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Picone-type inequality is established for a class of half-linear elliptic equations with forcing term,
and oscillation results are derived on the basis of the Picone-type inequality. Our approach is to
reduce the multi-dimensional oscillation problems to one-dimensional oscillation problems for
ordinary half-linear differential equations.

1. Introduction

The p-Laplacian Δpv = ∇ · (|∇v|p−2∇v) arises from a variety of physical phenomena such as
non-Newtonian fluids, reaction-diffusion problems, flow through porous media, nonlinear
elasticity, glaciology, and petroleum extraction (cf. Dı́az [1]). It is important to study the
qualitative behavior (e.g., oscillatory behavior) of solutions of p-Laplace equations with
superlinear terms and forcing terms.

Forced oscillations of superlinear elliptic equations of the form

∇ ·
(
A(x)|∇v|α−1∇v

)
+ C(x)|v|β−1v = f(x)

(
β > α > 0

)
(1.1)

were studied by Jaroš et al. [2], and the more general quasilinear elliptic equation with first-
order term

∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)B(x) ·

(
|∇v|α−1∇v

)
+ C(x)|v|β−1v = f(x) (1.2)
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was investigated by Yoshida [3], where the dot (·) denotes the scalar product. There appears
to be no known oscillation results for the case where α = β. The techniques used in [2, 3] are
not applicable to the case where α = β.

The purpose of this paper is to establish a Picone-type inequality for the half-linear
elliptic equation with the forcing term:

P[v] := ∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)B(x) ·

(
|∇v|α−1∇v

)
+ C(x)|v|α−1v = f(x), (1.3)

and to derive oscillation results on the basis of the Picone-type inequality. The approach used
here is motivated by the paper [4] in which oscillation criteria for second-order nonlinear
ordinary differential equations are studied. Our method is an adaptation of that used in [5].
Since the proofs of Theorems 2.2–3.3 are quite similar to those of [5, Theorems 1–4], we will
omit them.

2. Picone-Type Inequality

Let G be a bounded domain in R
n with piecewise smooth boundary ∂G. It is assumed that

α > 0 is a constant, A(x) ∈ C(G; (0,∞)), B(x) ∈ C(G;Rn), C(x) ∈ C(G;R), and f(x) ∈
C(G;R).

The domain DP (G) of P is defined to be the set of all functions v ∈ C1(G;R) with the
property that A(x)|∇v|α−1∇v ∈ C1(G;Rn) ∩ C(G;Rn).

Lemma 2.1. If v ∈ DP (G) and |v| ≥ k0 for some k0 > 0, then the following Picone-type inequality
holds for any u ∈ C1(G;R):

− ∇ ·
(
uϕ(u)

A(x)|∇v|α−1∇v

ϕ(v)

)

≥ −A(x)
∣∣∣∣∇u − u

A(x)
B(x)

∣∣∣∣
α+1

+
(
C(x) − k−α

0

∣∣f(x)∣∣)|u|α+1

+A(x)

[∣∣∣∣∇u − u

A(x)
B(x)

∣∣∣∣
α+1

+ α
∣∣∣u
v
∇v

∣∣∣
α+1

− (α + 1)
(
∇u − u

A(x)
B(x)

)
·Φ

(u
v
∇v

)]

− uϕ(u)
ϕ(v)

(
P[v] − f(x)

)
,

(2.1)

where ϕ(s) = |s|α−1s (s ∈ R) and Φ(ξ) = |ξ|α−1ξ (ξ ∈ R
n).
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Proof. The following Picone identity holds for any u ∈ C1(G;R):

− ∇ ·
(
uϕ(u)

A(x)|∇v|α−1∇v

ϕ(v)

)

= −A(x)
∣∣∣∣∇u − u

A(x)
B(x)

∣∣∣∣
α+1

+ C(x)|u|α+1

+A(x)

[∣∣∣∣∇u − u

A(x)
B(x)

∣∣∣∣
α+1

+ α
∣∣∣u
v
∇v

∣∣∣
α+1

− (α + 1)
(
∇u − u

A(x)
B(x)

)
·Φ

(u
v
∇v

)]

− uϕ(u)
ϕ(v)

(
P[v] − f(x)

) − uϕ(u)
ϕ(v)

f(x)

(2.2)

(see, e.g., Yoshida [6, Theorem 1.1]). Since |v| ≥ k0, we obtain

∣∣ϕ(v)∣∣ = |v|α ≥ kα
0 , (2.3)

and therefore

∣∣∣∣
uϕ(u)
ϕ(v)

f(x)
∣∣∣∣ ≤ |u|α+1k−α

0

∣∣f(x)∣∣. (2.4)

Combining (2.2) with (2.4) yields the desired inequality (2.1).

Theorem 2.2. Let k0 > 0 be a constant. Assume that there exists a nontrivial function u ∈ C1(G;R)
such that u = 0 on ∂G and

MG[u] :=
∫

G

[
A(x)

∣∣∣∣∇u − u

A(x)
B(x)

∣∣∣∣
α+1

− (
C(x) − k−α

0

∣∣f(x)∣∣)|u|α+1
]
dx ≤ 0. (2.5)

Then for every solution v ∈ DP (G) of (1.3), either v has a zero on G or

|v(x0)| < k0 for some x0 ∈ G. (2.6)

3. Oscillation Results

In this section we investigate forced oscillations of (1.3) in an exterior domain Ω in R
n, that

is, Ω ⊃ Er0 for some r0 > 0, where

Er = {x ∈ R
n; |x| ≥ r} (r > 0). (3.1)

It is assumed that α > 0 is a constant, A(x) ∈ C(Ω; (0,∞)), B(x) ∈ C(Ω;Rn), C(x) ∈ C(Ω;R),
and f(x) ∈ C(Ω;R).
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The domain DP (Ω) of P is defined to be the set of all functions v ∈ C1(Ω;R) with the
property that A(x)|∇v|α−1∇v ∈ C1(Ω;Rn).

A solution v ∈ DP (Ω) of (1.3) is said to be oscillatory in Ω if it has a zero in Ωr for any
r > 0, where

Ωr = Ω ∩ Er. (3.2)

Theorem 3.1. Assume that for any k0 > 0 and any r > r0 there exists a bounded domainG ⊂ Er such
that (2.5) holds for some nontrivial u ∈ C1(G;R) satisfying u = 0 on ∂G. Then for every solution
v ∈ DP (Ω) of (1.3), either v is oscillatory in Ω or

lim inf
|x|→∞

|v(x)| = 0. (3.3)

Theorem 3.2. Assume that for any k0 > 0 and any r > r0 there exists a bounded domain G ⊂ Er

such that

M̃G[u] :=
∫

G

[
2αA(x)|∇u|α+1 −

(
C(x) − 2αA(x)−α|B(x)|α+1 − k−α

0

∣∣f(x)∣∣
)
|u|α+1

]
dx ≤ 0 (3.4)

holds for some nontrivial u ∈ C1(G;R) satisfying u = 0 on ∂G. Then for every solution v ∈ DP (Ω)
of (1.3), either v is oscillatory in Ω or satisfies (3.3).

Let {Q(x)}(r) denote the spherical mean of Q(x) over the sphere Sr = {x ∈ R
n; |x| =

r}. We define p(r) and qk0(r) by

p(r) = {2αA(x)}(r),

qk0(r) =
{
C(x) − 2αA(x)−α|B(x)|α+1 − k−α

0

∣∣f(x)∣∣
}
(r).

(3.5)

Theorem 3.3. If the half-linear ordinary differential equation

(
rn−1p(r)

∣∣y′∣∣α−1y′
)′

+ rn−1qk0(r)
∣∣y∣∣α−1y = 0 (3.6)

is oscillatory at r = ∞ for any k0 > 0, then for every solution v ∈ DP (Ω) of (1.3), either v is
oscillatory in Ω or satisfies (3.3).

Oscillation criteria for the half-linear differential equation (3.6) were obtained
by numerous authors (see, e.g., Došlý and Řehák [7], Kusano and Naito [8], and
Kusanoet al. [9]).
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Now we derive the following Leighton-Wintner-type oscillation result.

Corollary 3.4. If

∫∞

r0

(
1

rn−1p(r)

)1/α

dr = ∞,

∫∞
rn−1qk0(r)dr = ∞ (3.7)

for any k0 > 0, then for every solution v ∈ DP (Ω) of (1.3), either v is oscillatory in Ω or satisfies
(3.3).

Proof. The conclusion follows from the Leighton-Wintner oscillation criterion (see Došlý and
Řehák [7, Theorem 1.2.9]).

By combining Theorem 3.3 with the results of [8, 9], we obtain Hille-Nehari-type
criteria for (1.3) (cf. Došlý and Řehák [7, Section 3.1], Kusano et al. [10], and Yoshida [11,
Section 8.1]).

Corollary 3.5. Assume that qk0(r) ≥ 0 eventually and suppose that p(r) satisfies

∫∞

r0

(
1

rn−1p(r)

)1/α

dr = ∞, (3.8)

and qk0(r) satisfies

lim inf
r→∞

(P(r))α
∫∞

r

sn−1qk0(s)ds >
αα

(α + 1)α+1
, (3.9)

for any k0 > 0, where

P(r) =
∫ r

r0

(
1

sn−1p(s)

)1/α

ds. (3.10)

Then for every solution v ∈ DP (Ω) of (1.3), either v is oscillatory in Ω or satisfies (3.3).

Corollary 3.6. Assume that qk0(r) ≥ 0 eventually and suppose that p(r) satisfies

∫∞

r0

(
1

rn−1p(r)

)1/α

dr < ∞, (3.11)

and qk0(r) satisfies either

∫∞
(π(r))α+1rn−1qk0(r)dr = ∞ (3.12)
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or

lim inf
r→∞

1
π(r)

∫∞

r

(π(s))α+1sn−1qk0(s)ds >
( α

α + 1

)α+1
(3.13)

for any k0 > 0, where

π(r) =
∫∞

r

(
1

sn−1p(s)

)1/α

ds. (3.14)

Then for every solution v ∈ DP (Ω) of (1.3), either v is oscillatory in Ω or satisfies (3.3).

Remark 3.7. If the following hypotheses are satisfied:

C(x) − 2αA(x)−α|B(x)|α+1 > 0
(
eventually

)
,

lim
|x|→∞

∣∣f(x)∣∣
C(x) − 2αA(x)−α|B(x)|α+1

= 0,
(3.15)

then we observe that qk0(r) > 0 eventually.

Example 3.8. We consider the half-linear elliptic equation

∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)B(x) ·

(
|∇v|α−1∇v

)
+ C(x)|v|α−1v = f(x), x ∈ Ω, (3.16)

where n = 2, Ω = E1, A(x) = 2|x|−1, B(x) = 2|x|−1−α/(α+1)(cos |x|, sin |x|), C(x) = |x|−1(5/2 +
sin |x|), and f(x) = |x|−1e−|x|. It is easy to verify that

∫∞

1

(
1

rp(r)

)1/α

dr = ∞,

qk0(r) =
1
r

(
1
2
+ sin r − k−α

0 e−r
)
,

(3.17)

and therefore

∫∞
rqk0(r)dr =

∫∞(1
2
+ sin r − k−α

0 e−r
)
dr = ∞ (3.18)

for any k0 > 0. Hence, from Corollary 3.4, we see that for every solution v of (3.16), either v
is oscillatory in Ω or satisfies (3.3).

Example 3.9. We consider the half-linear elliptic equation

∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)B(x) ·

(
|∇v|α−1∇v

)
+ C(x)|v|α−1v = f(x), x ∈ Ω, (3.19)
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where n = 2, Ω = E1, A(x) = 2|x|−1, B(x) = |x|−α/(α+1)(sin |x|, cos |x|), C(x) = 3 + cos |x|, and
f(x) = e−|x| sin |x|. It is easily checked that

lim
|x|→∞

∣∣f(x)∣∣
C(x) − 2αA(x)−α|B(x)|α+1

= lim
|x|→∞

e−|x||sin|x||
2 + cos|x| = 0, (3.20)

and therefore qk0(r) > 0 eventually by Remark 3.7 . Furthermore, we observe that

∫∞

1

(
1

rp(r)

)1/α

dr = ∞,

qk0(r) = 2 + cos r − k−α
0 e−r |sin r|,

(P(r))α = 2−(α+1)(r − 1)α,

∫∞

r

sqk0(s)ds =
∫∞

r

s
(
2 + cos s − k−α

0 e−s|sin s|)ds

≥
∫∞

r

s
(
1 − k−α

0 e−s
)
ds = ∞

(3.21)

for any k0 > 0. Hence we obtain

lim inf
r→∞

(P(r))α
∫∞

r

sn−1qk0(s)ds = ∞. (3.22)

It follows from Corollary 3.5 that for every solution v of (3.19), either v is oscillatory in Ω or
satisfies (3.3).

Example 3.10. We consider the half-linear elliptic equation

∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)B(x) ·

(
|∇v|α−1∇v

)
+ C(x)|v|α−1v = f(x), x ∈ Ω, (3.23)

where n = 2, Ω = E1, A(x) = |x|−1e|x|, B(x) = |x|−α/(α+1)e|x|(cos |x|, sin |x|), C(x) = e2|x|, and
f(x) is a bounded function. It is easy to see that

C(x) − 2αA(x)−α|B(x)|α+1 = e2|x| − 2αe|x|,

lim
|x|→∞

∣∣f(x)∣∣
C(x) − 2αA(x)−α|B(x)|α+1

= lim
|x|→∞

∣∣f(x)∣∣
e2|x| − 2αe|x|

= 0,
(3.24)
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and hence qk0(r) > 0 eventually by Remark 3.7 . Since f(x) is bounded, there exists a constant
M > 0 such that |f(x)| ≤ M. Moreover, we see that

∫∞

1

(
1

rp(r)

)1/α

dr =
∫∞

1

(
1
4er

)1/2

dr < ∞,

π(r) = α2−2/αe−r/α,

qk0(r) = e2r − 2αer − k−α
0

{∣∣f(x)∣∣}(r) ≥ e2r − 2αer − k−α
0 M.

(3.25)

If α > 1, then

∫∞
(π(r))α+1rqk0(r)dr ≥ αα+1

22(α+1)/α

∫∞
r
(
e((α−1)/α)r − 2αe−r/α − k−α

0 Me−((α+1)/α)r
)
dr = ∞,

(3.26)

and if 0 < α < 1, then

lim inf
r→∞

1
π(r)

∫∞

r

(π(s))α+1sqk0(s)ds

≥ lim inf
r→∞

αα

4
er/α

∫∞

r

s
(
e((α−1)/α)s − 2αe−s/α − k−α

0 Me−((α+1)/α)s
)
ds

≥ lim inf
r→∞

αα

4
er/α

∫∞

r

(
e((α−1)/α)s − 2αe−s/α − k−α

0 Me−((α+1)/α)s
)
ds

= lim inf
r→∞

αα

4

(
α

1 − α
er − 2αα − k−α

0 M
α

α + 1
e−r

)
= ∞

(3.27)

for any k0 > 0. Corollary 3.6 implies that for every solution v of (3.23), either v is oscillatory
in Ω or satisfies (3.3).
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