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This paper outlines a detailed study of the coupling of He’s polynomials with correction functional
of variational iteration method (VIM) for solving various initial and boundary value problems.
The elegant coupling gives rise to the modified versions of VIM which is very efficient in solving
nonlinear problems of diversified nature. It is observed that the variational iteration method using
He’s polynomials (VIMHP) is very efficient, easier to implements, and more user friendly. Several
examples are given to reconfirm the efficiency of the proposed VIMHP.

1. Introduction

With the rapid development of nonlinear sciences, many analytical and numerical techniques
have been developed by various scientists. Most of the developed techniques have their
limitations like limited convergence, divergent results, linearization, discretization unrealistic
assumptions, and noncompatibility with the physical problems [1-67]. He [20-35] developed
the variational iteration (VIM) and homotopy perturbation methods (HPM) which proved to
be fully synchronized with the versatile nature of the physical problems showing the intellect
of the author; see [1-8, 12-35, 41, 46-58, 63-65] and the references therein. In order to improve
the efficiency of these algorithms several modifications have been introduced by different
researchers for time and again. Abbasbandy [1, 2] made the elegant coupling of Adomian’s
polynomials and correction functional of He’s VIM and solved quadratic Riccati differential
and Klein-Gordon equations. This concept was subsequently exploited by Mohyud-Din and
Noor [49, 54] for solving various singular and nonsingular initial and boundary value
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problems. Recently, Ghorbani and Saberi-Nadjafi [17] and Ghorbani [18] introduced He’s
polynomials by splitting the nonlinear term and also proved that He’s polynomials are fully
compatible with Adomian’s polynomials but are easier to calculate. More recently, Noor and
Mohyud-Din coupled He’s polynomials and correction functional of the VIM and applied
this reliable version (VIMHPS) to a number of physical problems; see [51-53]. The VIMHPS
[561-53] has a very simple solution procedure and absorbs all of the positive features of
He’s variational iteration (VIM) and homotopy perturbation (HPM) methods and is highly
compatible with the diversity of the physical problems. Moreover, the inclusion of He’s
polynomials p in the correction functional enhances its capability to deal with the physical
nature of the problems and makes this version closer to the versatility of the physical nature of
the problems. The basic motivation of the present study is the implementation of VIMHPS for
solving various initial and boundary value problems of diversified physical nature. Several
examples are given for the comparison and to measure the efficiency of these couplings. It is
to be highlighted that the variational iteration method using He’s polynomials (VIMHPSs)
[51-53] has certain advantages as compared to the decomposition method. Firstly, the use
of Lagrange multiplier reduces the successive applications of the integral operator and hence
minimizes the computational work to a tangible level while still maintaining a very high level
of accuracy. Moreover, He’s polynomials are easier to calculate as compared to Adomian’s
polynomials and this gives it a clear edge over the traditional decomposition method. The
VIMHPS is also independent of the small parameter assumption (which is either not there
in the physical problems or difficult to locate) and hence is more convenient to apply as
compare to the traditional perturbation method. It is worth mentioning that the VIMHPS
is applied without any discretization, restrictive assumption or transformation and is free
from round off errors. We apply the proposed VIMHPS for all the nonlinear terms in the
problem without discretizing either by finite difference or spline techniques at the nodes,
involving laborious calculations coupled with a strong possibility of the ill-conditioned
resultant equations which is a complicated problem to solve. Moreover, unlike the method of
separation of variables that requires initial and boundary conditions, the VIMHPS provides
the solution by using the initial conditions only; see [51-53]. It is to be highlighted that new
developments of variational iteration and homotopy perturbation methods are available in
[8, 12, 40]. Moreover, the convergence of variational iteration method has been discussed in
[58]. It is worth mentioning that the examples which have been discussed in this paper are of
utmost importance in applied, engineering, and nonlinear sciences.

2. Variational Iteration Method (VIM)

To illustrate the basic concept of He’s VIM, we consider the following general differential
equation:

Lu+ Nu = g(x), (2.1)

where L is a linear operator, N a nonlinear operator, and g(x) is the inhomogeneous term.
According to variational iteration method [1-8, 13, 14, 21-24, 26, 27, 41, 46, 51-54], we can
construct a correction functional as follows:

Upe1 (X) = uy(x) + fx M(Luy(s) + Niiy(s) — g(s))ds, (2.2)
0



International Journal of Differential Equations 3

where 1 is a Lagrange multiplier [21-24], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, and i, is considered as a
restricted variation. That is, 61, = 0; (2.2) is called a correction functional. The solution of the
linear problems can be solved in a single iteration step due to the exact identification of the
Lagrange multiplier. The principles of variational iteration method and its applicability for
various kinds of differential equations are given in [21-24]. In this method, it is required first
to determine the Lagrange multiplier A optimally. The successive approximation u,.1, n >
0, of the solution u will be readily obtained upon using the determined Lagrange multiplier
and any selective function uy; consequently, the solution is given by u = lim,_, u,. The
convergence of variational iteration method has been discussed in [58].

3. Homotopy Perturbation Method (HPM) and He’s Polynomials

To explain He’s homotopy perturbation method, we consider a general equation of the type
L(u) =0, (3.1)

where L is any integral or differential operator. We define a convex homotopy H (u, p) by
H(u,p) = (1-p)F(u) + pL(w), (3.2)

where F(u) is a functional operator with known solutions vy, which can be obtained easily. It
is clear that, for

H(u,p) =0, (3.3)
we have
H(u,0) = F(u), H(u,1) = L(u). (3.4)

This shows that H (1, p) continuously traces an implicitly defined curve from a starting point
H(vy,0) to a solution function H(f,1). The embedding parameter monotonically increases
from zero to unit as the trivial problem F(u) = 0 continuously deforms the original problem
L(u) = 0. The embedding parameter p € (0, 1] can be considered as an expanding parameter
[17, 18, 29-35]. The homotopy perturbation method uses the homotopy parameter p as an
expanding parameter [29-35] to obtain

u=ZPiui=uo+Pu1+P2”2+P3”3+“" (35)
i=0

If p — 1, then (3.5) corresponds to (3.2) and becomes the approximate solution of the form

f=limu= > u. (3.6)
p= =0
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It is well known that series (3.6) is convergent for most of the cases and also the rate of
convergence is dependent on L(u); see [29-35]. We assume that (3.6) has a unique solution.
The comparisons of like powers of p give solutions of various orders. In sum, according to
[17, 18], He’s HPM considers the nonlinear term N (1) as

N(”)ZZPiHiZHo +pHy +p*Hy + -+, (3.7)
i=0

where H,’s are the so-called He’s polynomials [17, 18], which can be calculated by using the
formula

i=0

n n .
H,(ug,..., u,) = %aap" <N<Z p’ui>> , n=0,1,2,.... (3.8)
! -

4. Adomian’s Decomposition Method (ADM)

Consider the differential equation [59-61]

Lu+Ru+Nu=g, (4.1)

where L is the highest-order derivative which is assumed to be invertible, R is a linear
differential operator of order lesser than L, Nu represents the nonlinear terms, and g is the
source term. Applying the inverse operator L™! to both sides of (4.1) and using the given
conditions, we obtain

u=f-L"Ru)- L (Nu), (4.2)

where the function f represents the terms arising from integrating the source term g and by
using the given conditions. Adomian’s decomposition method [59-61] defines the solution
u(x) by the series

u@) = 3 un(x), (*3)
n=0

where the components u,(x) are usually determined recurrently by using the relation
uo=f, ugs1 = LN (Rug) — L7 (Nug), k>0. (4.4)

The nonlinear operator F(u) can be decomposed into an infinite series of polynomials F(u) =
>oe o An, where A, are the so-called Adomian’s polynomials that can be generated for various
classes of nonlinearities according to the specific algorithm developed in [59-61] which yields

A, = <%>(;A>N< Z <Aiui>>)t=0/ n=0,1,2,.... (4.5)

i=0
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5. Variational Iteration Method Using He’s Polynomials (VIMHPs)

This modified version of variational iteration method [49-53] is obtained by the elegant
coupling of correction functional (3.1) of variational iteration method (VIM) with He’s
polynomials [17, 18] and is given by

Sy = o)+ [ 469 (i POLu) + S p<">N<ﬁn>>ds -[(1@geas. 61
n=0 0 n=0 n=0 0

Comparisons of like powers of p give solutions of various orders.

6. Numerical Applications

In this section, we apply the VIMHPS for solving various initial and boundary value
problems.

Example 1. Consider the following one-dimensional Burger’s equation:

Ut + Ullyy — VlUyy =0, (6.1)

with initial condition

a+p+(P-a)exp(y)

He 0= 1+exp(y)

, >0, (6.2)

where y = (a/v)(x - 1) and the parameters a, 3, A are the arbitrary constants. The correction
functional is given by

t ouy, 0% 0%l
n /t = n /t -)L Nn 1 - _?’l d . 6
U1 (2, 1) = Uy (x )+J‘0 (s) <_at tily =5 v 6x2> s (6.3)

Making the above functional stationary, the Lagrange multiplier can be determined as A(s) =
-1, and we get the following iterative scheme:

t/ ou, o%u,, 0u,,
Ups1(x, t) = up(x, t) — Io <E + 1, a2 v e >ds. (6.4)
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Applying the variational iteration method using He’s polynomials (VIMHPS), we get

Ug + puy + pPug + -

_ <a+ﬁ+(ﬁ—a)exp(}’)> _pJ’t<6uo L dm +p2%+.-.>ds

1+exp(y) o\ ot Par ot

— J‘t <u+ U+ zu +> %4_ %_’_ -0 %4_ %4_ ds
P 0 or PP ox2 P ox2 Pox '

(6.5)

Comparing the coefficient of like powers of p,

x+pr (=) exp(r)

0

p ) ug(x, t) =

1+exp(y)
oy T B o) | 2aferp()
primlxt) 1+exp(y) v(1+exp(y))
® ) = a+ﬂ+(ﬂ—a)eXp(Y)>+<M> (6.6)
p'Y tup(x, t) < T+exp(y) v(1+exp(y)) :
. <¢x3ﬂ2 exp(y) (-1 +exp(y)) )tS,
(1 +exp(y))’

The series solution is given by

Wt - <a+ﬁ+(ﬂ—tx) exP(Y)> +< 2af? exp(y) >t

1+exp(y) v(L+exp(y))
N <a3ﬂ2 exp(y) (=1 +exp(y)) >t3
v2(1+ exp(y))3 (6.7)
a*pexp(y) (1-4exp(y) +exp (1)) i,
303(1 +exp(y))* '
and in a closed-form by
w(xt) = a+p+(p-a)exp(x/v)(x—pt-21) 65)
T 1+exp(x/v)(x—pt—1) ' ’

Figure 1 depicts series solutionata =f=v=1=1.
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Figure1: (a = f=v=1=1).

Example 2. Consider the following homogeneous coupled Burger’s equation:
Up — Uyx — 2Ully + (U0), =0, Ut — Uxx — 2005 + (uv), =0, (6.9)
with initial conditions
u(x,0) =sinx, v(x,0) = sin x. (6.10)
The correction functional for the above coupled system is given by

ou, 0%,

Upn+1 (.X', t) = un(xr t) + JZ )L(S) <¥ - W - Zﬁn(ﬁn)x + (ﬁn%}n)x>dsl
(6.11)

t 25
O (26, £) = On (2, 1) + fo A(s) <a§;” - %;’2" — 25, (B) + (iznan)x>ds.

Making the above functional stationary, the Lagrange multiplier can be determined as A(s) =
-1, and we get

t/ou, 0%u
Ups1 (x/ t) =Uy (xr t) - J;)< Js - ax2n - 2uy (un)x + (unvn)x>dsr
(6.12)

t/ov, 0*v,
n ,t) = vn(x, t) - - -2 n\Un nn ds.
(% +1(x ) (4 (x ) 4[0< Os 2 0 (’U )x + (u (% )x> S
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Applying the variational iteration method using He’s polynomials (VIMHPS), we get
Ug + puy + pPug + -
6u0 6u1 82u0 82u1 2 azuz
—uo(x,t)+pf )L(S)<< +p§+.“>_< 0x? +p6x2 TP ax2+”' ds

t 6u0 au1
—pf (2( u0+pu1+--~)<a—+p +- )—((u0+pu1+-~-)(vo+pv1+---))x>ds
0 x ' Ox

’Uo+pUl+p202+‘-'
ov ov 0%v o%v 0%v
=vy(x, t)+pJ .)L(S)<< 0 pa—t1+...>_< ax20+Pa ! Pzax; >>ds

t avo avl
—pf (2(Uo+pvl+--~)(a—+p—+--~>—((u0+pu1+ ) (vo+por+-- ))x>ds
0 x ox

(6.13)
Comparing the coefficient of like powers of p,
It = i 4
p(o) : up(x,t) =sinx
vo(x,t) =sinx,
o uy(x,t) =sinx —tsinx,
vo(x,t) =sinx —tsinx,
6.14
i (6.14)
ux(x,t) =sinx —tsinx + > sin x,
@) .
P P2
Uy(x,t) =sinx — tsinx + 57 sinx
The series solutions are given by
, S S
u(x,t) :smx< 1—t+5—§+ I!+--- ,
(6.15)

t2 t3 t4
v(x,t) =sinx 1_t+i_§+_ﬂ+m ,
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and the closed-form solutions are given as

u(x,t) = exp(-t)sinx,

(6.16)
v(x,t) = exp(-t)sinx.
Figure 2 depicts the series solutions u(x, t) or v(x, ).
Example 3. Consider the Thomas-Fermi equation
y3/2
y(x) = i (6.17)
with boundary conditions
y(0) =1, lim y(x) = 0. (6.18)
X— o0

The correction functional is given as

Yns1(x) = yo(x) + Jj A(s) <dzy,(,1—s(2xs) - x1/? 93/2>ds. (6.19)
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Making the correction functional stationary, the Lagrange multiplier can be identified as
A(s) = (s — x), and the following iterative scheme is obtained:

Y (x) = yo(x) + J:(S - X) (tizynd—s(;CISJ —xV2y2 >ds. (6.20)

Applying the variational iteration method using He’s polynomials (VIMHPS), we get

g2

* dzyo dzyl 2d2y2
y0+y1+y2+“'—yo(x)+pf0(s—x)<< 12 +p 52 +p +
(6.21)

3/2
- <x’1/z<yo+py1+ p2y2+~-> >>ds.

Now, we apply a slight modification in the conventional initial value and take yo(x) = 1,
instead of yo(x) = 1 + Bx, where B = 1y'(0). Comparing the coefficient of like powers of p,

P9 yo(x) =1,
4

p(l) ty1(x) =1+ Bx + §x3/2,
4 2 1

Q. _ 3/2 5/2 3

P rya(x) = 1+Bx+§x +§Bx +§x , (6.22)
4 2 1 3 2 2 1

PP ys(0) =14 Bk 320 4 ZBR 4 2a0 4SBT 4 Bt 4 pna 4 2

The series solution is given as

4 2 1 2 2
y(x) =1+ Bx+Bx + §x3/2 + ngS/z + §x3 + 7%323«47/2 + EBX4 + 2—7x9/2 + %Bzxw2

gen, L, 2on, 3pon, 1 g,

3.6
252 175 27 70 1056 15750

557 4 101 3 29 512
B2x13/24 = _Bo7 15/2 _ B5x13/2_ 47 B3 15/2
100100~ "693°% T52650° 9152~ 24255~ © 351000
46 o s 113 17/2 23
35045° © T 11781000F T a73ssor

+

(6.23)
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Table 1: Padé approximants and initial slopes 3'(0) [56].

Padé approximants Initial slope y'(0) Error (%)
[2/2] -1.211413729 23.71
[4/4] -1.550525919 2.36
(7/7] ~1.586021037 12.9x 1072
(8/8] ~1.588076820 3.66 x 107
[10/10] -1.588076779 3.64 x 107

Setting x!/2 = t, the series solution is obtained as

4 2 1 3 2 1 2
_ 2,%3_ “ps5 . Lte, O p27 4 ps8 I > < B
y(t)=1+Bt +3t +5Bt +3t +70Bt +1SBt +< 2523 +27>t

1 1 31 4 4
_B2t10 < B4 B) tll ( B3 _>t12
T150 0 T\10560 1485 "\15757 " 105
3 557 29 4 7 623 101
_ B5 B2> t13 (_ B4 —B) t14 (—B6— B3 >t15
* ( 9152~ ' 100100 "\ 222557 T693°)" "\499” ~351000° 52650

68 46 3 153173 113
B* - B? )t® (— B’ B* - B)t” .
" (105105 45045 ) "\ 7135207 T 116424000 ~ 1178100 *
(6.24)

The diagonal Padé approximants can be applied [53] in order to study the mathematical
behavior of the potential y(x) and to determine the initial slope of the potential y'(0).

Example 4. Consider the following nonlinear third-order boundary layer problem which
appears mostly in the mathematical modeling of physical phenomena in fluid mechanics:

F"(x) + (n=1)f(x) f"(x) = 2n(f'(x))* =0, n>0, (6.25)
with boundary conditions
f(0)=0, FfO) =1, f(0)=0, n>0. (6.26)

The correction functional is given as
fart () = fulx) + JO )L(s)< W) + (= 1) fu(2) () - 2(f;(x))2> =0, n>0. (627)

Making the correction functional stationary, the Lagrange multipliers can be identified as
A(s) = —(1/2!)(s - x)?; consequently

() = fulx) - fo 515 = (£ + (= Dful) ful) =20 (£u(2)7) =0, n>0.
(6.28)
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Applying the variational iteration method using He’s polynomials (VIMHPS), we get

fo+pfi+p’fa+--

1 2
=X+ = ax

—Pf (S‘x)(("’+Pf”’ )+ =D (forpfit)(fo +pfi+o0))dx

1 , 2
+2npf ?7( s—x)2<f0+pf1+p2f2+~-> dx,
0 .

(6.29)
where f"(0) = a < 0. Comparing the coefficient of like powers of p,
p?: fo(x) = x
1 1
pM: fi(x) = x+ EaxZ + §x3,
p?: fr(x) = x+ Lo+ iy loc(3n +1)xt + ln(n +1)x°
2 3 24 30 ’
1 1 1 1 1 (6.30)
p&: fa(x) = x+ zaxz + 3x3 + ﬂa(Bn + 1)t + 3—n(n +1)x° + 130 2(311 +1)x°
+ Lac(19n +18n+3)x" + Ln(zn +2m+1),
720 315
The series solution is given as
f(x)—x+ax2+nXB +<1na+ ! ot)x4+<1 n® + L na’ + ! a® + ! n>x5
B 2 3 8 24 30 40 120 30
(19na+ LI 1na>x6+< LIS S I S .
720 240 40 120 315 315 5040
3 2 2) 7
t e * taE™ )X
( U s, B gy 3 e B g Loy 207 5p, 1 a3n>x8
40320 4480 4480 5760 2688 40320 960
! n+ 527 nla® + 19 n® + 709 na® + 2 na® + B n’
3780 362880 11340 362880 8064 22680

b e B )y
22680 120960 '

(6.31)
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Example 5. Consider the following nonlinear inhomogeneous Goursat problem:

Uyt = —1% + x% + 322t + 3xt% + t3,
(6.32)
u(x,0) = x, u(0,t) =t, u(0,0) =0.
The correction functional for the above problem is given by
! o’u
Uni1(x, 1) = up(x, t) + f M) —= + 1 —x° - 3x*s —3xs* —s° )ds, n>0. (6.33)
0 0x0s

Making the above correctional functional stationary, the Lagrange multiplier can be identified
as A(s) = —1; consequently

t /a2
0
Up1 (x, 1) = uy(x, t) — f <ai + ui —x% - 3x%s —3xs* - s3>ds, n>0. (6.34)
o\ 0x0s

Applying the variational iteration method using He’s polynomials (5.1) (VIMHPS), we get

t o*u 0*u 3
2 - - 0 1. 2
Ug + pur +pun + up(x,t) pjo<<6xés+P6xas+ >+<u0+pu1+p Uy + >

- x3—3x%s —3xs? — s3> ds.

(6.35)

The initial approximation can be selected (by utilizing the boundary conditions) as ug(x, t) =
Ax + Bt, where A ,B are constants and would be determined by using the boundary
conditions; consequently

Y[ *u o’u 3
2 e e = — 0 1 .. 2 ...
Ug + pup +pus + Ax + Bt p_[0<<6xas+paxbs+ >+(u0+pu1+pu2+ >

- x®—=3x%s —3xs> — s3>ds.

(6.36)
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Table 2: Numerical values for « = f”(0) for 0 < n < 1 by using diagonal Padé approximants [51].

n [2/2] [3/3] [4/4] [5/5] [6/6]
02  -0.3872983347 ~0.3821533832 ~0.3819153845 ~0.3819148088 ~0.3819121854
1/3  -0.5773502692 ~0.5615999244 ~0.5614066588 ~0.5614481405 ~0.561441934
04  -0.6451506398 ~0.6397000575 —~0.6389732578 ~0.6389892681 ~0.6389734794
06  —-0.8407967591 ~0.8393603021 ~0.8396060478 —~0.8395875381 —~0.8396056769
0.8 ~1.007983207 ~1.007796981 ~1.007646828 ~1.007646828 ~1.007792100

Table 3: Numerical values for a = f”(0) for n > 1 by using diagonal Padé approximants [51].

n a

4 —2.483954032
10 —4.026385103
100 —12.84334315
1000 —40.65538218
5000 —-104.8420672

Comparing the coefficient of like powers of p,

p(o) sug(x,t) = Ax + Bt,

3

pD :uy(x,t) = Ax + Bt - 1(33 - 1)t4 - <A32 - 1>xt3 -3

7 (AZB - 1>x2t2 — A3+ 25t

(6.37)

Imposing the boundary conditions u(x,0) = x, u(0,t) = t, to find the constants A and B will
yield A = 1, and B =1, consequently

u(x,t) =x+t. (6.38)

Figure 3 depicts the solution u(x, t).

Example 6. Consider the following nonlinear differential equation which governs the
unsteady flow of gas through a porous medium:

v (x) + %Wy'(x) -0, O<a<1, (6.39)

with the following typical boundary conditions imposed by the physical properties:

y©O =1, limy(x)=0. (6.40)
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Figure 3

The correction functional is given as

Yo @) = )+ [ 209 <y"<x> R V%y'(x))ds, O<a<l  (641)

Making the correction functional stationary, the Lagrange multipliers can be identified as
A = s —x, and thus we get

Yns1(X) = Ya(x) + Jo (s —x) (]/Z(S) + ﬁ%(ﬁ)dsl O<ac<l. (6.42)

Applying the variational iteration method using He’s polynomials (VIMHPS), we get

Yo+py1+p Y2+

= yo+f0(s—x)(y8+ Pyl + PR+ )ds

+2f:(s—x)x<1—a<y’o+ py1 + P23/2+"'>>_1/2<3/’0+ Py + Pyt )ds,
(6.43)
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Table 4
a Bray2 = ' (0) Brs/a1 = ' (0)
0.1 ~3.556558821 ~1.957208953
02 ~2.441894334 ~1.786475516
0.3 ~1.928338405 ~1.478270843
0.4 ~1.606856838 ~1.231801809
0.5 ~1.373178096 ~1.025529704
0.6 ~1.185519607 ~0.8400346085
0.7 ~1.021411309 ~0.6612047893
0.8 ~0.8633400217 ~0.4776697286
0.9 —~0.6844600642 ~0.2772628386
where A = y'(0). Comparing the coefficient of like powers of p, consequently,
0) .
P yo(x) =1,
pW yi(x) =1+ Ax,
A
@ . - 3
P ryp(x) =1+ Ax - x7,
3Vl-a (6.44)
A aA? A
p(3) tys(x) =1+ Ax— P 4 5

X+ x°,
3Vi-a 12(1 - a)®? 10(1 - a)

The series solution is given as

A aA? A 3a2 A3
x)=1+Ax- X - xt+ - x°
y@) 3Vi-a 12(1 - a)%? (10(1—a) 80(1 —a)5/2>

aA? a’ At 6
+ 5= 7 )X+
15(1-a)" 48(1-a)

Table 4 exhibits the initial slopes A = y'(0) for various values of a.
Table 5 exhibits the values of y(x) for « = 0.5 for x = 0.1 to 1.0.

(6.45)

Example 7. Consider the following singularly perturbed sixth-order Boussinesq equation
U = Unx + (P(1)) , + Xlhycxx + Pllxxrxx- (6.46)
Taking & = 1, =0, and p(u) = 3u?, the model equation is given as

Uy = Uyy + 3<u2>xx + Userxxys (6.47)
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X Yxkidder Y[2/2] YI[3/3]
0.1 0.8816588283 0.8633060641 0.8979167028
0.2 0.7663076781 0.7301262261 0.7985228199
0.3 0.6565379995 0.6033054140 0.7041129703
0.4 0.5544024032 0.4848898717 0.6165037901
0.5 0.4613650295 0.3761603869 0.5370533796
0.6 0.3783109315 0.2777311628 0.4665625669
0.7 0.3055976546 0.1896843371 0.4062426033
0.8 0.2431325473 0.1117105165 0.3560801699
0.9 0.1904623681 0.04323673236 0.3179966614
1.0 0.1587689826 0.01646750847 0.2900255005
with initial conditions
2ak?er* 2 ak®>V1+ k2(1 - ae*¥)ekx
u(xr O) = DN Ui (x/ 0) = ( 3 ) ’ (648)
(1 + aekx) (1 + aekx)
where 2 and k are arbitrary constants. The exact solution u(x, t) of the problem is given as
ak? exp (kx +kV1+ k2t>
u(x,t) =2 5 (6.49)
<<1 + aexp(kx +kv1+ k2t>>>
The correction functional is given by
2ak?ek*  2ak3V1+k2(1 - ae*¥)ek>
Uns1(x, 1) = 5+ 3 t
(1 + aek) (1 + aekx)
(6.50)

" ﬂ A(s) <aa2:‘2" ~ () +3(i2) _+ (ﬁn)xxxx>>ds.

Making the correction functional stationary, the Lagrange multiplier can easily be identified
as A = s — x; consequently

2ak2ek*  2ak®V1+k2(1- aekx)ekxt
+

(1 + aekx)? (1 + aekx)?

* f;(s —x) <5;Zn - () e +3(ua”) _+ (un)xxxx>>ds.

Up1(x, t) =

(6.51)
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Applying the variational iteration method using He’s polynomials (VIMHPS), we get

Uup + puy +p2u2+p3u3+---

2ak2ek*  2ak®v1+k2(1- aekx)ek"t
+

B (1 + aekx)? (1 + aekx)’
t 62u0 62u1 262u2
~ aZuO . azul . zaZuz e s (652)
0 x?2 pa x2 p 0 x?2

t otuy  otuy 0w
_pJ‘O(S_x)<<ax4 TP TP o T
+3 62u0+ 62u1+ 262u2+m 2 ds
ox2 Paxz TP B2 '

Comparing the coefficients of like powers of p,

2e*
Oy (x, 8) = ——,
P 0 1+ e")2
2e* 2ak3V1 + k2(1 = aek*)ek*  2e%(1 - 4e* + ¥
p i ug(x,t) = A ( ) t+ ( )p

(1+e¥) (1+a k)’ (1 +ex)* '
2e* 2 ak3>V1+k2(1-ae)et 2 e*(1-4e* +e¥) ,
+ t+

@ .y x,t) =
g 2 (1+e¥)? (1 + aekx)’ 1+ e)*

2 V2e* (-1+e) (1-10e* +e*) 2
3(1 + ex)°

e*(1-4e* +e**) (1-44e* +78e** — 44e>* + ') "
+
3 (1+e)®

7

(6.53)
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Table 6: Error estimates.
tj
Xi
0.01 0.02 0.04 0.1 0.2 0.5
-1 2.80886 E-14 1.79667 E—-12 1.15235 E-10 2.83355 E-8 1.83899 E-6 4.74681 E-4
-0.8 627276 E-14 4.01362 E-12 257471 E-10 633178 E-8 410454 E-6 1.04489 E-3
-0.6 6.08402 E-14 390188 E—-12 225663 E—-10 6.18024 E-8 4.02299 E-6 1.03093 E-3
-04 116573 E-14 741129 E-13 482756 E-11 123843 E-8 853800 E-6 246302 E-4
—0.2 553446 E—14 353395 E-12 225663 E—-10 547485 E-8 347264 E—-6 835783 E-4
0 8.63198 E—-14 553357 E-12 254174 E-10 8.65197 E-8 554893 E-6 137353 E-3
0.2 556222 E-14 3.55044 E-12 227779 E-10 5.60362 E-8 3.63600 E-6 9.29612 E -4
04 114353 E-14 714928 E-13 4.49107 E-11 1.03370 E-8 593842 E-7 9.61260 E -5
0.6 6.06182 E-14 3.87551 E-12 247218 E-10 597562 E-8 3.76275E-6 8.79002 E -4
0.8 6.23945 E-14 3.99519 E-12 255127 E-10 6.18881 E-8 392220 E-6 9.36404 E-4
1 2.79776 E—~14 178946 E-12 114307 E-10 277684 E-8 1.76607 E—-6 4.28986 E — 4
The series solution is given as
(1) 2e* 2ak3V1+k2(1 - aek")ek"t 2e* (1 - 4e* + e¥) P
u\x,r) = +
(1+ex)? (1+ aekx)3 (1+e)*
_2+2e* (-1+¢€%) (1-10e* +e*) e
3(1 + ex)°
e*(1-4e* +e%) (1—44e* +78e> — 44e* + &%) o
+
3(1+e9)°
8e?*(1-10e* +20e** — 10e** + e**
Ml ) (659

(1+ex)®

V2 e*(-1+¢*) (1-56e* +246e* — 566> + e**)
- t
15(1 + e¥)”

e *(1-452e* +19149¢* — 207936e* + 807378¢** — 1256568 €>*) 6

+
45(1 + )12

L€t (807378¢%* — 207936€7* + 19149¢%* — 452 + ¢10%) o,
45(1 + )12

Table 6 exhibits the absolute error between the exact and the series solutions. Higher
accuracy can be obtained by introducing some more components of the series solution.
Figure 4 depicts the series solution u(x, t).



20 International Journal of Differential Equations

N
S

"\\\?\‘:‘

R

Figure 4

Example 8. Consider Fisher’s equation of the following form:

up(x, £) = thex (x, 1) —u(x, £) (1 - u(x, 1)) =0, (6.55)

with initial conditions

u(x,0) = p. (6.56)

The correction functional is given by

3<&Mx@_¥mmﬂ_

e Y Uy (2, 7)(1 - 11, (x, s))>ds. (6.57)

wdnﬂ=w&ﬁ+f
0

Making the above correction functional stationary, the Lagrange multiplier can be identified
as A(s) = —1; consequently, we obtain the following iteration formula:

t 2
Uni1(x, 1) = up(x, t) — 4[0 <au"(,§:' s)_ 9 ugif' 8) _ Uy (x,8)(1 = uy(x, s))>ds. (6.58)



International Journal of Differential Equations 21

Applying the variational iteration method using He’s polynomials (5.1) (VIMHPS), we get

t oug(x,s)  Oui(x,s) Oup(x S)
2 o= - L = P
Uy + pus +pup + uo(x, t) PJ;)( < s P 5 P4 ))ds

0%up(x,s)  0®ui(x,s)
(e

b Qo+ pun ) (1= (o + pus + "‘”>>ds'

(6.59)

Comparing the coefficient of like powers of p, following approximants are obtained:

p(O) sup(x,t) =,
P s (x,t) = p+ p(1-P)t,

P t) = pr p(1- )i+ o (1 3p+2p7) - ﬂz(—1+ﬂ)2/
P s, t) = B+ B(1- Pt + ;ﬂa -p)(1-6p+6p7) + ?(—1 + )" (<1+2p)

5 6 7
- o (1 )P (3- 2054 208) 4 1 (-1 + B (14 2) - = (-1 + )’

(6.60)

The series solution is given by
£ o |t 2 2
ux,t) = p+p(L-p)t+ 5p(1-p)(1-6p+6p7) + 5 (-1+p)’p*(-1+26)

—tS(—1+ )’*(3-20p+20 2)+t6(—1+ VB (-1+2 )-t7(-1+ Y+
£ (14 BB (3208 + 206) + == (-1 + )’ B (-1 42) - ﬂﬁ(%i)

and in a closed-form by

Pexpt

MO T pexpt

(6.62)

Example 9. Consider the following seventh-order generalized KdV (SOG-KdV) equation:

Up + Uy + Uxxx — Uxxxxx + Olgxxxrxx = 0, (6.63)
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Table 7: Numerical results for Fisher’s equation.
p=02 p=08

t *E (ADM) *E(VIMHPS) *E (ADM) *E(VIMHPS)
0 0 0 0 0
0.2 6.19201 E - 06 1.96407 E - 06 5.57339 E - 06 2.63705 E - 06
0.4 1.03635 E - 04 2.60211 E-05 1.13137 E - 04 4.7283 E - 05
0.6 5.45505 E - 04 1.05333 E - 04 4.00147 E - 04 2.63379 E - 04
0.8 1.78050 E - 03 2.54998 E - 04 1.18584 E - 03 9.01304 E - 04
1 4.45699 E - 03 4.515414 E - 04 1.99502 E - 03 1.60455 E - 05
" Error= exact solution— series solution.
where o = 6/y?, with initial conditions

u(x,0) = ag + ae sec h° (kx), (6.64)

where K =5/4/1538, ap = ¢-18000/7692, as = 519750/769%, and c is an arbitrary parameter.
The correction functional is given as

U1 (X, 1) = up + f A(s) <a(;’lsn Tu

- Oy

Oy

"ox  0x3  0x°

iy
- >ds.

Oax

(6.65)

Making the correction functional stationary, the Lagrange multiplier can be identified as

A(s) =

—1; consequently

t/ du, ouy,
Uni1 (X, t) = uy - J‘o<¥ + ung +

o°u,

o u,
e +0 37 >ds.

(6.66)

Applying the variational iteration method using He’s polynomials (VIMHPS), we get

Ug + puy +p2u2+-~

ol (3
o[ ((Gaer

au1 + zauz
as
Pur [ Puo,
6x3 ox5
67u0 67111
o Paw T ) )4

— e )+ 6u0+ Oy +
P s o Fe FP G P

%+...
p8x5

ouy

e

(6.67)
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Comparing the coefficient of like powers of p,

p(O) sup(x, t) = ag + ag sec h6(kx),

3(16kt

p(l) cup(x, ) = ag + ag sec h® (kx) + 16

x {10aO +32a, — 312k? - 26400k* — 98661125k°
+ <15a0 - 256k — 10480k* + 99322246k") cosh(2kx)
+ <6a0 — 8Kk + 14624k* — 14439685k6) cosh(4kx)

+ (ao + 36k — 1296k* + 466566k6> cosh(6kx) }sec h'?(kx) tanh(kx),

(6.68)
The series solution is given by
u(x,t) = ag + ag sec h®(kx) + 3[;66”
x {10a0 +32as — 312k* — 26400k* — 98661126k°
+ (15a0 — 256k? — 10480k* + 99322246k6) cosh(2kx)
+ <6a0 — 8K2 + 14624K* — 14439686k6> cosh(4kx)
2 4 6 12 3agkt?
+ (ao +36k? — 1296k* + 466565k )cosh(6kx)} sec h'?(kx)tanh (kx) ~ <50

x [1320a§ +6400apas + 40960a% — 93120aok? — 642560ask* + 3592320k*

— 718464apk* — 223897600a.k* + 1066859520k® — 1066859520a,5k°
— 371744399360a,6k° + 151760209920k®

+3035204198406k'° + 1863851746099205%k'?
+ (2079a§ +6912aa, — 36864aZ — 124488aok” — 291840a4k*

+ 3662064k* — 7324128apk* + 83202048ask* + 643886208k°® — 643886208a6k®
+520393113600a46k® + 10077306624k® + 201546132486k

— 1154272125726725k™° — 31816700126462361662k12) cosh(2kx)
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+ (924ag —1536agaq — 14112a0k? + 592896 a4 k>

— 1544256k* + 3088512apk* + 208736256ask* — 1003580928k®
+10035809284a,6k® — 173675003904a,65k°® — 180653147136k
—3613062942726k® — 1590450116935685k'°

+ 12914876783576678462k12> cosh (4kx)

+ (7743 - 2816aqas + 36904a0k? — 2283568k"
+ 4567136a¢6k® + 4399738112k® + 879947622465k + 11465095779737665k'°

- 2761843466372300862k12) cosh(6kx)

- (168ag +768agas — 25536a0k” + 69120a,k*

+594048k* — 1188096ayk* — 8460288ak* — 118291504k°
+ 118293504 a06k® + 1164533760as6k® — 35208886272k®

— 704177725446k® + 258600494530565k '°
- 290198932419379262k12) cosh(8kx)
—@%ﬁ—%%%ﬁ—mymw—wwﬁmw
+67643520a96k® + 7719962880k® + 154399257605k® — 21945419059205k
+ 13226030082048062k12> cosh(10kx)
- (28a§ +224aok? - 53312k* + 106626a0k*
+11178496k® — 11178496a,5k® — 436093852k® — 8721879046k®

+ 614635356166k 0 — 206841631539262k12> cosh(12kx)

- (3a5 +216aok® + 3888k* — 7776agk* — 279936k°
+279936a6k® + 5038848Kk® + 100776966k® — 3627970566k '°

+653034700852k12) cosh(14kx)] sec K2 (kx) + -+ .
(6.69)

The closed-form solution is given as

u(x,t) = ag + ag sec h° (k(x — ct)), (6.70)

where k = 5/+/1538, ag = ¢ —18000/7692, a, = 519750/769%, and ¢ is an arbitrary parameter.
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Table 8: Error estimates (6 = .01).

X Error ¢;
j =.001 j=.01 j=.05 j=.1

-1.0 3.1x107° 46x10* 5.6x 107 1.9x 1072
-8 2.6x%x107° 40x10™* 52 %1073 1.8x 1072
-6 2.0x107° 3.4x10™* 4.7 %1073 1.7 x 1072
-4 1.4 x107° 2.7 x107* 43 %107 1.5x 1072
-2 7.8 x10°° 2.0x%x10* 39x107 1.4 %1072
0.0 1.4 x 1076 14x10™* 35x1073 1.4 %1072
2 5.0 x 10°° 7.8 x107° 32x107° 1.3x1072
4 1.1x 107 1.8x107° 3.0x1073 13x 1072
6 1.7 x 107 3.6x107° 2.8x1073 1.3x 1072
8 23x107° 8.7x107° 2.7x1073 13x1072
1.0 2.8x107° 13x 10 2.6x107° 1.3x 1072

Figure 5

Figure 5 depicts series solution at 6 = .01.

7. Conclusion

In this paper, we applied variational iteration method using He’s polynomials (VIMHPS)
for solving various initial and boundary value problems. The proposed modified method
(VIMHPS) is employed without using linearization, discretization, transformation, or
restrictive assumptions, absorb the positive features of the coupled techniques, and hence
is very much compatible with the diversified and versatile nature of the physical problems.
Moreover, the modification based upon He’s polynomials (VIMHPS) is easier to implement
and is more user friendly as compared to the decomposition method where Adomian’s
polynomials along with their complexities are used.
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