

γ cos
(
βτ
)
− β sin

(
βτ
)
= k
(

1
D
− 1
α

)
e−γτ

γ sin
(
βτ
)
+ β cos

(
βτ
)
= 0.

(3.13)

Squaring both equations, adding, and taking the square root on both sides give

√
γ2 + β2eγτ = k

(
1
D
− 1
α

)
. (3.14)
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The left-hand side of (3.14) is monotonically increasing in γ , β, and τ provided that
γ > 0. Since (3.14) has solution γ = Δ, β = 0 at τ = τc, any roots of (3.14) must
satisfy γ < Δ since τ > τc. Hence Re{λ} = γ − Δ < 0. Therefore (3.8) has no
complex eigenvalue with nonnegative real part and so E2 is locally asymptotically stable for
τ > τc.

Assume that D = 1. Now we prove that E2 is globally asymptotically stable when
τ > (1/Δ) ln(k/Δ), or equivalently ke−Δτ < Δ. In this case, choose ε0 > 0 small enough
such that ke−Δτ(1 + ε0) < Δ. By Theorem 2.1, for such ε0, there exists a T > 0 so that
0 < x(t) < 1 + ε0 for t > T . Hence, for t > T + τ , ke−Δτx(t − τ) < Δ. In Example 5.1
of Kuang ([10, page 32]), choose ρ(t) = τ , a(t) = Δ, b(t) = ke−Δτx(t − τ), and α = Δ/2.
We obtain (ke−Δτ(1 + ε0))

2
< Δ2 = 4(Δ − α)α. Therefore y(t) → 0 as t → ∞. Let

z(t) = s(t) + x(t). Noting D = 1, from (2.3), we have ż(t) = 1 − z(t) − kx(t)y(t). Multiply
by the integrating factor et, (z(t)et)′ = et(1 − kx(t)y(t)). Integrating both sides from 0 to t
gives

z(t) = e−tz(0) + e−t
(
et − 1

)
− e−t

∫ t
0
eskx(s)y(s)ds

= 1 + e−t(z(0) − 1) − e−t
∫ t

0
eskx(s)y(s)ds.

(3.15)

If limt→∞
∫ t

0e
skx(s)y(s)ds < ∞, then limt→∞e

−t∫ t
0e

skx(s)y(s)ds = 0. Therefore limt→∞z(t) =
1. If limt→∞

∫ t
0e

skx(s)y(s)ds =∞, by L’Hôspital’s rule,

lim
t→+∞

e−t
∫ t

0
eskx(s)y(s)ds = lim

t→+∞

∫ t
0e

skx(s)y(s)ds
et

= lim
t→+∞

etkx(t)y(t)
et

= lim
t→+∞

kx(t)y(t) = 0,

(3.16)

since x(t) is bounded and limt→∞y(t) = 0. It again follows that limt→∞z(t) = 1. Hence

lim
t→∞

s(t) + x(t) = 1. (3.17)

We show that limt→∞s(t) = 1/α and limt→∞x(t) = (α − 1)/α. First assume that the
limits exist, that is, limt→∞s(t) = s and limt→∞x(t) = x. From (2.3), we know that ṡ(t) and ẋ(t)
are uniformly continuous since s(t), x(t), and y(t) are bounded. By Theorem A.3, it follows
that limt→∞ṡ(t) = 0 and limt→∞ẋ(t) = 0. Note that limt→∞y(t) = 0. Letting t → ∞ in (2.3)
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gives

(1 − s) − αx s = 0,

x(−1 + αs) = 0.
(3.18)

Either (s, x) = (1, 0) or (s, x) = (1/α, (α − 1)/α). Assume that (s, x) = (1, 0), that is,
limt→∞s(t) = 1 and limt→∞x(t) = 0. Note that α > D. There exists ε > 0 such that
α − D − (α + k)ε > 0. For such ε, there exists a sufficiently large t so that s(t) > 1 − ε and
0 < y(t) < ε. Recalling that x(t) > 0, by (2.3)

ẋ(t) > x(t)(−D + α(1 − ε) − kε) = x(t)(α −D − αε − kε) > 0, (3.19)

for all sufficiently large t. Therefore it is impossible for x(t) to approach 0 from above giving
a contradiction. Therefore, we must have (s, x) = (1/α, (α − 1)/α).

Now suppose that the limits do not exist. In particular if x(t) does not converge, then
let x = lim supt→∞x(t) and x = lim inft→∞x(t). By Lemma A.2 in the appendix, there exists
{tm} ↑ ∞ and {sm} ↑ ∞ such that

lim
m→∞

x(tm) = x, lim
m→∞

ẋ(tm) = 0,

lim
m→∞

x(sm) = x lim
m→∞

ẋ(sm) = 0.
(3.20)

From (2.3),

x(tm)
(
−D + αs(tm) + ky(tm)

)
= 0. (3.21)

Noting that x(tm) > 0, we have s(tm) = (1 − ky(tm))/α. Since limt→∞y(t) = 0, limt→∞s(tm) =
1/α. By (3.17), limt→∞x(tm) = limt→∞(x(tm) + s(tm)) − s(tm) = 1 − 1/α = (α − 1)/α. Therefore
x = (α − 1)/α. Similarly we can show that x = (α − 1)/α. This implies that limt→∞x(t) =
(α − 1)/α, a contradiction.

Since s(t) + x(t) converges and x(t) converges, then s(t) must also converge. Hence
limt→∞s(t) = 1/α and limt→∞x(t) = (α − 1)/α. It follows that E2 is globally asymptotically
stable.
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4. Hopf Bifurcations at E+ Assuming D = Δ = 1

Now consider the stability of E+. The characteristic equation at E+ is

P(λ)|E+
= (−Δ − λ)

(
(1 + αx+(τ) + λ)

(
D − αs+(τ) + ky+(τ) + λ

)
+ α2s+(τ)x+(τ)

)

+ e−(Δ+λ)τkx+(τ)((λ + 1)(λ +D) + αx+(τ)(λ +D) − αs+(τ)(λ + 1))

= (−Δ − λ)
(
(1 + αx+(τ) + λ)λ + α2s+(τ)x+(τ)

)

+ e−(Δ+λ)τkx+(τ)((λ + 1)(λ +D) + αx+(τ)(λ +D) − αs+(τ)(λ + 1))

= (−Δ − λ)
((

1
s+(τ)

+ λ
)
λ + α(1 − s+(τ))

)

+ e−λτΔ
(
(λ + 1)(λ +D) +

1 − s+(τ)
s+(τ)

(λ +D) − αs+(τ)(λ + 1)
)

= (−Δ − λ)
(
λ2 +

λ

s+(τ)
+ α(1 − s+(τ))

)

+ Δe−λτ
((

λ +
1

s+(τ)

)
(λ +D) − αs+(τ)(λ + 1)

)
= 0.

(4.1)

By assumption Δ = D = 1, and so

P(λ)|E+
= −(λ + 1)

(
λ2 +

λ

s+(τ)
+ α(1 − s+(τ)) + e−λτ

(
−λ + αs+(τ) −

1
s+(τ)

))

= −(λ + 1)
(
λ2 + p(τ)λ + β(τ) + e−λτ

(
qλ + c(τ)

))
= 0,

(4.2)

where

p(τ) =
1

s+(τ)
, β(τ) = α(1 − s+(τ)), q = −1, c(τ) = αs+(τ) −

1
s+(τ)

. (4.3)

The characteristic equation at E+ has one eigenvalue equal to −1 and the others are given by
solutions of the equation

λ2 + p(τ)λ + β(τ) + e−λτ
(
qλ + c(τ)

)
= 0. (4.4)

Lemma 4.1. Assuming k > 0, α > 0, and k(1 − 1/α) � 1 so that τc = ln(k(1 − 1/α)) � 0, then E+

has no zero eigenvalue for τ ∈ (0, τc).

Proof. Assume that τ ∈ (0, τc). By the method of contradiction, suppose that there exists a
zero root of (4.4). Therefore

β(τ) + c(τ) = α − 1
s+(τ)

= 0. (4.5)
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Noting that τc > 0 if and only if k(1 − 1/α) > 1, for any 0 < τ < τc,

α − 1
s+(τ)

= α − 1 − α
k
eτ > α − 1 − α

(
1 − 1

α

)
= 0, (4.6)

a contradiction.

Lemma 4.2. Assume k > 0, α > 0, k(1 − 1/α) > 1. Equilibrium E+ is asymptotically stable when
τ = 0.

Proof. For τ = 0, (4.4) reduces to

λ2 + p(0)λ + β(0) +
(
qλ + c(0)

)
= λ2 +

(
1

s+(0)
− 1
)
λ + α − 1

s+(0)
. (4.7)

Both coefficients are positive, since

1
s+(0)

− 1 =
α

k
> 0,

α − 1
s+(0)

= α − 1 − α
k
= α
(

1 − 1
α
− 1
k

)
> 0,

(4.8)

and k(1−1/α) > 1 implies 1−1/α > 1/k. Therefore, all the roots of the characteristic equation
have negative real parts.

Lemma 4.3. As τ is increased from 0, a root of (4.4) with positive real part can only appear if a root
with negative real part crosses the imaginary axis.

Proof. Taking n = 2 and g(λ, τ) = p(τ)λ + (qλ + c(τ))e−λτ + β(τ) in Kuang [10, Theorem 1.4,
page 66] gives

lim sup
Reλ>0,|λ|→∞

∣∣∣λ−2g(λ, τ)
∣∣∣ = 0 < 1. (4.9)

Therefore, no root of (4.4) with positive real part can enter from infinity as τ increases from
0. Hence roots with positive real part can only appear by crossing the imaginary axis.

For τ /= 0, assuming λ = iω (ω > 0) is a root of P(λ)|E+ = 0,

−ω2 + ip(τ)ω + β(τ) + e−iωτ
(
iqω + c(τ)

)
= 0. (4.10)

Substituting eiθ = cos θ + i sin θ into (4.10) gives

−ω2+β(τ)+qω sin(ωτ)+c(τ) cos(ωτ)+i
(
p(τ)ω+qω cos(ωτ)−c(τ) sin(ωτ)

)
= 0. (4.11)
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Separating the real and imaginary parts, we obtain

c(τ) cos(ωτ) + qω sin(ωτ) = ω2 − β(τ),

c(τ) sin(ωτ) − qω cos(ωτ) = p(τ)ω.
(4.12)

Solving for cos(ωτ) and sin(ωτ) gives

sin(ωτ) =
c(τ)p(τ)ω + qω

(
ω2 − β(τ)

)

c(τ)2 + q2ω2
,

cos(ωτ) =
c(τ)
(
ω2 − β(τ)

)
− qp(τ)ω2

c(τ)2 + q2ω2
.

(4.13)

Noting sin2(ωτ) + cos2(ωτ) = 1, squaring both sides of equations (4.13), adding, and
rearranging gives

ω4 +
(
p2(τ) − q2 − 2β(τ)

)
ω2 + β2(τ) − c2(τ) = 0. (4.14)

Solving for ω, we obtain two roots ω1(τ) and ω2(τ):

ω1(τ) =
1√
2

(
q2 − p2(τ) + 2β(τ) +

√(
q2 − p2(τ) + 2β(τ)

)2 − 4(β2(τ) − c2(τ))
)1/2

=
1

s+(τ)
√

2

(
(1 − s+(τ))

(
2αs2

+(τ) − s+(τ) − 1
)

+
√(

s2
+(τ) − 1

)2 + 4αs2
+(τ)
(
s2
+(τ) − 1

)
(1 − s+(τ)) + 4s2

+(τ)
(
αs2

+(τ) − 1
)2
)1/2

ω2(τ) =
1√
2

(
q2 − p2(τ) + 2β(τ) −

√(
q2 − p2(τ) + 2β(τ)

)2 − 4
(
β2(τ) − c2(τ)

))1/2

=
1

s+(τ)
√

2

(
(1 − s+(τ))

(
2αs2

+(τ) − s+(τ) − 1
)

−
√(

s2
+(τ) − 1

)2 + 4αs2
+(τ)
(
s2
+(τ) − 1

)
(1 − s+(τ)) + 4s2

+(τ)
(
αs2

+(τ) − 1
)2
)1/2

.

(4.15)
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Define conditions (H1) and (H2) as follows:

(H1)
q2 − p2(τ) + 2β(τ) > 0, β2(τ) − c2(τ) > 0,

(
q2 − p2(τ) + 2β(τ)

)2
− 4
(
β2(τ) − c2(τ)

)
� 0,

(4.16)

(H2) β2(τ) − c2(τ) < 0, or β2(τ) − c2(τ) = 0 and q2 − p2(τ) + 2β(τ) > 0. (4.17)

Lemma 4.4. If (H1) holds for all τ in some interval I, then (4.14) has two positive roots ω1(τ) �
ω2(τ) for all τ ∈ I with ω1(τ) > ω2(τ) when all the inequalities in (H1) are strict. If (H2) holds for
all τ in some interval I, then (4.14) has only one positive root, ω1(τ) for all τ ∈ I. If no interval exists
where either (H1) or (H2) holds, then there are no positive real roots of (4.14).

Define the interval

J =

[
ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))
, ln

(
k
(

4
√
α − 1

)

α

)]
. (4.18)

When the end points of J are real and J /= ∅, define

I1 = [0, τc) ∩ J. (4.19)

We prove that (H1) holds for any τ ∈ I1.
From D = Δ = 1,

τc =
1
Δ

ln
(
k

Δ

(
1
D
− 1
α

))
= ln
(
k(α − 1)

α

)
. (4.20)

If α > 1, then α > 4
√
α. It follows that

τc > ln

(
k
(

4
√
α − 1

)

α

)
. (4.21)

Therefore,

I1 =

[
max

{
0, ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))}
, ln

(
k
(

4
√
α − 1

)

α

)]
. (4.22)

Theorem 4.5. Assume α > (7+3
√

5)/2 and k > α/( 4
√
α−1), then I1 is not empty, and for any τ ∈ I1,

but τ /= ln((k/α)(1/(1/4 +
√

1/16 + 1/(2α)) − 1)), condition (H1) holds and ω1(τ) > ω2(τ) > 0.
If τ = ln((k/α)(1/(1/4 +

√
1/16 + 1/(2α)) − 1)) ∈ I1, then ω1(τ) > ω2(τ) = 0.
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Proof. For any α > (7 + 3
√

5)/2, we have 1 − 1/ 4
√
α > 0, and therefore

1
4
√
α
+

1
2
−
√

5
2

<
1

4

√(
7 + 3

√
5
)
/2

+
1
2
−
√

5
2

= 0. (4.23)

Hence,

(
1

4
√
α
− 1

4

)2

−

⎛
⎝
√

1
16

+
1

2α

⎞
⎠

2

=
1√
α
− 1

2 4
√
α
− 1

2α

=
−1

2 4
√
α

((
1

4
√
α

)3

+ 1 − 2
4
√
α

)

=
1

2 4
√
α

(
1 − 1

4
√
α

)((
1

4
√
α

)2

+
1

4
√
α
− 1

)

=
1

2 4
√
α

(
1 − 1

4
√
α

)((
1

4
√
α
+

1
2

)2

− 5
4

)

=
1

2 4
√
α

(
1 − 1

4
√
α

)(
1

4
√
α
+

1
2
−
√

5
2

)(
1

4
√
α
+

1
2
+
√

5
2

)
< 0.

(4.24)

Therefore, 1/ 4
√
α − 1/4 <

√
1/16 + 1/(2α). Since 1/4 +

√
1/16 + 1/(2α) < 1/4 +√

1/16 + 1/(7 + 3
√

5) < 1, it follows that

1
4
√
α
<

1
4
+

√
1

16
+

1
2α

< 1. (4.25)

Hence,

ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))
< ln

(
k
(

4
√
α − 1

)

α

)
. (4.26)

From k > α/( 4
√
α − 1), we have ln(k( 4

√
α − 1)/α) > 0. Therefore,

max

{
0, ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))}
< ln

(
k
(

4
√
α − 1

)

α

)
, (4.27)

and so I1 is not empty. Noting s+(τ) = 1/(1 + (αΔ/k)eΔτ) and Δ = 1, for any τ ∈ I1, but
τ /= ln((k/α)(1/(1/4+

√
1/16 + 1/(2α))−1)), we have s+(τ) ∈ [1/ 4

√
α, 1/4+

√
1/16 + 1/(2α)).
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In what follows, we intend to show that for any such τ , condition (H1) holds. From
(4.3),

q2 − p2(τ) + 2β(τ) = (−1)2 − 1
s2
+(τ)

+ 2α(1 − s+(τ))

=
(1 − s+(τ))2α

s2
+(τ)

(
s+(τ)2 − s+(τ)

2α
− 1

2α

)

=
(1 − s+(τ))2α

s2
+(τ)

((
s+(τ) −

1
4α

)2

− 1
16α2

− 1
2α

)
.

(4.28)

Since s+(τ) < 1, to show that the first inequality in (H1) holds, it suffices to show that the
factor on the right-hand side of the above expression is positive. Since α > (7 + 3

√
5)/2,

1/
√
α − 1/(4α) = (1/

√
α)(1 − 1/(4

√
α)) > 0, and

⎛
⎝
√

1
16α2

+
1

2α

⎞
⎠

2

−
(

1√
α
− 1

4α

)2

=
1

16α2
+

1
2α
− 1
α
+

1
2α
√
α
− 1

16α2

=
1

2α

(
1√
α
− 1
)
< 0.

(4.29)

Since 1/
√
α < 1/ 4

√
α for α > (7 + 3

√
5)/2,

1
4α

+

√
1

16α2
+

1
2α

<
1√
α
<

1
4
√
α
. (4.30)

For any s+(τ) > 1/ 4
√
α,

s+(τ) −
1

4α
� 1

4
√
α
− 1

4α
>

√
1

16α2
+

1
2α
. (4.31)

Hence,

(
s+(τ) −

1
4α

)2

� 1
16α2

+
1

2α
. (4.32)
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Next consider the second inequality in (H1). For α > (7 + 3
√

5)/2, since 1/ 4
√
α > 1/α, s+(τ) �

1/ 4
√
α > 1/α. Therefore, αs+(τ) > 1. For s+(τ) ∈ [1/ 4

√
α, 1/4 +

√
1/16 + 1/(2α))

β2(τ) − c2(τ) =
(
β(τ) − c(τ)

)(
β(τ) + c(τ)

)

=
(
α − 2αs+(τ) +

1
s+(τ)

)(
α − 1

s+(τ)

)

= − 2α
s2
+(τ)

(
s2
+(τ) −

s+(τ)
2
− 1

2α

)
(αs+(τ) − 1)

= − 2α
s2
+(τ)

((
s+(τ) −

1
4

)2

− 1
16
− 1

2α

)
(αs+(τ) − 1) > 0.

(4.33)

Finally,

(
q2 − p2(τ) + 2β(τ)

)2
− 4
(
β2(τ) − c2(τ)

)
=
(
q2 − p2(τ)

)(
q2 − p2(τ) + 4β(τ)

)
+ 4c2(τ)

=

(
1 − 1

s2
+(τ)

)(
1 − 1

s2
+(τ)

+ 4α(1 − s+(τ))
)

+ 4
(
αs+(τ) −

1
s+(τ)

)2

=

(
1 − 1

s2
+(τ)

)2

+ 4α

(
1 − 1

s2
+(τ)

)
(1 − s+(τ)) + 4s+(τ)2α2 − 8α +

4
s2
+(τ)

= 4s+(τ)2α2 + 4α

((
1 − 1

s2
+(τ)

)
(1 − s+(τ))

)
− 8α +

(
1 − 1

s2
+(τ)

)2

+
4

s2
+(τ)

= 4s+(τ)2α2 + 4α

((
1 − 1

s2
+(τ)

)
(1 − s+(τ)) − 2

)
+

(
1 +

1
s2
+(τ)

)2

= (α − α1)(α − α2),

(4.34)

where

α1 =
2 −
(
1 − 1/s2

+(τ)
)
(1 − s+(τ)) +

√(
1/s2

+(τ) + 2s+(τ) + 1
)
(1/s+(τ) − 1)2

2s2
+(τ)

,

α2 =
2 −
(
1 − 1/s2

+(τ)
)
(1 − s+(τ)) −

√(
1/s2

+(τ) + 2s+(τ) + 1
)
(1/s+(τ) − 1)2

2s2
+(τ)

.

(4.35)
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Since s+(τ) < 1,

2 −
(

1 − 1
s2
+(τ)

)
(1 − s+(τ)) = s+(τ) + 1 +

1 − s+(τ)
s2
+(τ)

> 0,

(
2 −
(

1 − 1
s2
+(τ)

)
(1 − s+(τ))

)2

>

(
2 −
(

1 − 1
s2
+(τ)

)
(1 − s+(τ))

)2

− s2
+(τ)

(
1 +

1
s2
+(τ)

)2

=

(
1

s2
+(τ)

+ 2s+(τ) + 1

)(
1

s+(τ)
− 1
)2

> 0.

(4.36)

It follows that 0 < α2 < α1. Again noting that s+(τ) < 1,

α1 <
2 −
(
1 − 1/s2

+(τ)
)
(1 − s+(τ)) +

√(
1/s2

+(τ) + 2/s+(τ) + 1
)
(1/s+(τ) − 1)2

2s2
+(τ)

=
2 −
(
1 − 1/s2

+(τ)
)
(1 − s+(τ)) + (1/s+(τ) + 1)(1/s+(τ) − 1)

2s2
+(τ)

=
2 −
(
1 − s+(τ) − 1/s2

+(τ) + 1/s+(τ)
)
+ 1/s2

+(τ) − 1

2s2
+(τ)

=
s+(τ) + 2/s2

+(τ) − 1/s+(τ)
2s2

+(τ)
=

1
2

(
2

s4
+(τ)

−
(

1
s3
+(τ)

− 1
s+(τ)

))

<
1
2

2
s4
+(τ)

=
1

s4
+(τ)

.

(4.37)

Hence, for any s+(τ) > 1/ 4
√
α, we have α > 1/s4

+(τ) > α1 > α2. This leads to

(
q2 − p2(τ) + 2β(τ)

)2
− 4
(
β2(τ) − c2(τ)

)
= (α − α1)(α − α2) > 0. (4.38)

Therefore, (H1) holds for any τ ∈ I1. By Lemma 4.4, both ω1(τ) > 0 and ω2(τ) > 0.
If τ = ln((k/α)(1/(1/4 +

√
1/16 + 1/(2α)) − 1)) ∈ I1, we have s+(τ) = 1/4 +√

1/16 + 1/(2α). Noting (4.25), we obtain

q2 − p2(τ) + 2β(τ) > 0, β2(τ) − c2(τ) = 0,
(
q2 − p2(τ) + 2β(τ)

)2 − 4
(
β2(τ) − c2(τ)

)
> 0.

(4.39)

By (4.15), it follows that ω1(τ) > 0 and ω2(τ) = 0.
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Now we define interval I2 and prove that (H2) holds on I2

I2 := [0, τc) ∩
(
−∞, ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))]
. (4.40)

In the following theorem, we consider the case that parameters are chosen so that

I2 =

[
0, ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))]
. (4.41)

Theorem 4.6. Assume α > 1 and k > α(1/(1/4 +
√

1/16 + 1/(2α)) − 1)−1. Interval I2 given by
(4.41) is not empty. For any τ ∈ I2, (H2) holds and hence ω1(τ) > 0.

Proof. Assume α > 1. Letting

G(α) =
1
4
+

√
1
16

+
1

2α
− 1
α
, (4.42)

then

d
dα

G(α) = − 1

4α2
√

1/16 + 1/(2α)
+

1
α2

=
1
α2

(
−1√

1 + 8/α
+ 1

)
> 0. (4.43)

G(α) is an increasing function of α and G(1) = 0. G(α) > G(1) implies that 1/4 +√
1/16 + 1/(2α) − 1/α > 0. Therefore

1 >
1
4
+

√
1

16
+

1
2α

>
1
α
. (4.44)

This gives

α − 1 >
1

1/4 +
√

1/16 + 1/(2α)
− 1 > 0. (4.45)

By assumption k > α(1/(1/4 +
√

1/16 + 1/(2α)) − 1)−1, we obtain

k(α − 1)
α

>
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

)
> 1. (4.46)

Noting that D = Δ = 1 and recalling the definition of τc given in (3.2),

τc = ln
(
k(α − 1)

α

)
> ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))
> 0. (4.47)
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Therefore, I2 given by (4.41) is not empty. For any τ ∈ I2, noting s+(τ) = 1/(1 + (αΔ/k)eΔτ)
and Δ = 1, we have s+(τ) ∈ [1/4+

√
1/16 + 1/(2α), 1/(1+α)/k) ⊂ [1/4+

√
1/16 + 1/(2α), 1).

In what follows, we intend to show for any τ ∈ I2, or equivalently s+(τ) ∈ [1/4 +√
1/16 + 1/(2α), 1), (H2) holds. For any s+(τ) ∈ [1/4 +

√
1/16 + 1/(2α), 1), by (4.44), it

follows that s+(τ) > 1/α and so αs+(τ) > 1. Hence,

β2(τ) − c2(τ) = − 2α
s2
+(τ)

((
s+(τ) −

1
4

)2

− 1
16
− 1

2α

)
(αs+(τ) − 1) � 0. (4.48)

For any s+(τ) ∈ [1/4 +
√

1/16 + 1/(2α), 1), we have s+(τ) > 1/(4α) +
√

1/(16α2) + 1/(2α),
since 1/4 > 1/(4α) and 1/16 > 1/(16α2) imply that

1
4
+

√
1

16
+

1
2α

>
1

4α
+

√
1

16α2
+

1
2α
. (4.49)

Therefore,

q2 − p2(τ) + 2β(τ) =
(1 − s+(τ))2α

s2
+(τ)

((
s+(τ) −

1
4α

)2

− 1
16α2

− 1
2α

)
> 0. (4.50)

Condition (H2) holds. By Lemma 4.4, ω1(τ) > 0.

Next, to determine whether (4.2) has a pair of pure imaginary eigenvalues, we
consider

c2(τ) + q2ω2

=
(
αs+(τ) −

1
s+(τ)

)2

+ (−1)2ω2 =
(
αs+(τ) −

1
s+(τ)

)2

+ω2,

c(τ)
(
p(τ)ω

)
+ qω

(
ω2 − β(τ)

)

= ω
(
c(τ)p(τ) + q

(
ω2 − β(τ)

))

= ω

(
α − 1

s2
+(τ)

−ω2 + α(1 − s+(τ))
)
,

c(τ)
(
ω2 − β(τ)

)
+ qω

(
−p(τ)ω

)

=
(
αs+(τ) −

1
s+(τ)

)(
ω2 − α(1 − s+(τ))

)
+ (−1)ω

( −ω
s+(τ)

)

= α
(
s+(τ)ω2 − (1 − s+(τ))

(
αs+(τ) −

1
s+(τ)

))
.

(4.51)
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We obtain

sin(ωτ) = −ω
ω2 −

(
α − 1/s2

+(τ)
)
− α(1 − s+(τ))

(αs+(τ) − 1/s+(τ))
2 +ω2

,

cos(ωτ) = αs+(τ)
ω2 − (1 − s+(τ))

(
α − 1/s2

+(τ)
)

(αs+(τ) − 1/s+(τ))
2 +ω2

.

(4.52)

If there exists (τ,ω) satisfying (4.52), then (4.2) has a pair of pure imaginary roots ±iω.
A necessary condition for (4.52) to have solutions is αs2

+(τ)/= 1. Otherwise, αs2
+(τ) = 1, and

the second equation of (4.52) becomes cos(ωτ) = αs+(τ). However, for any τ ∈ (0, τc), we
have αs+(τ) > 1, since

αs+(τ) =
α

1 + αeτ/k
>

α

1 + (α/k)k(1 − 1/α)
=

α

1 + α(1 − 1/α)
=
α

α
= 1. (4.53)

Hence, the second equation of (4.52) has no solution. Assume αs2
+(τ)/= 1 for ω � 0 and τ ∈

[0, τc] and denote the right-hand sides of (4.52) by

h1(ω, τ) =
c(τ)
(
p(τ)ω

)
+ qω

(
ω2 − β(τ)

)

c2(τ) + q2ω2

= −ω
ω2 −

(
α − 1/s2

+(τ)
)
− α(1 − s+(τ))

(αs+(τ) − 1/s+(τ))
2 +ω2

,

h2(ω, τ) =
c(τ)
(
ω2 − β(τ)

)
+ qω

(
−p(τ)ω

)

c2(τ) + q2ω2

= αs+(τ)
ω2 − (1 − s+(τ))

(
α − 1/s2

+(τ)
)

(αs+(τ) − 1/s+(τ))
2 +ω2

.

(4.54)

Define functions

θ1(τ) = arccos(h2(ω1(τ), τ)) if h2(ω1(τ), τ) ∈ [−1, 1],

θ2(τ) = arccos(h2(ω2(τ), τ)) if h2(ω2(τ), τ) ∈ [−1, 1].
(4.55)
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Lemma 4.7. Assume α > (7 + 3
√

5)/2 and k > α/( 4
√
α − 1). For any τ ∈ I1 given by (4.19), there

exists εj > 0 and θj(τ) with εj � θj(τ) � π (j=1,2) such that

sin
(
θj(τ) + 2nπ

)
= h1
(
ωj(τ), τ

)
,

cos
(
θj(τ) + 2nπ

)
= h2
(
ωj(τ), τ

)
.

n = 0, 1, 2, . . . , (4.56)

Proof. For any τ ∈ I1, by Theorem 4.5, ω1(τ) > 0 and ω2(τ) � 0. It is easy to see that h1(0, τ) =
0 and limω→+∞h1(ω, τ) = −∞. There are two roots of h1(z, τ) = 0, z1 = 0 and

z2(τ) =

√
α − 1

s2
+(τ)

+ α(1 − s+(τ)). (4.57)

Hence, h1(ω, τ) > 0 for 0 < ω < z2(τ). For any τ ∈ I1, as shown in Theorem 4.5, s+(τ) ∈
[1/ 4
√
α, 1/4+

√
1/16 + 1/(2α)]. This implies s+(τ) � 1/ 4

√
α > 1/

√
α > 1/α. Therefore, αs2

+(τ) >
1 and αs+(τ) > 1. The function h2(ω, τ) is monotonically increasing for ω � 0, since

∂h2(ω, τ)
∂ω

= αs+(τ)
2ω
(
(αs+(τ) − 1/s+(τ))

2 +ω2
)
− 2ω

(
ω2 − (1 − s+(τ))

(
α − 1/s2

+(τ)
))

(
(αs+(τ) − 1/s+(τ))

2 +ω2
)2

= 2αs+(τ)ω
(αs+(τ) − 1/s+(τ))

2 + (1 − s+(τ))
(
α − 1/s2

+(τ)
)

(
(αs+(τ) − 1/s+(τ))

2 +ω2
)2

= 2αs+(τ)ω

(
α − 1/s2

+(τ)
)(
s2
+(τ)
(
α − 1/s2

+(τ)
)
+ 1 − s+(τ)

)
(
(αs+(τ) − 1/s+(τ))

2 +ω2
)2

= 2αs+(τ)ω

(
α − 1/s2

+(τ)
)
s+(τ)(αs+(τ) − 1)

(
(αs+(τ) − 1/s+(τ))

2 +ω2
)2

= 2αω

(
αs2

+(τ) − 1
)
(αs+(τ) − 1)

(
(αs+(τ) − 1/s+(τ))

2 +ω2
)2

� 0.

(4.58)

Since s+(τ) < 1,

h2(0, τ) = −αs+(τ)
(1 − s+(τ))

(
α − 1/s2

+(τ)
)

(αs+(τ) − 1/s+(τ))
2

= −αs+(τ)(1 − s+(τ))
αs2

+(τ) − 1
< 0. (4.59)
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Also, limω→∞h2(ω, τ) = αs+(τ) > 1. Therefore, there exists a unique ω = lmax(τ) =√
α − 1/s2

+(τ) > 0, such that h2(lmax(τ), τ) = 1. Solving h2(lmax, τ) = 1 for lmax and noting

that α − 1/s2
+(τ)/= 0, it is easy to see that lmax(τ) =

√
α − 1/s2

+(τ)

l2max(αs+(τ) − 1) = αs+(τ)(1 − s+(τ))
(
α − 1

s2
+(τ)

)
+
(
αs+(τ) −

1
s+(τ)

)2

= αs+(τ)

(
α − 1

s2
+(τ)

− αs+(τ) +
1

s+(τ)

)
+ α2s2

+(τ) − 2α +
1

s2
+(τ)

= α2s+(τ) −
α

s+(τ)
− α2s2

+(τ) + α + α2s2
+(τ) − 2α +

1
s2
+(τ)

= α2s+(τ) −
α

s+(τ)
− α +

1
s2
+(τ)

=

(
α − 1

s2
+(τ)

)
(αs+(τ) − 1).

(4.60)

Then, h2(ω, τ) � 1 for any ω ∈ [0, lmax(τ)]. Since s+(τ) < 1, lmax(τ) < z2(τ). Therefore,
h1(ω, τ) > 0 for any ω ∈ [0, lmax(τ)]. Since ω1(τ) is a positive root of h2

1(ω, τ) + h
2
2(ω, τ) =

1, we have h2(ω1(τ), τ) � 1, which implies that 0 < ω1(τ) � lmax(τ) < z2(τ). Therefore,
h1(ω1(τ), τ) > 0, and so h1(ω1(τ), τ) =

√
1 − h2(ω1(τ), τ). In fact,

ω1(τ) < lmax(τ), (4.61)

since

h2
2(lmax(τ), τ) + h2

1(lmax(τ), τ) = 1 + h2
1(lmax(τ), τ) > 1. (4.62)

Thus, θ1(τ) is defined and 0 � θ1(τ) � π . Since cos(θ1(τ) + 2nπ) = h2(ω1(τ), τ),

sin(θ1(τ) + 2nπ) =
√

1 − cos2(θ1(τ) + 2nπ)

=
√

1 − h2
2(ω1(τ), τ)

= h1(ω1(τ), τ).

(4.63)

Hence, θ1(τ) satisfies (4.56). From (4.61), h2(ω1(τ), τ) < h2(lmax(τ), τ) = 1, and so θ1(τ) > 0.
Since θ1(τ) is continuous on the interval I1 and I1 is closed, there exists ε1 > 0 such that
θ1(τ) � ε1. Similarly we can prove the existence of θ2(τ).

Lemma 4.8. Assume α > 1 and k > α(1/(1/4 +
√

1/16 + 1/2α) − 1)−1. For any τ ∈ I2 given by
(4.41), there exists ε > 0 and θ1(τ) such that ε � θ1(τ) < π and θ1(τ) satisfies (4.56) for j = 1.



International Journal of Differential Equations 25

Proof. For any τ ∈ I2, by Theorem 4.6, only ω1(τ) > 0.
As in Lemma 4.7, we have h1(ω, τ) > 0 for 0 < ω < z2(τ). For any τ ∈ I2, as shown in

Theorem 4.6, s+(τ) ∈ [1/4 +
√

1/16 + 1/(2α), 1). Letting

G(α) =
1
4
+

√
1

16
+

1
2α
− 1√

α
, α > 1, (4.64)

we have

d
dα

G(α) = − 1

4α2
√

1/16 + 1/(2α)
+

1
2α
√
α
=

1
2α

(
−1√

α2/4 + 2α
+

1√
α

)
> 0. (4.65)

G(α) is an increasing function and G(1) = 0. Since G(α) > G(1), it follows that 1/4 +√
1/16 + 1/(2α) > 1/

√
α. Therefore, for any s+(τ) > 1/4 +

√
1/16 + 1/(2α), we obtain

s+(τ) > 1/
√
α, or equivalently α > 1/s2

+(τ). Since

∂h2(ω, τ)
∂ω

= 2αs+(τ)ω
(αs+(τ) − 1/s+(τ))

2 + (1 − s+(τ))
(
α − 1/s2

+(τ)
)

(
(αs+(τ) − 1/s+(τ))

2 +ω2
)2

� 0, (4.66)

h2(ω, τ) is monotonically increasing for any ω � 0. For any s+(τ) > 1/4 +
√

1/16 + 1/(2α),

(
s+(τ) −

1
4

)2

− 1
16
− 1

2α
= s2

+(τ) −
s+(τ)

2
− 1

2α
=

1
2α

(
2αs2

+(τ) − αs+(τ) − 1
)

=
1

2α

(
αs2

+(τ) − 1 −
(
αs+(τ) − αs2

+(τ)
))

=
αs2

+(τ) − 1
2α

(
1 − αs+(τ)(1 − s+(τ))

αs2
+(τ) − 1

)
> 0,

(4.67)

which implies that (αs+(τ)(1 − s+(τ)))/(αs2
+(τ) − 1) < 1. Hence,

0 > h2(0, τ) = −αs+(τ)
(1 − s+(τ))

(
α − 1/s2

+(τ)
)

(αs+(τ) − 1/s+(τ))
2

= −αs+(τ)(1 − s+(τ))
αs2

+(τ) − 1
> −1. (4.68)

For τ ∈ [0, τc), limω→∞h2(ω, τ) = αs+(τ) > 1, since

αs+(τ) =
α

1 + αeτ/k
>

α

1 + (α/k)k(1 − 1/α)
=

α

1 + α(1 − 1/α)
=
α

α
= 1. (4.69)

As in the proof of Lemma 4.7, there exists a unique lmax(τ) =
√
α − 1/s2

+(τ) > 0 such that
h2(lmax(τ), τ) = 1. Then lmax(τ) < z2(τ). Therefore, h1(ω, τ) > 0 for any ω ∈ [0, lmax(τ)].
The rest of the proof is similar to the proof of Lemma 4.7. Furthermore, θ1(τ) < π , since
h2(ω1(τ), τ) > −1 for any ω1(τ) ∈ [0, lmax(τ)).
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Theorem 4.9. Consider system (2.3) with D = Δ = 1.

(1) Suppose α > (7 + 3
√

5)/2, k > α/( 4
√
α − 1), and τ ∈ I1 given by (4.22). For τ ∈ I1 and

j = 1, 2, ωj(τ) is nonnegative and there exists εj > 0 and θj(τ) such that εj � θj(τ) � π
and θj(τ) satisfies (4.56). If there exists n � 0 such that θj(τ) + 2nπ intersects τωj(τ) at
some τjn ∈ I1, then (4.4) has a pair of pure imaginary eigenvalues λ = ±iωj(τ

j
n). System

(2.3) undergoes a Hopf bifurcation at τjn provided dRe (λ(τ))/dτ |
τ=τjn /= 0.

(2) Suppose α > 1, k > α(1/(1/4 +
√

1/16 + 1/(2α)) − 1)−1, and τ ∈ I2 given by (4.41). For
τ ∈ I2, only ω1(τ) is positive and there exists ε > 0 and θ1(τ) such that ε � θ1(τ) < π
and θ1(τ) satisfies (4.56) for j = 1. If there exists n � 0 such that θ1(τ) + 2nπ intersects
τω1(τ) at some τ1

n ∈ I2, then (4.4) has a pair of pure imaginary eigenvalues λ = ±iω1(τ1
n).

System (2.3) undergoes a Hopf bifurcation at τ1
n provided dRe (λ(τ))/dτ |τ=τ1

n
/= 0.

Proof. Assume D = Δ = 1 in system (2.3).

Case 1. Suppose τ ∈ I1. By Theorem 4.5, ωj(τ) � 0 for j = 1, 2. By Lemma 4.7, there exists
εj > 0 and θj(τ) such that εj � θj(τ) � π and θj(τ) satisfies (4.56). Assume that there exists a
positive integer τjn ∈ I1 such that θj(τ

j
n)+2nπ = τjnωj(τ

j
n) for some integer n � 0. Then system

(4.52) has one solution (τjn, ωj(τ
j
n)). Equation (4.4) has a pair of pure imaginary eigenvalues

λ = ±iωj(τ
j
n).

In what follows, we show that the conditions required for a Hopf Bifurcation (see
Theorem A.1 in the appendix) are satisfied by the linearization (3.3) of (2.3) at E+. In (A.1),
choosing τ as the bifurcation parameter and letting

D(τ, zt) =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1(t)

z2(t)

z3(t)

⎤
⎥⎥⎦,

L(τ, zt) =

⎡
⎢⎢⎣
−1 − αx+ −αs+ 0

αx+ −D + αs+ − ky+ −kx+
0 0 −Δ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1(t)

z2(t)

z3(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0 0

0 0 0

0 keΔτy+ keΔτx+

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1(t − τ)
z2(t − τ)
z3(t − τ)

⎤
⎥⎥⎦,

(4.70)

the linearization (3.3) of (2.3) at E+ is of the form (A.1). Taking a to be any positive real
number and b = 1/2, hypothesis (S1) in the Hopf Bifurcation Theorem holds, since

∣∣∣∣∣det

(
∞∑
k=0

Ak(α)e−λrk(α)
)∣∣∣∣∣ =

∣∣∣∣∣∣∣
det

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

∣∣∣∣∣∣∣
= 1 � 1

2
,

∣∣∣∣∣det

(
∞∑
k=0

Ak(α)e−λrk(α) +
∫0

−1
A(α, θ)eλθdθ

)∣∣∣∣∣ =

∣∣∣∣∣∣∣
det

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

∣∣∣∣∣∣∣
= 1 � 1

2

(4.71)

for all τ ∈ R and |Reλ| < a.
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The characteristic equation (4.4) of (3.3) at E+ has a pair of pure imaginary eigenvalues
λ = ±ω1(τ

j
n) and no other root of (4.4) is an integral multiple of ±ω1(τ

j
n). Hence the hypothesis

(S2) in the Hopf Bifurcation Theorem holds. Therefore, (2.3) undergoes a Hopf bifurcation at
E+ when τ = τjn provided dRe(λ(τ))/dτ |

τ=τjn /= 0.

Case 2. Suppose τ ∈ I2. By Theorem 4.5, only ω1(τ) > 0. By Lemma 4.8, there exists ε > 0
and θ1(τ) such that ε � θ1(τ) < π and θ1(τ) satisfies (4.56). Assume there exists τ1

n ∈ I2 such
that θ1(τ1

n) + 2nπ = τ1
nω1(τ1

n) for some integer n � 0. Then system (4.52) has one solution
(τ1
n, ω1(τ1

n)). Equation (4.4) has a pair of pure imaginary eigenvalues λ = ±iω1(τ1
n). The rest

of the proof is similar to that of Case 1 when j = 1.

Corollary 4.10. Consider system (2.3) with D = Δ = 1.

(1) Suppose α > (7 + 3
√

5)/2, k > α/( 4
√
α − 1), and τ ∈ I1 given by (4.22). For τ ∈ I1,

ωj(τ) is nonnegative and there exists εj > 0 and θj(τ) such that εj � θj(τ) � π
and θj(τ) satisfies (4.56) for j = 1, 2. If there exists a positive integer nj � 0 such that
minτ∈I1τωj(τ) � 2njπ and maxτ∈I1τωj(τ) > (2nj + 1)π , then θj(τ) + 2njπ intersects

τωj(τ) at least once at some τjnj ∈ I1. System (2.3) undergoes a Hopf bifurcation at τjnj
provided dRe (λ(τ))/dτ |

τ=τjnj
/= 0.

(2) Suppose α > 1, k > α(1/(1/4 +
√

1/16 + 1/(2α)) − 1)−1, and τ ∈ I2 defined in (4.41).
For τ ∈ I2, only ω1(τ) is positive. There exists ε > 0 and θ1(τ) such that ε � θ1(τ) < π
and θ1(τ) satisfies (4.56) for j = 1. If there exists a positive integer N � 0 such that
maxτ∈I2τω1(τ) > (2N + 1)π , then for any 0 � n � N, θ1(τ) + 2nπ intersects τω1(τ)
at least once at some τ1

n ∈ I2. System (2.3) undergoes a Hopf bifurcation at τ1
n provided

dRe (λ(τ))/dτ |τ=τ1
n
/= 0.

Proof. Assume D = Δ = 1 in system (2.3).

Case 1. Suppose τ ∈ I1. By Theorem 4.5, ωj(τ) � 0 for j = 1, 2. By Lemma 4.7, there exists
εj > 0 and θj(τ) such that εj � θj(τ) � π and θj(τ) satisfies (4.56). Assume that there exists a
positive integer nj � 0 such that minτ∈I1τωj(τ) � 2njπ and maxτ∈I1τωj(τ) > (2nj + 1)π . For
such nj ,

min
τ∈I1

τωj(τ) < εj + 2njπ � θj(τ) + 2njπ �
(
2nj + 1

)
π < max

τ∈I1

τ ωj(τ). (4.72)

By the Mean Value Theorem, there exists τjnj ∈ I1 such that θj(τ
j
nj ) + 2njπ = τ

j
njωj(τ

j
nj ). By

Theorem 4.9. Case 1, the conclusion follows.

Case 2. Suppose τ ∈ I2. By Theorem 4.5, only ω1(τ) > 0. By Lemma 4.8, there exists ε > 0
and θ1(τ) such that ε � θ1(τ) < π and θ1(τ) satisfies (4.56). Assume that there exists a
positive integer N � 0 such that maxτ∈I2τω1(τ) > (2N + 1)π . By (4.41), 0 ∈ I2. Therefore
minτ∈I2τω1(τ) = 0. For 0 � n � N,

min
τ∈I2

τω1(τ) < ε + 2nπ � θi(τ) + 2nπ � (2n + 1)π < max
τ∈I2

τω1(τ). (4.73)
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By the Mean Value Theorem, there exists τ1
n ∈ I2 such that θ1(τ1

n) + 2nπ = τ1
nω1(τ1

n). By
Theorem 4.9. Case 2, the conclusion follows.

Corollary 4.11. Consider system (2.3) withD = Δ = 1. Assume α > (7+3
√

5)/2 and k > α/( 4
√
α−

1). If 1/4+
√

1/16 + 1/(2α) > k/(α+k), then I1 = [0, ln((k/α)( 4
√
α−1))], where I1 was defined in

(4.22). For any τ ∈ I1,ωj(τ) is nonnegative and there exists εj > 0 and θj(τ) such that εj � θj(τ) �
π and θj(τ) satisfies (4.56) for j = 1, 2. If there exists a positive integerNj � 0 (j = 1, 2) such that
maxτ∈I1τωj(τ) > (2Nj + 1)π , then for any 0 � n � Nj , θj(τ) + 2nπ intersects τωj(τ) at least once
at some τjn ∈ I1. System (2.3) undergoes a Hopf bifurcation at τjn provided dRe (λ(τ))/dτ |

τ=τjn /= 0.

Proof. Assume 1/4+
√

1/16 + 1/(2α) > k/(α+k). Then ln((k/α)(1/(1/4+
√

1/16 + 1/(2α))−
1)) < 0. By (4.22),

I1 =

[
max

{
0, ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))}
, ln

(
k
(

4
√
α − 1

)

α

)]

=
[

0, ln
(
k

α

(
4
√
α − 1

))]
.

(4.74)

For any τ ∈ I1, by Theorem 4.5, ωj(τ) � 0 for j = 1, 2. By Lemma 4.7, there exists εj > 0 and
θj(τ) such that εj � θj(τ) � π and θj(τ) satisfies (4.56). Noting 0 ∈ I1, minτ∈I1τωj(τ) = 0.
Assume there exists a positive integer Nj � 0 (j = 1, 2) such that maxτ∈I1τωj(τ) > (2Nj +1)π .
For any 0 � n � Nj , minτ∈I1τωj(τ) = 0 � 2nπ and maxτ∈I1τωj(τ) > (2Nj + 1)π � (2n + 1)π .
By Corollary 4.10, the conclusion follows.

5. Numerical Results

This section includes bifurcation diagrams involving the interior equilibrium E+ and
numerical simulations of periodic solutions of the predator-prey model in the chemostat.

5.1. Variation of Eigenvalues

To study the stability switches of E+, DDEBIFTOOL (see [11, 12]) was chosen to illustrate
how the real part of the eigenvalues of (4.2) changes as parameters α and τ vary.

First fix parameters D = Δ = 1, k = 24, and τ = 0.5. Taking α as the bifurcation
parameter and varying it from 0 to 10, the real part of the eigenvalues with largest real part
of (4.2) was plotted in Figure 1. At α ≈ 1.15 and α ≈ 1.5, there is either a zero eigenvalue or
a pair of pure imaginary roots. For α ∈ (1.15, 1.5), all eigenvalues have negative real parts.
For example, taking α = 1.3, Figure 2(a) shows that the eigenvalues of (4.2) with largest
real parts (the ones in the circle) have negative real parts. Note that due to the scaling, the
eigenvalues in the circle seem to be indistinguishable from zero. But in fact, they are a pair of
complex eigenvalues with real parts slightly less than zero. DDEBIFTOOL can keep track of
the occurrence of a pair of pure imaginary eigenvalues as α varies in the neighborhood of α =
1.5. Figure 2(b) clearly shows that there is a pair of pure imaginary eigenvalues. Hence, Hopf
bifurcation is possible. Note that by continuation, the pair of eigenvalues with largest real
parts in Figure 2(a) for α = 1.3 becomes the pair of pure imaginary eigenvalues in Figure 2(b)
for α ≈ 1.5.
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Figure 1: Variation of the largest real part of the eigenvalues as the bifurcation parameter α is varied. At
α ≈ 1.15 and 1.5, the largest real part crosses zero and it seems that there is a zero eigenvalue for α ≈ 1.15
and a pair of pure imaginary eigenvalues for α ≈ 1.5. The largest real part becomes positive as α increases
through 1.5. But as α increases further, for α ≈ 17, the largest real part crosses zero again and remains
negative thereafter. There is a second Hopf bifurcation at α ≈ 17. This is consistent with what is observed
in Figure 3 when τ = 0.5 and α varies from 0 to 30. Parameters are D = Δ = 1, k = 24, and τ = 0.5.

Finally fix all parameters as before and vary both τ and α. In Figure 3, we plot the Hopf
bifurcation diagram in α and τ parameter space. The curve at the left upper corner is τ = τc.
For any pair (α, τ) below that curve, a coexistence equilibrium E+ exists (i.e., all components
are positive). For any pair (α, τ) on the closed curve, there is a Hopf bifurcation. Inside the
closed curve, there is a periodic solution surrounding E+. For any (α, τ) outside the closed
curve and below τ = τc, the coexistence equilibrium E+ is stable.

5.2. Simulations Demonstrating Hopf Bifurcations

In this section, we illustrate Theorem 4.9 for system (2.3). Take D = Δ = 1 and let τ vary. We
choose parameters α = 100 and k = 100 for Case 1 (see Figures 4–12), and α = 2 and k = 20
for Case 2 (see Figures 13–18).

Case 1. Note that I1 is given by (4.22). Since ln((k/α)(1/(1/4+
√

1/16 + 1/(2α))−1)) = −0.03,

max

{
0, ln

(
k

α

(
1

1/4 +
√

1/16 + 1/(2α)
− 1

))}
= 0. (5.1)

Also, ln(k( 4
√
α − 1)/α) ≈ 0.77. Therefore I1 ≈ [0, 0.77]. By Theorem 4.9, ωj(τ) is positive and

θj(τ) satisfies (4.56) for any τ ∈ I1 and j = 1, 2.
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Figure 2: Eigenvalues with the largest real parts of the characteristic equation (4.2) at E+. Parameters
are the same as in Figure 1 except α = 1.3 for the TOP and α ≈ 1.5 for the BOTTOM graph. Due to
the scaling, the eigenvalues in the circle in the TOP graph seem indistinguishable from zero. In fact,
they are a pair of complex eigenvalues with real parts slightly less than zero. As α varies from 1.3
to 1.5, the pair of complex eigenvalues with largest real part becomes a pair of pure imaginary roots
in the BOTTOM graph. The eigenvalue with the second largest real part remains equal to −1. This is
consistent with our analytical results that showed that (4.2) has a constant eigenvalue −1 when D = Δ =
1.

Figure 4 shows that θj(τ) intersects τωj(τ) at some τj0 with τ1
0 ≈ 0.022 and τ2

0 ≈ 0.48. We
see that θj(τ) + 2nπ has no intersection with τωj(τ) for n � 2 and j = 1, 2. By Theorem 4.9,
(4.4) has two distinct pairs of pure imaginary eigenvalues λ = ±iωj(τ

j

0). Next we need to
check if Re(dλ(τ)/dτ)|

τ=τj0
/= 0.
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Figure 3: The two-parameter bifurcation diagram of E+ in τ and α parameter space. Parameters are the
same as in Figure 1 (i.e.,D = Δ = 1, k = 24) except now both τ and α are allowed to vary. For any pair (α, τ)
on the closed curve, there is a Hopf bifurcation of E+. Inside the closed curve, there is a periodic solution
surrounding E+. For any (α, τ) outside the closed curve and below τ = τc, the coexistence equilibrium E+
is stable.
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Figure 4: Critical value of delay τ at which a Hopf Bifurcation occurs for D = Δ = 1, k = 100, α = 100.

As in Beretta and Kuang [13], we can define

S
j
n(τ) = τ −

θj(τ) + 2nπ
ωj(τ)

, for j = 1, 2, n = 0, 1, 2 . . .. (5.2)

Any zero τjn of Sjn(τ) is an intersection of θj(τ) + 2nπ and τωj(τ) and vice versa. By (4.10) in
Beretta and Kuang [13] and noting that (q2 − p2(τ) + 2α2(τ))2 − 4(α2(τ) − c2(τ)) > 0, we have
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Figure 5: If the slope of Sjn(τ) is nonzero at τ when S
j
n(τ) = 0 (j = 1, 2), the transversality condition holds

and there is a Hopf bifurcation. The other parameters are the same as for Figure 4.

the relation

sign

{
Re

dλ(τ)
dτ

∣∣∣∣
τ=τjn

}

= ± sign
{(

q2 − p2(τ) + 2α2(τ)
)2
− 4
(
α2(τ) − c2(τ)

)}
sign

⎧
⎨
⎩

dSjn(τ)
dτ

∣∣∣∣∣
τ=τjn

⎫
⎬
⎭

= ± sign

⎧
⎨
⎩

dSjn(τ)
dτ

∣∣∣∣∣
τ=τjn

⎫
⎬
⎭,

(5.3)

where we take + for j = 1 and − for j = 2.
From Figure 5(a), it is observed that S1

n has only one zero τ1
0 ≈ 0.022 at n = 0 with

sign{dS1
0(τ)/dτ |τ=τ1

0
} > 0. Hence, sign{Re(dλ(τ)/dτ)|τ=τ1

0
} > 0. By Theorem 4.9, system (2.3)

undergoes a Hopf bifurcation at τ1
0 . Similarly from Figure 5(b), S2

n has only one zero τ2
0 ≈ 0.48

for n = 0 and (2.3) undergoes a Hopf bifurcation at τ2
0 .

Next we used MATLAB to simulate solutions of model (2.3) for several values of τ .
For each fixed delay τ , we chose initial data s(t) = s+(τ) − 0.01, x(t) = x+(τ) + 0.01, and
y(t) = y+(τ) + 0.001 for t ∈ [−τ, 0]. From Figure 6, we can see that the equilibrium E+ is stable
if τ = 0.02 < τ1

0 . As delay τ increases past τ1
0 ≈ 0.022, where a Hopf bifurcation occurs, a

pair of complex eigenvalues of (4.4) enters the right-half plane. The equilibrium E+ loses its
stability and a periodic solution bifurcates from E+ (see Figures 7 and 8). As we increase the
delay further to τ = 0.4 < τ2

0 , the periodic solution still exists and remains stable (see Figures
9 and 10). However, as the delay τ increases further, past τ2

0 , the stable periodic solution
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Figure 6: Equilibrium E+(τ) is stable when τ = 0.02 < τ1
0 . The other parameters are the same as for Figure 4.
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Figure 7: Time series of a periodic solution, for τ = 0.03. The other parameters are the same as for Figure 4.
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Figure 8: The trajectory in phase space of the periodic solution in Figure 7 for τ = 0.03.
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Figure 9: Time series of a periodic solution for τ = 0.4. The other parameters are the same as for Figure 4.

disappears in a second Hopf bifurcation, and E+ regains stability (see Figure 11). We provide
a bifurcation diagram illustrating the change in dynamics as τ varies (see Figure 12). For any
τ ∈ (τ1

0 , τ
2
0 ), there is an orbitally asymptotically stable periodic solution.

Case 2. Take k = 20 and α = 2. For such parameters, I2 ≈ [0, 0.85]. By Theorem 4.9, ω1(τ) is
positive and θ1(τ) satisfies (4.56) for j = 1 and τ ∈ I2. Figure 13 shows that θ1(τ) intersects
τω1(τ) twice. To distinguish these intersections, denote them as τ1

0,1 ≈ 0.2 and τ1
0,2 ≈ 0.7. On

the other hand, θ1(τ) + 2π has no intersection with τω1(τ).
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Figure 10: The trajectory in phase space of the periodic solution shown in Figure 9.
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Figure 11: The periodic solution disappears at the secondary Hopf bifurcation at τ2
0 ≈ 0.48 and E+ regains

stability. In this figure τ = 0.5 > τ2
0 . The other parameters are the same as for Figure 4.

From Figure 14,

sign

⎧
⎨
⎩

dS1
0(τ)

dτ

∣∣∣∣∣
τ=τ1

0,1

⎫
⎬
⎭ > 0, sign

⎧
⎨
⎩

dS1
1(τ)

dτ

∣∣∣∣∣
τ=τ1

0,2

⎫
⎬
⎭ < 0. (5.4)
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Figure 12: Bifurcation diagram as the delay varies. The maximum and minimum amplitude of the y-
component of the solution is plotted on the ordinate axis. Parameters are the same as for Figure 4.
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Figure 13: Intersections indicate critical values of the delay at which Hopf bifurcations occur. Parameters
are D = Δ = 1, k = 20, α = 2.

By (5.3),

sign

{
Re

dλ(τ)
dτ

∣∣∣∣
τ=τ1

0,1

}
> 0, sign

{
Re

dλ(τ)
dτ

∣∣∣∣
τ=τ1

0,2

}
< 0. (5.5)

By Theorem 4.5, system (2.3) undergoes a Hopf bifurcation at τ = τ1
0,1 and at τ = τ1

0,2. For τ less
than τ1

0,1, the equilibrium E+ is asymptotically stable (see Figure 15). For τ greater than τ1
0,1,
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Figure 14: Verification of the transversality condition required for Hopf bifurcation. Parameters are the
same as in Figure 13.
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Figure 15: Equilibrium E+(τ) is stable when τ = 0.15 < τ1
0,1. The other parameters are the same as in

Figure 13.

but less than τ1
0,2, there is an orbitally asymptotically stable periodic solution surrounding the

equilibrium E+ (see Figures 16 and 17). At τ = τ1
0,2, there is a second Hopf bifurcation, where
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Figure 16: Time series of a solution with constant initial data s(0) = 0.87, x(t) = 0.077, and y(t) = 0.048 for
t ∈ [−0.3, 0], that approaches a stable periodic solution as time increases. In this figure, τ = 0.3. The other
parameters are the same as in Figure 13.
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Figure 17: The attracting periodic solution shown in Figure 16 in phase space. Note that τ = 0.3 > τ1
0,1.

the periodic solution coalesces with E+. For τ > τ1
0,2, the periodic orbit no longer exists and E+

regains stability (see Figure 18) until it disappears when τ > τc.
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Figure 18: The periodic solution disappears and E+(τ) regains its stability when τ > τ2
0 . In this figure,

τ = 0.74. The other parameters are the same as in Figure 13.

Appendix

Preliminary Results

To establish the existence of periodic solutions in autonomous delay differential equations,
one of the simplest ways is through Hopf Bifurcation. Below is a general Hopf Bifurcation
theorem for delay differential equations due to De Oliveira [14]. Before stating the theorem
we require some notation.

Consider a one parameter family of neutral delay differential equations:

d
dt
[
D(α, xt) − g(α, xt)

]
= L(α, xt) + f(α, xt), α ∈ R, (A.1)

where D, L, f, and g are continuously differentiable in α and xt ∈ C([−r, 0],Rn) (r is a
constant), f(α, 0) = g(α, 0), ∂f(α, 0)/∂xt = ∂g(α, 0)/∂xt = 0, D(α, xt) and L(α, xt) are linear in
xt, and

D(α, xt) =
∞∑
k=0

Ak(α)x(t − rk(α)) +
∫0

−1
A(α, θ)x(t + θ)dθ,

L(α, xt) =
∞∑
k=0

Ak(α)x(t − rk(α)) +
∫0

−1
A(α, θ)x(t + θ)dθ,

(A.2)

for xt ∈ C([−r, 0],Rn). Assume α ∈ R, where r0(α) = 0, rk(α) ∈ (0, 1], and Ak(α), Bk(α),
A(α, θ), and B(α, θ) satisfy
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∞∑
k=0

(|Ak(α)| + |Bk(α)|) +
∫0

−1
(|A(α, θ)| + |B(α, θ)|)dθ <∞. (A.3)

It is easy to see that the characteristic matrix

Δ(α, λ) = λD
(
α, eλ·I

)
− L
(
α, eλ·I

)
(A.4)

is continuously differentiable in α ∈ R and Δ(α, λ) is an entire function of λ. Making the
following assumptions on (A.1).

(S1) There exist constants a > 0, b > 0 such that, for all complex values λ such that
|Reλ| < a and all α ∈ R, the following inequalities hold:

∣∣∣∣∣det

(
∞∑
k=0

Ak(α)e−λrk(α)
)∣∣∣∣∣ � b,

∣∣∣∣∣det

(
∞∑
k=0

Ak(α)e−λrk(α) +
∫0

−1
A(α, θ)eλθdθ

)∣∣∣∣∣ � b.

(A.5)

(S2) The characteristic equation detΔ(α, λ) = 0 has, for α = α0, a simple purely
imaginary root λ0 = iv0, v0 > 0, and no root of detΔ(α0, λ) = 0, other than ±iv0,
is an integral multiple of λ0.

(S3) Re(∂λ(α0)/∂α)/= 0.

Now we are ready to state the Hopf bifurcation theorem for (A.1).

Theorem A.1 (Hopf bifurcation theorem, see Kuang [10, page 60]). In (A.1), assume that
(S1)–(S3) hold. Then there is an ε > 0 such that, for a ∈ R, |a| � ε, there are functions α(a) ∈ R,
ω(a) ∈ R, α(0) = α0, ω(0) = 2π/v0, such that (A.1) has an ω(α)-periodic solution x∗(a)(t), that is
continuously differentiable in t, and awith x∗(0) = 0. Furthermore, for |α−αo| < ε, |ω−(2π/v0)| < ε,
every ω-periodic solution x(t) of (A.1) with |x(t)| < ε must be of this type, except for a translation in
phase; that is, there exists a ∈ (−ε, ε) and b ∈ R such that x(t) = x∗(a)(t + b) for all t ∈ R.

The following lemma is usually called the Fluctuation Lemma. For a proof, see Hirsh
et al. [15].

Lemma A.2. Let f : R
+ → R be a differentiable function. If lim inft→∞f(t) < lim supt→∞f(t),

then there are sequences tm ↑ ∞ and sm ↑ ∞ such that for allm

ḟ(tm) = 0, f(tm) −→ lim sup
t→∞

f(t) as m −→ ∞,

ḟ(sm) = 0, f(sm) −→ lim inf
t→∞

f(t) as m −→ ∞, .
(A.6)

The proof of the following useful lemma can be found in [16].



International Journal of Differential Equations 41

Theorem A.3. Let a ∈ (−∞,∞) and f : [a,∞) → R be a differentiable function. If
limt→∞f(t) exists (finite) and the derivative function ḟ(t) is uniformly continuous on (a,∞), then
limt→∞ḟ(t) = 0.
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