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25133 Brescia, Italy

Correspondence should be addressed to Paolo Secchi, paolo.secchi@ing.unibs.it

Received 9 June 2010; Accepted 30 August 2010

Academic Editor: Alberto Cabada

Copyright q 2010 A. Morando and P. Secchi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We study the boundary value problem for a linear first-order partial differential system with
characteristic boundary of constant multiplicity. We assume the problem to be “weakly” well
posed, in the sense that a unique L2-solution exists, for sufficiently smooth data, and obeys an
a priori energy estimate with a finite loss of tangential/conormal regularity. This is the case of
problems that do not satisfy the uniform Kreiss-Lopatinskiı̆ condition in the hyperbolic region of
the frequency domain. Provided that the data are sufficiently smooth, we obtain the regularity of
solutions, in the natural framework of weighted conormal Sobolev spaces.

1. Introduction and Main Results

For n ≥ 2, let R
n
+ denote the n-dimensional positive half-space

R
n
+ :=

{
x =

(
x1, x

′), x1 > 0, x′ := (x2, . . . , xn) ∈ R
n−1
}
. (1.1)

The boundary of R
n
+ will be systematically identified with R

n−1
x′ .

We are interested in the following stationary boundary value problem (BVP):

(
γ + L + B)u = F, in R

n
+, (1.2)

Mu = G, on R
n−1, (1.3)
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where L is the first-order linear partial differential operator

L =
n∑
j=1

Aj∂j ; (1.4)

for each j = 1, . . . , n, the short notation ∂j := ∂/∂xj is used.
The coefficients Aj (j = 1, . . . , n) of L are N ×N matrix-valued functions in C∞

(0)(R
n
+),

the space of restrictions to R
n
+ of functions of C

∞
0 (Rn). In (1.2), B stands for a lower-order term

whose form and nature will be specified later; compare to Theorem 1.1 and Section 3.2.
The source term F, as well as the unknown u, is a R

N-valued function of x; we may
assume that they are both supported in the unitary positive half-ball B

+ := {x = (x1, x′) : x1 ≥
0, |x| < 1}.

The BVP has characteristic boundary of constant multiplicity 1 ≤ r < N in the following
sense; the coefficient A1 of the normal derivative in L displays the blockwise structure

A1(x) =

⎛
⎝AI,I

1 AI,II
1

AII,I
1 AII,II

1

⎞
⎠, (1.5)

where AI,I
1 , AI,II

1 , AII,I
1 , AII,II

1 are, respectively, r × r, r × (N − r), (N − r) × r, (N − r) × (N − r)
submatrices, such that

AI,II
1|x1=0 = 0, AII,I

1|x1=0 = 0, AII,II
1|x1=0 = 0, (1.6)

and AI,I
1 is invertible over B

+. According to the representation above, we split the unknown
u as u = (uI, uII); uI ∈ R

r and uII ∈ R
N−r are said to be, respectively, the noncharacteristic and

the characteristic components of u.
Concerning the boundary condition (1.3),M is assumed to be the matrix (Id 0), where

Id denotes the identity matrix of order d, 0 is the zero matrix of size d × (N − d), and d is a
given positive integer ≤ r. The datum G is a given R

d-valued function of x′ = (x2, . . . , xn) and
is supported in the unitary (n − 1)-dimensional ball B(0, 1) := {|x′| < 1}.

Section 4 will be devoted to prove the following regularity result.

Theorem 1.1. Let k, r, s be fixed nonnegative integer numbers such that s ≥ r ≥ 0, s > 0, and suppose
that the coefficients Aj (j = 1, . . . , n) of the operator L in (1.4) are given in C∞

(0)(R
n
+) and A1 fulfils

conditions (1.5), (1.6). One assumes that for any h > 0 there exist some constants C0 = C0(h) > 0,
γ0 = γ0(h) ≥ 1 such that for every γ ≥ γ0, for every operator B = Opγ

�
(b), whose symbol b belongs to

Γ0 and satisfies |b|0,k ≤ h, and for all functions F ∈ Hs,r
tan,γ(R

n
+), andG ∈ Hs

γ (R
n−1), the corresponding

BVP (1.2)-(1.3) admits a unique solution u ∈ L2(Rn
+), with u

I
|x1=0 ∈ L2(Rn−1), and the following a

priori energy estimate is satisfied:

γ‖u‖2L2(Rn
+)
+
∥∥∥uI|x1=0

∥∥∥
2

L2(Rn−1)
≤ C0

(
1

γ2s+1
‖F‖2Hs,r

tan,γ (R
n
+)
+

1
γ2s

‖G‖2
Hs

γ(Rn−1)

)
. (1.7)

Then, for every m ∈ N and any matrix-valued function B ∈ C∞
(0)(R

n
+), there exist some constants

Cm > 0, γm (with γm ≥ γm−1 ≥ 1) such that if γ ≥ γm and we are given arbitrary functions
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F ∈ Hs+m,r+m
tan,γ (Rn

+) and G ∈ Hs+m
γ (Rn−1), the unique L2-solution u of (1.2)-(1.3) (with data F,

G, and lower-order term B ≡ multiplication by B) belongs toHm
tan,γ(R

n
+), u

I
|x1=0 ∈ Hm

γ (R
n−1) and the

a priori estimate of orderm

γ‖u‖2Hm
tan,γ (R

n
+)
+
∥∥∥uI|x1=0

∥∥∥
2

Hm
γ (Rn−1)

≤ Cm

(
1

γ2s+1
‖F‖2Hs+m, r+m

tan,γ (Rn
+)
+

1
γ2s

‖G‖2
Hs+m

γ (Rn−1)

)
(1.8)

is satisfied.

The function spaces involved in the statement of Theorem 1.1, as well as the norms
appearing in (1.7), (1.8), will be described in Section 2. The kind of lower-order operator B
involved in (1.2), that is allowed in Theorem 1.1, will be introduced in Section 3.2.

The BVP (1.2)-(1.3), with the aforedescribed structure, naturally arises from the study
of a mixed evolution problem for a symmetric (or Friedrichs’symmetrizable) hyperbolic
system, with characteristic boundary. The analysis of the regularity of the stationary
problem, presented in this work, plays an important role for the study of the regularity of
time-dependent hyperbolic problems, constituting the final goal of our investigation and
developed in [1]. In view of the well-posedness property that problems (1.2)-(1.3) enjoy in
the statement of Theorem 1.1, here we do not need to assume the hyperbolicity of the linear
operator L in (1.4); the only condition required on the structure of L is that expressed by
conditions (1.5) and (1.6). In the hyperbolic problems, the number d of the scalar boundary
conditions prescribed in (1.3) equals the number of positive eigenvalues of A1 on {x1 =
0} ∩ B

+ (the so-called incoming characteristics of problem (1.2)-(1.3)), compare to [1]; this
value d remains constant along the boundary, as a combined effect of the hyperbolicity and
the fact that A1|{x1=0}∩B+ has constant rank.

In [2], the regularity of weak solutions to the characteristic BVP (1.2)-(1.3) was
studied, under the assumption that the problem is strongly L2-well posed, namely, that a
unique L2-solution exists for arbitrarily given L2-data and the solution obeys an a priori
energy inequality without loss of regularity with respect to the data; this means that the L2-norms
of the interior and boundary values of the solution are measured by the L2-norms of the
corresponding data F,G.

The statement of Theorem 1.1 extends the result of [2, Theorem 15], to the case where
only a weak well posedness property is assumed on the BVP (1.2)-(1.3). Here, the L2-solvability
of (1.2)-(1.3) requires an additional regularity of the corresponding data F,G; the integer s
represents the minimal amount of regularity, needed for data, in order to estimate the L2-
norm of the solution u in the interior of the domain, and its trace on the boundary, by the
energy inequality (1.7).

Several problems, appearing in a variety of different physical contexts, such as fluid
dynamics and magneto-hydrodynamics, exhibit a finite loss of derivatives with respect to
the data, as considered by estimate (1.7) in the statement of Theorem 1.1. This is the case
of some problems that do not satisfy the so-called uniform Kreiss-Lopatinskiı̆ condition; see,
for example, [3, 4]. For instance, when the Lopatinskiı̆ determinant associated to the problem
has a simple root in the hyperbolic region, estimating the L2-norm of the solution makes the
loss of one tangential derivative with respect to the data; see, for example, [5, 6]. In [7],
Coulombel and Guès show that, in this case, the loss of regularity of order one is optimal;
they also prove that the weak well posedness, with the loss of one derivative, is independent
of Lipschitzean lower-order terms, but not independent of bounded lower-order terms. This is
a major difference with the strongly well-posed case, where there is no loss of derivatives and
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one can treat lower-order terms as source terms in the energy estimates. Also, this yields that
the techniques we used in [2], for studying the regularity of strongly L2-well-posed BVPs,
cannot be successfully performed in the case of weakly well-posed problems (see Section 4
for a better explanation).

The paper is organized as follows. In Section 2 we introduce the function spaces to be
used in the following and the main related notations. In Section 3 we collect some technical
tools, and the basic concerned results, that will be useful for the proof of the regularity of BVP
(1.2)-(1.3), given in Section 4.

A final Appendix contains the proof of the most of the technical results used in
Section 4.

2. Function Spaces

The purpose of this section is to introduce themain function spaces to be used in the following
and collect their basic properties.

For j = 1, 2, . . . , n, we set

Z1 := x1∂1, Zj := ∂j , for j ≥ 2. (2.1)

Then, for every multi-index α = (α1, . . . , αn) ∈ N
n, the conormal derivative Zα is defined by

Zα := Zα1
1 · · ·Zαn

n ; (2.2)

we also write ∂α = ∂α11 · · · ∂αnn for the usual partial derivative corresponding to α.
For γ ≥ 1 and s ∈ R, we set

λs,γ(ξ) :=
(
γ2 + |ξ|2

)s/2
(2.3)

and, in particular, λs,1 := λs.
The Sobolev space of order s ∈ R in R

n is defined to be the set of all tempered
distributions u ∈ S′(Rn) such that λsû ∈ L2(Rn), being û the Fourier transform of u; in
particular, for s ∈ N, the Sobolev space of order s reduces to the set of all functions u ∈ L2(Rn),
for which ∂αu ∈ L2(Rn) for all α ∈ N

n with |α| ≤ s.
Throughout the paper, for real γ ≥ 1,Hs

γ (R
n) will denote the Sobolev space of order s,

equipped with the γ-depending norm ‖ · ‖s,γ defined by

‖u‖2s,γ := (2π)−n
∫

Rn

λ2s,γ(ξ)|û(ξ)|2dξ, (2.4)

where (ξ = (ξ1, . . . , ξn) are the dual Fourier variables of x = (x1, . . . , xn)). The norms defined
by (2.4), with different values of the parameter γ , are equivalent to each other. For γ = 1 we
set for brevity ‖ · ‖s := ‖ · ‖s,1 (and, accordingly,Hs(Rn) := Hs

1(R
n)).
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It is clear that, for s ∈ N, the norm in (2.4) turns out to be equivalent, uniformly with
respect to γ , to the norm ‖ · ‖Hs

γ (Rn) defined by

‖u‖2Hs
γ (Rn) :=

∑
|α|≤s

γ2(s−|α|)‖∂αu‖2L2(Rn). (2.5)

Another useful remark about the parameter depending norms defined in (2.4) is provided by
the following counterpart of the usual Sobolev imbedding inequality:

‖u‖s,γ ≤ γs−r‖u‖r,γ , (2.6)

for arbitrary s ≤ r and γ ≥ 1.
In Section 4, the ordinary Sobolev spaces, endowed with the weighted norms above,

will be considered in R
n−1 (interpreted as the boundary of the half-space R

n
+); regardless to

the different dimension, the same notations and conventions as before will be used there.
Let us introduce now some classes of function spaces of Sobolev type, defined over the

half-space R
n
+; these spaces will be used tomeasure the regularity of solutions to characteristic

BVPs with sufficiently smooth data (cf. Theorem 1.1 and Section 4).
Given an integer m ≥ 1, the conormal Sobolev space of order m is defined as the set of

functions u ∈ L2(Rn
+) such that Zαu ∈ L2(Rn

+), for all multi-indices α with |α| ≤ m. Agreeing
with the notations set for the usual Sobolev spaces, for γ ≥ 1, Hm

tan,γ(R
n
+) will denote the

conormal space of orderm equipped with the γ-depending norm

‖u‖2Hm
tan,γ (R

n
+)
:=
∑
|α|≤m

γ2(m−|α|)‖Zαu‖2L2(Rn
+)
, (2.7)

and we again writeHm
tan(R

n
+) := H

m
tan,1(R

n
+).

For later use, we need to consider also a class of mixed tangential/conormal spaces,
where different orders of tangential and conormal smoothness are allowed. Namely, for every
m, r ∈ N, with m ≥ r, we let Hm,r

tan (R
n
+) denote the space of all functions u ∈ L2(Rn

+) such
that Zαu ∈ L2(Rn

+), whenever |α| ≤ m and 0 ≤ α1 ≤ r: here derivatives Zα are required
belonging to L2 up to the order m, but conormal derivatives (namely, derivatives involving the
operator Z1) are allowed only up to the lower order r, the remaining m − r derivatives being
purely tangential (i.e, involving only differentiation with respect to tangential variables x′).
This space is provided with the expected γ-depending norm

‖u‖2Hm,r
tan,γ (R

n
+)
:=

∑
|α|≤m, 0≤α1≤r

γ2(m−|α|)‖Zαu‖2L2(Rn
+)
. (2.8)

The notation Hm,r
tan,γ(R

n
+) is used, here and below, with the same meaning as for usual and

conormal Sobolev spaces (accordingly, one has Hm,r
tan (R

n
+) = Hm,r

tan,1(R
n
+)).

For a given Banach space Y (with norm ‖ · ‖Y ) and 1 ≤ p ≤ +∞, Lp(0,+∞;Y ) will
denote the space of the Y -valued measurable functions on (0,+∞) such that

∫+∞
0 ‖u(t)‖pYdt <

+∞.
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It is easy to see that the following identities hold true forHm,r
tan (R

n
+), in the border cases

r = 0 and r = m:

Hm,0
tan (R

n
+) = L

2
(
0,+∞;Hm

(
R
n−1
))
, Hm,m

tan (Rn
+) = H

m
tan(R

n
+). (2.9)

Actually all of the previously collected observations and properties of γ-weighted norms on
usual Sobolev spaces can be readily extended to the weighted norms defined on conormal
and mixed spaces.

Remark 2.1. The above-considered tangential-conormal spaces Hm,r
tan (R

n
+) can be viewed as a

conormal counterpart, by the action of the � mapping introduced below, of corresponding
mixed spaces of Sobolev type in R

n, studied in Hörmander’s [8].

3. Preliminaries and Technical Tools

In this section, we collect several technical tools that will be used in the subsequent analysis
(cf. Section 4).

We start by recalling the definition of two operators � and 	, introduced by Nishitani
and Takayama in [9], with the main property of mapping isometrically square integrable
(resp., essentially bounded) functions over the half-space R

n
+ onto square integrable (resp.,

essentially bounded) functions over the full space R
n.

The mappings � : L2(Rn
+) → L2(Rn) and 	 : L∞(Rn

+) → L∞(Rn) are, respectively,
defined by

w�(x) := w
(
ex1 , x′)ex1/2, a	(x) = a

(
ex1 , x′), ∀x =

(
x1, x

′) ∈ R
n. (3.1)

They are both norm preserving bijections.
It is also useful to notice that the above operators can be extended to the set D′(Rn

+) of
Schwartz distributions in R

n
+. It is easily seen that both � and 	 are topological isomorphisms

of the space C∞
0 (Rn

+) of test functions in R
n
+ (resp., C∞(Rn

+)) onto the space C∞
0 (Rn) of test

functions in R
n (resp., C∞(Rn)). Therefore, a standard duality argument leads to define � and

	 on D′(Rn
+), by setting for every ϕ ∈ C∞

0 (Rn)

〈u�, ϕ〉 := 〈u, ϕ�−1〉,
〈
u	, ϕ

〉
:=
〈
u, ϕ�

〉 (3.2)

(〈·, ·〉 is used to denote the duality pairing between distributions and test functions either in
the half-space R

n
+ or the full space R

n). In the right-hand sides of (3.2), �−1 is just the inverse
operator of �, while the operator � is defined by

ϕ�(x) =
1
x1
ϕ
(
logx1, x′), ∀x1 > 0, x′ ∈ R

n−1, (3.3)

for functions ϕ ∈ C∞
0 (Rn). The operators �−1 and � arise by explicitly calculating the formal

adjoints of � and 	, respectively.
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Of course, one has that u�, u	 ∈ D′(Rn); moreover the following relations can be easily
verified (cf. [9]):

(
ψu
)� = ψ	u�, (3.4)

∂j
(
u	
)
=
(
Zju

)	
, j = 1, . . . , n, (3.5)

∂1
(
u�
)
= (Z1u)� +

1
2
u�, (3.6)

∂j
(
u�
)
=
(
Zju

)�
, j = 2, . . . , n, (3.7)

whenever u ∈ D′(Rn
+) and ψ ∈ C∞(Rn

+) (in (3.4) u ∈ L2(Rn
+) and ψ ∈ L∞(Rn

+) are even allowed).
From formulas (3.6), (3.7) and the L2-boundedness of �, it also follows that � :

Hm
tan,γ(R

n
+) → Hm

γ (R
n) is a topological isomorphism, for each integerm ≥ 1 and real γ ≥ 1.

Following [9] (see also [2]), in the next subsection the lastly mentioned property of �
will be exploited to shift some remarkable properties of the ordinary Sobolev spaces in R

n to
the functional framework of conormal Sobolev spaces over the half-space R

n
+.

In the end, we observe that the operator � continuously maps the space C∞
(0)(R

n
+) into

the Schwartz space S(Rn) of rapidly decreasing functions in R
n (note also that the same is

no longer true for the image of C∞
(0)(R

n
+) under the operator 	, which is only included into the

space C∞
b (R

n) of infinitely smooth functions in R
n, with bounded derivatives of all orders).

3.1. Parameter-Depending Norms on Sobolev Spaces

We recall a classical characterization of ordinary Sobolev spaces in R
n, according to

Hörmander’s [8], based upon the uniform boundedness of a suitable family of parameter-
depending norms.

For given s ∈ R, γ ≥ 1 and for each δ ∈ ]0, 1] a norm inHs−1(Rn) is defined by setting

‖u‖2s−1,γ,δ := (2π)−n
∫

Rn

λ2s,γ(ξ)λ−2,γ(δξ)|û(ξ)|2dξ. (3.8)

According to Section 2, for γ = 1 and any 0 < δ ≤ 1, we set ‖ · ‖s−1,δ := ‖ · ‖s−1,1,δ; the family
of δ-weighted norms {‖ · ‖s−1,δ}0<δ≤1 was deeply studied in [8]; easy arguments (relying
essentially on a γ-rescaling of functions) lead to get the same properties for the norms
{‖ · ‖s−1,γ,δ}0<δ≤1 defined in (3.8)with an arbitrary γ ≥ 1.

Of course, one has ‖ · ‖s−1,γ,1 = ‖ · ‖s−1,γ (cf. (2.4), with s − 1 instead of s). It is also
clear that, for each fixed δ ∈ ]0, 1[, the norm ‖ · ‖s−1,γ,δ is equivalent to ‖ · ‖s−1,γ in Hs−1

γ (Rn),
uniformly with respect to γ ; notice, however, that the constants appearing in the equivalence
inequalities will generally depend on δ (see (3.18)).

The next characterization of Sobolev spaces readily follows by taking account of the
parameter γ into the arguments used in [8, Theorem 2.4.1].
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Proposition 3.1. For every s ∈ R and γ ≥ 1, u ∈ Hs
γ (R

n) if and only if u ∈ Hs−1
γ (Rn), and the set

{‖u‖s−1,γ,δ}0<δ≤1 is bounded. In this case, one has

‖u‖s−1,γ,δ ↑ ‖u‖s,γ , as δ ↓ 0. (3.9)

In order to show the regularity result stated in Theorem 1.1, it is useful to provide the
conormal Sobolev space Hm−1

tan,γ(R
n
+), m ∈ N, γ ≥ 1, with a family of parameter-depending

norms satisfying analogous properties to those of norms defined in (3.8). Nishitani and
Takayama [9] introduced such norms in the “unweighted” case γ = 1, just applying the
ordinary Sobolev norms ‖ · ‖m−1,δ in (3.8) to the pull-back of functions onR

n
+, by the � operator;

then these norms were used in [2] to characterize the conormal regularity of functions.
Following [9], for γ ≥ 1, δ ∈ ]0, 1], and all u ∈ Hm−1

tan (Rn
+), we set

‖u‖2
R
n
+, m−1,tan,γ,δ :=

∥∥∥u�
∥∥∥
2

m−1,γ,δ
= (2π)−n

∫

Rn

λ2m,γ(ξ)λ−2,γ(δξ)
∣∣∣û�(ξ)

∣∣∣
2
dξ. (3.10)

Because � is an isomorphism of Hm−1
tan,γ(R

n
+) onto Hm−1

γ (Rn), the family of norms
{‖ · ‖

R
n
+,m−1,tan,γ,δ}0<δ≤1 keeps all the properties enjoyed by the family of norms defined in (3.8).
In particular, the same characterization of ordinary Sobolev spaces on R

n, given by
Proposition 3.1, applies also to conormal Sobolev spaces in R

n
+ (cf. [2, 9]).

Proposition 3.2. For every positive integer m and γ ≥ 1, u ∈ Hm
tan,γ(R

n
+) if and only if u ∈

Hm−1
tan,γ(R

n
+), and the set {‖u‖

R
n
+,m−1,tan,γ,δ}0<δ≤1 is bounded. In this case, one has

‖u‖
R
n
+,m−1,tan,γ,δ ↑ ‖u‖

R
n
+,m,tan,γ , as δ ↓ 0. (3.11)

As regards to the mixed space Hm,r
tan (R

n
+), it is worthwhile noticing that it can be

endowed with the γ-weighted norm defined, by the Fourier transformation, as

‖u‖2
R
n
+,m,r,tan,γ

:= (2π)−n
∫

Rn

λ2r,γ(ξ)λ
(
ξ′
)2(m−r),γ ∣∣∣û�(ξ)

∣∣∣
2
dξ; (3.12)

here and below ξ′ := (ξ2, . . . , ξn) denotes the Fourier dual variables of the tangential space
variables x′ = (x2, . . . , xn), and, with a slight abuse of notation, we write λr,γ(ξ′) to mean in
fact λr,γ(0, ξ′).

Of course, the norm in (3.12) is equivalent, uniformly with respect to γ , to the norm
(2.8).

3.2. A Class of Conormal Operators

The � operator, defined at the beginning of Section 3, can be used to allow pseudodifferential
operators in R

n acting conormally on functions only defined over the positive half-space R
n
+.

Then the standard machinery of pseudodifferential calculus (in the parameter depending
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version introduced in [10, 11]) can be rearranged into a functional calculus properly behaved
on conormal Sobolev spaces described in Section 2. In Section 4, this calculus will be usefully
applied to study the conormal regularity of the stationary BVP (1.2)-(1.3).

Let us introduce the pseudodifferential symbols, with a parameter, to be used later;
here we closely follow the terminology and notations of [12].

Definition 3.3. A parameter-depending pseudodifferential symbol of orderm ∈ R is a real-(or
complex-) valued measurable function a(x, ξ, γ) on R

n × R
n × [1,+∞[, such that a is C∞ with

respect to x and ξ, and for all multi-indices α, β ∈ N
n there exists a positive constant Cα,β

satisfying

∣∣∣∂αξ ∂
β
xa
(
x, ξ, γ

)∣∣∣ ≤ Cα,βλ
m−|α|,γ(ξ), (3.13)

for all x, ξ ∈ R
n and γ ≥ 1.

The same definition as above extends to functions a(x, ξ, γ) taking values in the space
R
N×N (resp., C

N×N) of N ×N real (resp., complex) valued matrices, for all integers N > 1
(where the module | · | is replaced in (3.13) by any equivalent norm in R

N×N (resp., C
N×N)).

We denote by Γm the set of γ-depending symbols of order m ∈ R (the same notation being
used for both scalar-or matrix-valued symbols). Γm is equipped with the obvious norms

|a|m,k := max
|α|+|β|≤k

sup
(x,ξ)∈Rn×Rn, γ≥1

λ−m+|α|,γ(ξ)
∣∣∣∂αξ ∂

β
xa
(
x, ξ, γ

)∣∣∣, ∀k ∈ N, (3.14)

which turn it into a Fréchet space. For all m,m′ ∈ R, with m ≤ m′, the continuous imbedding
Γm ⊂ Γm

′
can be easily proven.

For allm ∈ R, the function λm,γ is of course a (scalar-valued) symbol in Γm.
To perform the analysis of Section 4, it is important to consider the behavior of the

weight function λm,γ(·)λ−1,γ(δ·), involved in the definition of the parameter-depending norms
in (3.8), (3.10), as a γ-depending symbol according to Definition 3.3.

In order to simplify the forthcoming statements, henceforth the following short
notations will be used:

λ
m−1,γ
δ (ξ) := λm,γ(ξ)λ−1,γ(δξ), λ̃

−m+1,γ
δ (ξ) :=

(
λ
m−1,γ
δ (ξ)

)−1(
= λ−m,γ(ξ)λ1,γ(δξ)

)
, (3.15)

for all real numbers m ∈ R, γ ≥ 1, and δ ∈ ]0, 1]. One has the obvious identities λm−1,γ
1 (ξ) ≡

λm−1,γ(ξ), λ̃−m+1,γ
1 (ξ) ≡ λ

−m+1,γ
1 (ξ) ≡ λ−m+1,γ(ξ). However, to avoid confusion in the following,

it is worthwhile to remark that functions λ−m+1,γ
δ

(ξ) and λ̃−m+1,γ
δ

(ξ) are no longer the same as

soon as δ becomes strictly smaller than 1; indeed (3.15) gives λ−m+1,γ
δ (ξ) = λ−m+2,γ(ξ)λ−1,γ(δξ).

A straightforward application of Leibniz’s rule leads to the following result.
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Lemma 3.4. For everym ∈ R and all α ∈ N
n, there exists a positive constant Cm,α such that

∣∣∣∂αξ λ
m−1,γ
δ (ξ)

∣∣∣ ≤ Cm,αλ
m−1−|α|,γ
δ (ξ), ∀ξ ∈ R

n, ∀γ ≥ 1, ∀δ ∈ ]0, 1]. (3.16)

Because of estimates (3.16), λm−1,γ
δ (ξ) can be regarded as a γ-depending symbol, in two

different ways. On one hand, combining estimates (3.16)with the trivial inequality

λ−1,γ(δξ) ≤ 1 (3.17)

immediately gives that {λm−1,γ
δ

}0<δ≤1 is a bounded subset of Γm.
On the other hand, the left inequality in

δλ1,γ(ξ) ≤ λ1,γ(δξ) ≤ λ1,γ(ξ), ∀ξ ∈ R
n, ∀δ ∈ ]0, 1], (3.18)

together with (3.16), also gives

∣∣∣∂αξ λ
m−1,γ
δ (ξ)

∣∣∣ ≤ Cm,αδ
−1λm−1−|α|,γ(ξ), ∀ξ ∈ R

n, ∀γ ≥ 1. (3.19)

According to Definition 3.3, (3.19)means that λm−1,γ
δ

actually belongs, for each fixed δ, to Γm−1;

nevertheless, the family {λm−1,γ
δ }0<δ≤1 is unbounded as a subset of Γm−1.

For later use, we also need to study the behavior of functions λ̃−m+1,γ
δ

as γ-depending
symbols.

Analogously to Lemma 3.4, one can prove the following result.

Lemma 3.5. For allm ∈ R and α ∈ N
n, there exists C̃m,α > 0 such that

∣∣∣∂αξ λ̃
−m+1,γ
δ (ξ)

∣∣∣ ≤ C̃m,αλ̃
−m+1−|α|,γ
δ (ξ), ∀ξ ∈ R

n, ∀γ ≥ 1, ∀δ ∈ ]0, 1]. (3.20)

In particular, Lemma 3.5 implies that the family {λ̃−m+1,γ
δ

}0<δ≤1 is a bounded subset of
Γ−m+1 (it suffices to combine (3.20) with the right inequality in (3.18)).

Any symbol a = a(x, ξ, γ) ∈ Γm defines a pseudodifferential operator Opγ(a) = a(x,D, γ)
on the Schwartz space S(Rn), by the standard formula

∀u ∈ S(Rn), ∀x ∈ R
n, Opγ(a)u(x) = a

(
x,D, γ

)
u(x) =: (2π)−n

∫

Rn

eix·ξa
(
x, ξ, γ

)
û(ξ)dξ,

(3.21)

where, of course, we denote x · ξ :=
∑n

j=1 xjξj . a is called the symbol of the operator (3.21),
and m is its order. It comes from the classical theory that Opγ(a) defines a linear-bounded
operator

Opγ(a) : S(Rn) −→ S(Rn); (3.22)
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moreover, the latter extends to a linear-bounded operator on the space S′(Rn) of tempered
distributions in R

n.
An exhaustive account of the symbolic calculus for pseudodifferential operators with

symbols in Γm can be found in [11] (see also [12]). Here, we just recall the following result,
concerning the product and the commutator of two pseudodifferential operators.

Proposition 3.6. Let a ∈ Γm and b ∈ Γl, for l,m ∈ R. Then Opγ(a)Opγ(b) is a pseudodifferential
operator with symbol in Γm+l; moreover, if one lets a#b denote the symbol of the product, one has for
every integerN ≥ 1

a#b −
∑
|α|<N

(−i)|α|
α!

∂αξ a∂
α
xb ∈ Γm+l−N. (3.23)

Under the same assumptions, the commutator [Opγ(a),Opγ(b)] := Opγ(a)Opγ(b)−Opγ(b)Opγ(a)
is again a pseudodifferential operator with symbol c ∈ Γm+l. If one further assumes that one of the two
symbols a or b is scalar-valued (so that a and b commute in the pointwise product), then the symbol c
of [Opγ(a),Opγ(b)] has orderm + l − 1.

We point out that when the symbol b ∈ Γl of the preceding statement does not depend
on the x variables (i.e., b = b(ξ, γ)), then the symbol a#b of the product Opγ(a)Opγ(b) reduces
to the pointwise product of symbols a and b; in this case, the asymptotic formula (3.23) is
replaced by the exact formula

(a#b)
(
x, ξ, γ

)
= a
(
x, ξ, γ

)
b
(
ξ, γ
)
. (3.24)

According to (3.15), (3.21), we write

λ
m−1,γ
δ (D) := Opγ

(
λ
m−1,γ
δ

)
, λ̃

−m+1,γ
δ (D) := Opγ

(
λ̃
−m+1,γ
δ

)
. (3.25)

In view of (3.15) and (3.24), the operator λm−1,γ
δ (D) is invertible, and its two-sided inverse is

given by λ̃−m+1,γ
δ

(D).
Starting from the symbolic classes Γm, m ∈ R, we introduce now the class of conormal

operators in R
n
+, to be used in the sequel.

Let a(x, ξ, γ) be a γ-depending symbol in Γm, m ∈ R. The conormal operator with symbol
a, denoted by Opγ� (a) (or equivalently a(x,Z, γ)), is defined by setting

∀u ∈ C∞
(0)(R

n
+),

(
Opγ

� (a)u
)�

=
(
Opγ(a)

)(
u�
)
. (3.26)

In other words, the operator Opγ� (a) is the composition of mappings

Opγ
� (a) = �

−1 ◦Opγ(a) ◦ �. (3.27)
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As we already noted, u� ∈ S(Rn) whenever u ∈ C∞
(0)(R

n
+); hence formula (3.26) makes sense

and gives that Opγ� (a)u is a C∞-function in R
n
+. Also Opγ� (a) : C

∞
(0)(R

n
+) → C∞(Rn

+) is a linear-
bounded operator that extends to a linear-bounded operator from the space of distributions
u ∈ D′(Rn

+) satisfying u
� ∈ S′(Rn) into D′(Rn

+) itself. (In principle, Opγ
�
(a) could be defined

by (3.26) over all functions u ∈ C∞(Rn
+), such that u� ∈ S(Rn). Then Opγ

�
(a) defines a linear-

bounded operator on the latter function space, provided that it is equipped with the topology
induced, via �, from the Fréchet topology of S(Rn).) Throughout the paper, we continue to
denote this extension by Opγ

�
(a) (or a(x,Z, γ) equivalently).

As an immediate consequence of (3.27), we have that for all symbols a ∈ Γm, b ∈ Γl,
withm, l ∈ R, there holds

∀u ∈ C∞
(0)(R

n
+), Opγ

� (a)Opγ
� (b)u =

(
Opγ(a)Opγ(b)

(
u�
))�−1

. (3.28)

Then, it is clear that a functional calculus of conormal operators can be straightforwardly
borrowed from the corresponding pseudodifferential calculus in R

n; in particular we find
that products and commutators of conormal operators are still operators of the same type,
and their symbols are computed according to the rules collected in Proposition 3.6.

Below, let us consider the main examples of conormal operators that will be met in
Section 4.

As a first example, we quote the multiplication by a matrix-valued function B ∈
C∞

(0)(R
n
+). It is clear that this makes an operator of order zero according to (3.26); indeed (3.4)

gives for any vector-valued u ∈ C∞
(0)(R

n
+)

(Bu)�(x) = B	(x)u�(x), (3.29)

and B	 is a C∞-function in R
n, with bounded derivatives of any order, hence a symbol in Γ0.

We remark that, when computed for B	, the norm of order k ∈ N, defined on symbols
by (3.14), just reduces to

∣∣∣B	
∣∣∣
0,k

= max
|α|≤k

∥∥∥∂αB	
∥∥∥
L∞(Rn)

= max
|α|≤k

‖ZαB‖L∞(Rn
+), (3.30)

where the second identity above exploits formulas (3.5) and that 	maps isometrically L∞(Rn
+)

onto L∞(Rn).
Now, let L := γIN +

∑n
j=1Aj(x)Zj be a first-order linear partial differential operator,

with matrix-valued coefficientsAj ∈ C∞
(0)(R

n
+) for j = 1, . . . , n and γ ≥ 1. Since the leading part

of L only involves conormal derivatives, applying (3.4), (3.6), and (3.7) then gives

⎛
⎝γu +

n∑
j=1

AjZju

⎞
⎠

�

=
(
γI − 1

2
A
	

1

)
u� +

n∑
j=1

A
	

j∂ju
� = Opγ(a)u�, (3.31)

where a = a(x, ξ, γ) := (γIN − (1/2)A	

1(x)) + i
∑n

j=1A
	

j(x)ξj is a symbol in Γ1. Then L is a
conormal operator of order 1, according to (3.26).
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In Section 4, we will be mainly interested in the family of conormal operators

λ
m−1,γ
δ (Z) := Opγ

�

(
λ
m−1,γ
δ

)
, λ̃

−m+1,γ
δ (Z) := Opγ

�

(
λ̃
−m+1,γ
δ

)
. (3.32)

The operators λm−1,γ
δ

(Z) are involved in the characterization of conormal regularity provided

by Proposition 3.2 (remember that, after Lemma 3.4, λm−1,γ
δ ∈ Γm−1). Indeed, from Plancherel’s

formula and the fact that the operator � preserves the L2-norm, the following identities

‖u‖
R
n
+,m−1,tan,γ,δ ≡

∥∥∥λm−1,γ
δ (Z)u

∥∥∥
L2(Rn

+)
(3.33)

can be straightforwardly established; hence, Proposition 3.2 can be restated in terms of the
boundedness, with respect to δ, of the L2-norms of functions λm−1,γ

δ
(Z)u. This observation is

the key point that leads to the analysis performed in Section 4.
Another main feature of the conormal operators (3.32) is that λ̃−m+1,γ

δ (Z) provides

a two-sided inverse of λm−1,γ
δ

(Z); this comes at once from the analogous property of the
operators in (3.25) and formulas (3.26), (3.28).

3.3. Sobolev Continuity of Conormal Operators

Proposition 3.7. If s,m ∈ R then for all a ∈ Γm the pseudodifferential operator Opγ(a) extends as a
linear-bounded operator fromHs+m

γ (Rn) intoHs
γ (R

n), and the operator norm of such an extension is
uniformly bounded with respect to γ .

We refer the reader to [11] for a detailed proof of Proposition 3.7. A thorough analysis
shows that the norm of Opγ(a), as a linear-bounded operator from Hs+m

γ (Rn) to Hs
γ (R

n),
actually depends only on a norm of type (3.14) of the symbol a, besides the Sobolev order
s and the symbolic order m (cf. [11] for detailed calculations). This observation entails,
in particular, that the operator norm is uniformly bounded with respect to γ and other
additional parameters from which the symbol of the operator might possibly depend, as a
bounded mapping.

From the Sobolev continuity of pseudodifferential operators quoted above, and using
that the operator � maps isomorphically conormal Sobolev spaces in R

n
+ onto ordinary

Sobolev spaces in R
n, we easily derive the following result.

Proposition 3.8. If m ∈ Z and a ∈ Γm, then the conormal operator Opγ
�
(a) extends to a linear-

bounded operator from Hs+m
tan,γ(R

n
+) to Hs

tan,γ(R
n
+), for every integer s ≥ 0, such that s + m ≥ 0;

moreover the operator norm of such an extension is uniformly bounded with respect to γ .

Remark 3.9. We point out that the statement above only deals with integer orders of symbols
and conormal Sobolev spaces. The reason is that, in Section 2, conormal Sobolev spaces were
only defined for positive integer orders. In principle, this lack could be removed by extending
the definition of conormal spaces Hs

tan(R
n
+) to any real order s: this could be trivially done,

just definingHs
tan(R

n
+) to be the pull-back, by the operator �, of functions inHs(Rn). However,

this extension to fractional exponents seems to be useless for the subsequent developments.
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As regards to the action of conormal operators on the mixed spacesHs,r
tan,γ(R

n
+), similar

arguments to those used in the proof of Proposition 3.8 lead to the following.

Proposition 3.10. Let a = a(x, ξ, γ) be a symbol in Γm, for m ∈ Z. Then for all integers r, s ∈ N,
such that s ≥ r, s > 0, and r +m ≥ 0, Opγ� (a) = a(x,Z, γ) extends by continuity to a linear-bounded
operator

Opγ� (a) : H
s+m,r+m
tan,γ (Rn

+) −→ Hs,r
tan,γ(R

n
+). (3.34)

Moreover, the operator norm of such an extension is uniformly bounded with respect to γ .

4. Proof of Theorem 1.1

This section is entirely devoted to the proof of Theorem 1.1.

4.1. The Strategy of the Proof:
Comparison with the Strongly Well-Posed Case

As it was already pointed out in the Introduction, in order to solve the BVP (1.2)-(1.3) in
L2, Theorem 1.1 requires an additional tangential/conormal regularity of the corresponding
data. The precise increase of regularity needed for the data is prescribed by the energy
inequality (1.7): to estimate the L2-norm of the solution, in the interior and on the boundary
of the domain, we lose r conormal derivatives and s− r tangential derivatives with respect to
the interior source term F, and s (tangential) derivatives with respect to the boundary datum
G.

In [2], the conormal regularity of weak solutions to the BVP (1.2)-(1.3) was studied,
under the assumption that no loss of derivatives occurs in the estimate of the solution by the
data. To prove the result of [2, Theorem 15], the solution u to (1.2)-(1.3) was regularized by
a family of tangential mollifiers Jε, 0 < ε < 1, defined by Nishitani and Takayama in [9] as
a suitable combination of the operator � and the standard Friedrichs’mollifiers. The essential
point of the analysis performed in [2] was to notice that the mollified solution Jεu solves the
same problem (1.2)-(1.3), as the original solution u. The data of the problem for Jεu come from
the regularization, by Jε, of the data involved in the original problem for u; furthermore, an
additional term [Jε, L]u, where [Jε, L] is the commutator between the differential operator L
and the tangential mollifier Jε, appears into the equation satisfied by Jεu. Because the energy
estimate associated to a strong L2-well-posed problem does not lose derivatives, actually this
term can be incorporated into the source term of the equation satisfied by Jεu.

In the case of Theorem 1.1, where the a priori estimate (1.7) exhibits a finite loss of
regularity with respect to the data, this technique seems to be unsuccessful, since [Jε, L]u
cannot be absorbed into the right-hand side without losing derivatives on the solution u; on
the other hand, it seems that the same term cannot be merely reduced to a lower-order term
involving the smoothed solution Jεu, as well (this should require a sharp control of the error
term u − Jεu).

These observations lead to develop another technique, where the tangential mollifier
Jε is replaced by the family of operators (3.32), involved in the characterization of regularity
given by Proposition 3.2. Instead of studying the problem satisfied by the smoothed
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solution Jεu, here we consider the problem satisfied by λ
m−1,γ
δ

(Z)u. As before, a new term

[λm−1,γ
δ (Z), L]u appears which takes account of the commutator between the differential

operator L and the conormal operator λm−1,γ
δ

(Z). Since we assume the weak well-posedness
of the BVP (1.2)-(1.3) to be preserved under lower order terms, the approach consists of
treating the commutator [λm−1,γ

δ
(Z), L]u as a lower-order term within the interior equation

for λm−1,γ
δ

(Z)u (see (4.10)) (differently from the strongly L2-well-posed case studied in [2],
the stability of problem (1.2)-(1.3) under lower-order perturbations is no longer a trivial
consequence of the well-posedness itself. In Theorem 1.1, this stability is required as an
additional hypothesis about the BVP); this is made possible by taking advantage from the
invertibility of the operator λm−1,γ

δ (Z).
We argue by induction on the integer order m ≥ 1. Let us take arbitrary data F ∈

Hs+m,r+m
tan,γ (Rn

+), G ∈ Hs+m
γ (Rn−1), and fix an arbitrary matrix-valued function B ∈ C∞

(0)(R
n
+) (as

the lower order term in the interior equation (1.2)).
Because of the inductive hypothesis, we already know that the unique L2-solution u to

(1.2)-(1.3) actually belongs toHm−1
tan,γ(R

n
+) and u

I
|x1=0 belongs toH

m−1
γ (Rn−1), provided that γ is

taken to be larger than a certain constant γm−1 ≥ 1; moreover the solution u obeys the estimate
(1.8) of orderm − 1

γ‖u‖2
Hm−1

tan,γ (R
n
+)
+
∥∥∥uI|x1=0

∥∥∥
2

Hm−1
γ (Rn−1)

≤ Cm−1

(
1

γ2s+1
‖F‖2Hs+m−1,r+m−1

tan,γ (Rn
+)
+

1
γ2s

‖G‖2
Hs+m−1

γ (Rn−1)

)
,

(4.1)

where the positive constant Cm−1, as well as γm−1, only depends on the smoothness order m
and the L∞-norm of a finite number (depending onm itself) of conormal derivatives of B (cf.
(3.30)), besides the coefficients Aj (1 ≤ j ≤ n) of L and the integer numbers r and s.

In order to increase the conormal regularity of the solution u by order one, we are
going to act on u by the conormal operator λm−1,γ

δ
(Z); then we consider the analogue of the

original problem (1.2)-(1.3) satisfied by λm−1,γ
δ (Z)u.

4.2. A Modified Version of the Conormal Operator λm−1,γ
δ

(Z)

Due to some technical reasons that will be clarified in Section 4.3, we need to slightly modify
the conormal operator λm−1,γ

δ
(Z) to be applied to the solution u of the original BVP (1.2)-(1.3),

as was described in the preceding section.
The first step is to decompose the weight function λ

m−1,γ
δ as the sum of two

contributions. To do so, we proceed as follows. Firstly, we take an arbitrary positive, even
function χ ∈ C∞(Rn)with the following properties:

0 ≤ χ(x) ≤ 1, ∀x ∈ R
n, χ(x) ≡ 1, for |x| ≤ 1

2
, χ(x) ≡ 0, for |x| > 1. (4.2)
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Then, we set

λ
m−1,γ
χ,δ (ξ) := χ(D)

(
λ
m−1,γ
δ

)
(ξ) =

(
F−1χ ∗ λm−1,γ

δ

)
(ξ),

rm,δ
(
ξ, γ
)
:= λm−1,γ

δ (ξ) − λm−1,γ
χ,δ (ξ) =

(
I − χ(D)

)(
λ
m−1,γ
δ

)
(ξ).

(4.3)

The following result (the proof of which is postponed to Appendix A) shows that the function
λ
m−1,γ
χ,δ essentially behaves like λm−1,γ

δ .

Lemma 4.1. Let the function χ ∈ C∞(Rn) satisfy the assumptions in (4.2). Then λm−1,γ
χ,δ

is a symbol

in Γm−1; moreover for every multi-index α ∈ N
n, there exists a positive constant Cm,α, independent of

γ and δ, such that

∣∣∣∂αξ λ
m−1,γ
χ,δ (ξ)

∣∣∣ ≤ Cm,αλ
m−1−|α|,γ
δ (ξ), ∀ξ ∈ R

n. (4.4)

An immediate consequence of Lemma 4.1 and (4.3) is that rm,δ is also a γ-depending
symbol in Γm−1.

Let us define with the obvious meaning of the notations

λ
m−1,γ
χ,δ (D) := Opγ

(
λ
m−1,γ
χ,δ

)
, rm,δ

(
D, γ

)
:= Opγ(rm,δ),

λ
m−1,γ
χ,δ (Z) := Opγ�

(
λ
m−1,γ
χ,δ

)
, rm,δ

(
Z, γ

)
:= Opγ� (rm,δ).

(4.5)

The second important result is concerned with the conormal operator rm,δ(Z, γ) = Opγ
�
(rm,δ)

and tells that it essentially behaves as a regularizing operator on conormal Sobolev spaces.

Lemma 4.2. For every k ∈ N, the conormal operator rm,δ(Z, γ) extends as a linear-bounded operator,
still denoted by rm,δ(Z, γ), from L2(Rn

+) toH
k
tan,γ(R

n
+). Moreover there exists a positive constant Cm,k,

depending only on k andm, such that for all γ ≥ 1 and δ ∈ ]0, 1]

∥∥rm,δ
(
Z, γ

)
u
∥∥
Hk

tan,γ (R
n
+)
≤ Cm,kγ

k‖u‖L2(Rn
+), ∀u ∈ L2(Rn

+). (4.6)

Remark 4.3. In the framework of the general theory of pseudodifferential operators, the
procedure adopted to define the symbol λm−1,γ

χ,δ is standard and is used to modify an arbitrary
symbol in such a way to make properly supported the corresponding pseudodifferential
operator (see [13] for the definition of a properly supported operator and an extensive
description of the method). As a general issue, one can prove that the resulting properly
supported operator differs from the original one by a regularizing remainder. Essentially,
an easy adaptation of the same arguments to the framework of conormal spaces in R

n
+ can

be employed to prove the regularizing action of the conormal operator rm,δ(Z, γ) stated by
Lemma 4.2.
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According to (4.3), we decompose

λ
m−1,γ
δ (Z) = λm−1,γ

χ,δ (Z) + rm,δ
(
Z, γ

)
. (4.7)

As a consequence of Lemmas 4.1 and 4.2, the role of the family of conormal oper-
ators {λm−1,γ

δ (Z)}0<δ≤1 in the characterization of the conormal regularity provided by
Proposition 3.2 (cf. also (3.33)) can also be played by the family of “modified” operators
{λm−1,γ

χ,δ (Z)}
0<δ≤1

, namely, we have the following.

Corollary 4.4. For every positive integerm and γ ≥ 1, u ∈ Hm
tan,γ(R

n
+) if and only if u ∈ Hm−1

tan,γ(R
n
+)

and the set {‖λm−1,γ
χ,δ (Z)u‖

L2(Rn
+)
}
0<δ≤1

is bounded.

In order to suitably handle the commutator between the differential operator L

and the conormal operator λm−1,γ
χ,δ

(Z), that comes from writing down the problem satisfied

by λ
m−1,γ
χ,δ (Z)u (see Sections 4.3.1 and 4.3.2), it is useful to analyze the behavior of the

pseudodifferential operators λm−1,γ
χ,δ

(D), when interacting with another pseudodifferential
operator by composition and commutation. The following lemma analyzes these situations;
for later use, it is convenient to replace in our reasoning the function λm−1,γ

χ,δ by a general γ-
depending symbol aδ preserving the same kind of decay properties as in (4.4).

Lemma 4.5. Let {aδ}0<δ≤1 be a family of symbols aδ = aδ(x, ξ, γ) ∈ Γr−1, r ∈ R, such that for all
multi-indices α, β ∈ N

n there exists a positive constant Cr,α,β, independent of γ and δ, for which

∣∣∣∂αξ ∂
β
xaδ

(
x, ξ, γ

)∣∣∣ ≤ Cr,α,βλ
r−1−|α|,γ
δ (ξ), ∀x, ξ ∈ R

n. (4.8)

Let b = b(x, ξ, γ) be another symbol in Γl, for l ∈ R.
Then, for every δ ∈ ]0, 1], the product Opγ(aδ)Opγ(b) is a pseudodifferential operator with

symbol aδ#b in Γl+r−1. Moreover, for all multi-indices α, β ∈ N
n there exists a constant Cr,l,α,β,

independent of γ and δ, such that

∣∣∣∂αξ ∂
β
x(aδ#b)

(
x, ξ, γ

)∣∣∣ ≤ Cr,l,α,βλ
l+r−1−|α|,γ
δ (ξ), ∀x, ξ ∈ R

n. (4.9)

Under the same hypotheses, Opγ(aδ)Opγ(b)λ̃−m+1,γ
δ

(D) is a pseudodifferential operator with symbol

(aδ#b)λ̃
−m+1,γ
δ in Γl+r−m; moreover, {(aδ#b)λ̃−m+1,γ

δ }0<δ≤1 is a bounded subset of Γl+r−m. Eventually,

if the symbol aδ is scalar-valued, [Opγ(aδ),Opγ(b)]λ̃−m+1,γ
δ

(D) is a pseudodifferential operator with
symbol cδ ∈ Γl+r−m−1, and {cδ}0<δ≤1 is a bounded subset of Γl+r−m−1.

The proof of Lemma 4.5 is postponed to Appendix A.

Remark 4.6. That Opγ(aδ)Opγ(b), Opγ(aδ)Opγ(b)λ̃−m+1,γ
δ

(D) and [Opγ(aδ),Opγ(b)]λ̃−m+1,γ
δ

(D)
have symbols belonging, respectively, to Γl+r−1, Γl+r−m and Γl+r−m−1 (for scalar-valued aδ)
follows at once from the standard rules of symbolic calculus summarized in Proposition 3.6.
The nontrivial part of the statement above (although deduced from the asymptotic formula
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(3.23) with a minor effort) is the one asserting that the symbol of Opγ(aδ)Opγ(b) enjoys
estimates (4.9); indeed, these estimates give the precise dependence on δ of the decay at
infinity of this symbol. Then the remaining assertions in Lemma 4.5 easily follow from (4.9)
itself.

Remark 4.7. In view of Proposition 3.8, the results on symbols collected in Lemma 4.5 can be
used to study the conormal Sobolev continuity of the related conormal operators.

To be definite, for every nonnegative integer number s, such that s + l + r − m
is also nonnegative, Proposition 3.8 and Lemma 4.5 imply that the conormal operator
Opγ

�
(aδ)Opγ

�
(b)λ̃−m+1,γ

δ
(Z) extends as a linear-bounded mapping from Hs+l+r−m

tan,γ (Rn
+) into

Hs
tan,γ(R

n
+); moreover, its operator norm is uniformly bounded with respect to γ and δ.

If in addition s+l+r−m ≥ 1 and aδ are scalar-valued, then [Opγ
�
(aδ),Opγ

�
(b)]λ̃−m+1,γ

δ
(Z)

extends as a linear-bounded operator from Hs+l+r−m−1
tan,γ (Rn

+) into Hs
tan,γ(R

n
+), and again its

operator norm is uniformly bounded with respect to γ and δ.
These mapping properties will be usefully applied in Sections 4.3 and 4.5.

4.3. The Interior Equation

We follow the strategy already explained in Section 4.1, where now the role of the operator
λ
m−1,γ
δ

(Z) is replaced by λ
m−1,γ
χ,δ

(Z). Since λ
m−1,γ
χ,δ

∈ Γm−1 (because of Lemma 4.1) and, for

γ ≥ γm−1, u ∈ Hm−1
tan,γ(R

n
+) (from the inductive hypothesis), after Proposition 3.8 we know that

λ
m−1,γ
χ,δ

(Z)u ∈ L2(Rn
+).

Applying λ
m−1,γ
χ,δ

(Z) to (1.2) (where B is just the multiplication by B), we find that

λ
m−1,γ
χ,δ (Z)umust solve

(
γ + L + B

)(
λ
m−1,γ
χ,δ (Z)u

)
+
[
λ
m−1,γ
χ,δ (Z), L + B

]
u = λm−1,γ

χ,δ (Z)F, in R
n
+. (4.10)

We are going now to show that the commutator term [λm−1,γ
χ,δ

(Z), L+B]u in the above equation

can be actually considered as a lower-order term with respect to λm−1,γ
χ,δ (Z)u.

To this end, we may decompose this term as the sum of two contributions
corresponding, respectively, to the tangential and normal components of L.

First, in view of (1.5), (1.6), we may write the coefficient A1 of the normal derivative
∂1 in the expression (1.4) of L as

A1 = A1
1 +A

2
1, A1

1 :=

(
AI,I

1 0

0 0

)
, A2

1|x1=0 = 0, (4.11)

hence

A2
1∂1 = H1Z1, (4.12)



International Journal of Differential Equations 19

whereH1(x) = x−1
1 A

2
1(x) ∈ C∞

(0)(R
n
+). Accordingly, we split L as

L = A1
1∂1 + Ltan, Ltan := H1Z1 +

n∑
j=2

AjZj. (4.13)

Consequently, we have

[
λ
m−1,γ
χ,δ (Z), L + B

]
u =

[
λ
m−1,γ
χ,δ (Z), A1

1∂1
]
u +

[
λ
m−1,γ
χ,δ (Z), Ltan + B

]
u. (4.14)

Note that Ltan + B is just a conormal operator of order 1, according to the terminology
introduced in Section 3.2.

4.3.1. The Tangential Commutator

Firstly, we study the tangential commutator [λm−1,γ
χ,δ (Z), Ltan + B]u. Using the identity

λ̃
−m+1,γ
δ

(Z)λm−1,γ
δ

(Z) = I and (4.7), the latter can be written in terms of λγ,m−1
χ,δ

(Z)u, modulo
some smoothing reminder. Indeed we compute

[
λ
m−1,γ
χ,δ (Z), Ltan + B

]
u =

[
λ
m−1,γ
χ,δ (Z), Ltan + B

]
λ̃
−m+1,γ
δ (Z)

(
λ
m−1,γ
χ,δ (Z)u + rm,δ

(
Z, γ

)
u
)

=
[
λ
m−1,γ
χ,δ (Z), Ltan + B

]
λ̃
−m+1,γ
δ (Z)

(
λ
m−1,γ
χ,δ (Z)u

)
+ sm,δ

(
x,Z, γ

)
u,

(4.15)

where we have set for short

sm,δ
(
x,Z, γ

)
:=
[
λ
m−1,γ
χ,δ (Z), Ltan + B

]
λ̃
−m+1,γ
δ (Z)rm,δ

(
Z, γ

)
. (4.16)

4.3.2. The Normal Commutator

First of all, we notice that, due to the structure of the matrix A1
1, the commutator

[λγ,m−1
χ,δ (Z), A1

1∂1] acts nontrivially only on the noncharacteristic component of the vector
function u; namely, we have:

[
λ
m−1,γ
χ,δ (Z), A1

1∂1
]
u =

⎛
⎝
[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
uI

0

⎞
⎠. (4.17)

Therefore, we focus on the study of the first nontrivial component of the commutator term.
Note that the commutator [λm−1,γ

χ,δ (Z), AI,I
1 ∂1] cannot be merely treated by the tools of the

conormal calculus developed in Section 3.2, because of the presence of the effective normal
derivative ∂1 (recall that A

I,I
1 is invertible). This section is devoted to the study of the normal

commutator [λm−1,γ
χ,δ

(Z), AI,I
1 ∂1]uI . The following result is of fundamental importance.
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Proposition 4.8. For all δ ∈ ]0, 1], γ ≥ 1 and m ∈N, there exists a symbol qm,δ(x, ξ, γ) ∈ Γm−2 such
that

[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
w = qm,δ

(
x,Z, γ

)
(∂1w), ∀w ∈ C∞

(0)(R
n
+). (4.18)

Moreover, the symbol qm,δ(x, ξ, γ) obeys the following estimates. For all α, β ∈ N
n, there exists a

positive constant Cm,α,β, independent of γ and δ, such that

∣∣∣∂αξ ∂
β
xqm,δ

(
x, ξ, γ

)∣∣∣ ≤ Cm,α,βλ
m−2−|α|,γ
δ (ξ), ∀x, ξ ∈ R

n. (4.19)

Proof. That qm,δ(x, ξ, γ), satisfying estimates (4.19), is a symbol in Γm−2 actually follows
arguing from (4.19) and inequalities (3.18) as was already done for λm−1,γ

δ
(ξ) and λ̃

−m+1,γ
δ

(ξ)
(see Section 3.2).

For given w ∈ C∞
(0)(R

n
+), let us explicitly compute ([λm−1,γ

χ,δ (Z), AI,I
1 ∂1]w)

�
; using the

identity (∂1w)� = e−x1(Z1w)� and that λm−1,γ
χ,δ

(Z) and Z1 commute, we find for every x ∈ R
n

([
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
w
)�
(x)

= λm−1,γ
χ,δ (D)

(
A
I,I,	

1 e−(·)1(Z1w)�
)
(x) −AI,I,	

1 (x)e−x1
(
Z1λ

m−1,γ
χ,δ (Z)w

)�
(x)

= λm−1,γ
χ,δ (D)

(
A
I,I,	

1 e−(·)1(Z1w)�
)
(x) −AI,I,	

1 (x)e−x1
(
λ
m−1,γ
χ,δ (Z)Z1w

)�
(x)

= λm−1,γ
χ,δ (D)

(
A
I,I,	

1 e−(·)1(Z1w)�
)
(x) −AI,I,	

1 (x)e−x1λm−1,γ
χ,δ (D)(Z1w)�(x).

(4.20)

Observing that λm−1,γ
χ,δ (D) acts on the space S(Rn) as the convolution by the inverse Fourier

transform of λm−1,γ
χ,δ , the preceding expression can be equivalently restated as follows:

([
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
w
)�
(x) = F−1

(
λ
m−1,γ
χ,δ

)
∗AI,I,	

1 e−(·)1(Z1w)�(x)

−AI,I,	

1 (x)e−x1F−1
(
λ
m−1,γ
χ,δ

)
∗ (Z1w)�

=
〈
F−1

(
λ
m−1,γ
χ,δ

)
, A

I,I,	

1 (x − ·)e−(x1−(·)1)(Z1w)�(x − ·)
〉

−AI,I,	

1 (x)e−x1〈F−1
(
λ
m−1,γ
χ,δ

)
, (Z1w)�(x − ·)〉

=
〈
η
m−1,γ
δ

, χ(·)AI,I,	

1 (x − ·)e−(x1−(·)1)(Z1w)�(x − ·)
〉

−
〈
η
m−1,γ
δ

, χ(·)AI,I,	

1 (x)e−x1(Z1w)�(x − ·)
〉

=
〈
η
m−1,γ
δ

, χ(·)AI,I,	

1 (x − ·)(∂1w)�(x − ·)
〉

−
〈
η
m−1,γ
δ

, χ(·)AI,I,	

1 (x)e−(·)1(∂1w)�(x − ·)
〉

=
〈
η
m−1,γ
δ , χ(·)

[
A
I,I,	

1 (x − ·) −AI,I,	

1 (x)e−(·)1
]
(∂1w)�(x − ·)

〉
,

(4.21)
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where ηm−1,γ
δ

:= F−1(λm−1,γ
δ

) and the identity F−1(λm−1,γ
χ,δ

) = χη
m−1,γ
δ

(following at once from
(4.3)) has been used. Just for brevity, let us further set

K(x, y) :=
[
A
I,I,	

1

(
x − y) −AI,I,	

1 (x)e−y1
]
χ
(
y
)
. (4.22)

Thus the identity above reads as

([
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
w
)�
(x) =

〈
η
m−1,γ
δ , K(x, ·)(∂1w)�(x − ·)

〉
, (4.23)

where the “kernel”K(x, y) is a bounded function in C∞(Rn ×R
n), with bounded derivatives

of all orders. This regularity of K is due to the presence of the function χ in formula (4.22);
actually the vanishing of χ at infinity prevents the blow-up of the exponential factor e−y1 , as
y1 → −∞. We point out that this is just the step of our analysis of the normal commutator,
where this function χ is needed.

After (4.22), we also have thatK(x, 0) = 0; then, by a Taylor expansion with respect to
y, we can represent the kernel K(x, y) as follows:

K(x, y) =
n∑
k=1

bk
(
x, y

)
yk, (4.24)

where bk(x, y) are given bounded functions in C∞(Rn × R
n), with bounded derivatives; it

comes from (4.22) and (4.2) that bk can be defined in such a way that for some ε > 1 and all
x ∈ R

n there holds

supp bk(x, ·) ⊆
{∣∣y∣∣ ≤ ε}. (4.25)

Inserting (4.24) in (4.23) and using standard properties of the Fourier transform we get

([
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
w
)�
(x)=

〈
η
m−1,γ
δ ,

n∑
k=1

bk(x, ·)(·)k(∂1w)�(x − ·)
〉

=
n∑
k=1

〈
(·)kF−1

(
λ
m−1,γ
δ

)
, bk(x, ·)(∂1w)�(x − ·)

〉

= −
n∑
k=1

〈
F−1

(
Dkλ

m−1,γ
δ

)
, bk(x, ·)(∂1w)�(x − ·)

〉

= −
n∑
k=1

〈
Dkλ

m−1,γ
δ

, F−1
(
bk(x, ·)(∂1w)�(x − ·)

)〉

= −
n∑
k=1

∫

Rn

Dkλ
m−1,γ
δ (ξ)F−1

(
bk(x, ·)(∂1w)�(x − ·)

)
(ξ)dξ

=−
n∑
k=1

(2π)−n
∫

Rn

Dkλ
m−1,γ
δ (ξ)

(∫

Rn

eiξ·ybk
(
x, y

)
(∂1w)�

(
x−y)dy

)
dξ,

(4.26)
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where we have set Dk := −i∂ξk (for each k = 1, . . . , n); note that for w ∈ C∞
(0)(R

n
+) and any

x ∈ R
n, the function bk(x, ·)(∂1w)�(x − ·) belongs to S(Rn); hence the last expression in (4.26)

makes sense. Henceforth, we replace (∂1w)� by any function v ∈ S(Rn). Our next goal is
writing the integral operator

(2π)−n
∫

Rn

Dkλ
m−1,γ
δ (ξ)

(∫

Rn

eiξ·ybk
(
x, y

)
v
(
x − y)dy

)
dξ (4.27)

as a pseudodifferential operator.
Firstly, we make use of the inversion formula for the Fourier transformation and

Fubini’s theorem to recast (4.27) as follows:

∫

Rn

eiξ·ybk
(
x, y

)
v
(
x − y)dy

= (2π)−n
∫

Rn

eiξ·ybk
(
x, y

)(∫

Rn

ei(x−y)·ηv̂
(
η
)
dη

)
dy

= (2π)−n
∫

Rn

eix·η
(∫

Rn

e−iy·(η−ξ)bk
(
x, y

)
dy

)
v̂
(
η
)
dη

= (2π)−n
∫

Rn

eix·ηb̂k
(
x, η − ξ)v̂(η)dη;

(4.28)

for every index k, b̂k(x, ζ) denotes the partial Fourier transform of bk(x, y) with respect to y.
Then, inserting (4.28) into (4.27), we obtain

(2π)−n
∫

Rn

Dkλ
m−1,γ
δ (ξ)

(∫

Rn

eiξ·ybk
(
x, y

)
v
(
x − y)dy

)
dξ

= (2π)−2n
∫

Rn

Dkλ
m−1,γ
δ (ξ)

(∫

Rn

eix·ηb̂k
(
x, η − ξ)v̂(η)dη

)
dξ.

(4.29)

Recall that, for each x ∈ R
n, the function y �→ bk(x, y) belongs to C∞

0 (Rn) (and its compact
support does not depend on x, see (4.25)); thus, for each x ∈ R

n, b̂k(x, ζ) is rapidly decreasing
in ζ. Because of the estimates for derivatives of λm−1,γ

δ and since v̂(η) is also rapidly decreasing,
Fubini’s theorem can be used to change the order of the integrations within (4.29). So we get

(2π)−2n
∫

Rn

Dkλ
m−1,γ
δ (ξ)

(∫

Rn

eix·ηb̂k
(
x, η − ξ)v̂(η)dη

)
dξ

= (2π)−2n
∫

Rn

eix·η
(∫

Rn

b̂k
(
x, η − ξ)Dkλ

m−1,γ
δ (ξ)dξ

)
v̂
(
η
)
dη

= (2π)−n
∫

Rn

eix·ηqk,m,δ
(
x, η, γ

)
v̂
(
η
)
dη,

(4.30)
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where we have set

qk,m,δ
(
x, ξ, γ

)
:= (2π)−n

∫

Rn

b̂k
(
x, η

)
Dkλ

m−1,γ
δ

(
ξ − η)dη. (4.31)

Notice that formula (4.31) defines qk,m,δ as the convolution of the functions b̂k(x, ·) and
Dkλ

m−1,γ
δ

; hence qk,m,δ is a well-defined C∞-function in R
n × R

n.
The proof of Proposition 4.8 will be accomplished, once the following lemma is

proved.

Lemma 4.9. For every m ∈ N, k = 1, . . . , n and all α, β ∈ Nn, there exists a positive constant
Ck,m,α,β, independent of γ and δ, such that

∣∣∣∂αξ ∂
β
xqk,m,δ

(
x, ξ, γ

)∣∣∣ ≤ Ck,m,α,βλ
m−2−|α|,γ
δ (ξ), ∀x, ξ ∈ R

n. (4.32)

It comes from Lemma 4.9 and the left inequality in (3.18) that, for each index k, the
function qk,m,δ is a symbol in Γm−2; notice however that the set {qk,m,δ}0<δ≤1 is bounded in
Γm−1 but not in Γm−2. The proof of Lemma 4.9 is postponed to Appendix A.

Now, we continue the proof of Proposition 4.8.

End of the Proof of Proposition 4.8

The last row of (4.30) provides the desired representation of (4.27) as a pseudodifferential
operator; actually it gives the identity

(2π)−n
∫

Rn

Dkλ
m−1,γ
δ (ξ)

(∫

Rn

eiξ·ybk
(
x, y

)
v
(
x − y)dy

)
dξ = Opγ

(
qk,m,δ

)
v(x), (4.33)

for every v ∈ S(Rn).
Inserting the above formula (with v = (∂1w)�) into (4.26) finally gives

([
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
w
)�
(x) = Opγ

(
qm,δ

)
(∂1w)�(x), (4.34)

where qm,δ = qm,δ(x, ξ, γ) is the symbol in Γm−2 defined by

qm,δ
(
x, ξ, γ

)
:= −

n∑
k=1

qk,m,δ
(
x, ξ, γ

)
. (4.35)

Of course, formula (4.18) is equivalent to (4.34), in view of (3.26). Estimates (4.19) are
satisfied by qm,δ by summation over k of the similar estimates satisfied by qm,δ,k (cf.
Lemma 4.9).

This ends the proof of Proposition 4.8.

Now, we are going to show how the representation in (4.18) can be exploited to treat
the normal commutator as a lower-order term in (4.10) satified by λm−1,γ

χ,δ
(Z)u.
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Firstly, we notice that formula (4.18) has been deduced for smooth functions w, while
u is just an L2-function (actually it belongs to Hm−1

tan (Rn
+), by the inductive hypothesis). In

order to use (4.18) for u, we need to approximate the latter by smooth functions. This can be
done by the help of [14, Proposition 1, Theorem 1]; from there, we know that there exists a
sequence {uν}ν in C∞

(0)(R
n
+) such that

uν −→ u, in L2(Rn
+),

(L + B)uν −→ (L + B)u, in L2(Rn
+),

uIν|x1=0 −→ uI|x1=0, in H−1/2
(
R
n−1
)
, as ν −→ +∞.

(4.36)

For each index ν, the regular function uν ∈ C∞
(0)(R

n
+) solves the same BVP as the function u,

with new data Fν, Gν defined by

Fν :=
(
γ + L + B

)
uν, Gν :=Muν|x1=0. (4.37)

It immediately follows from (4.36) that the regular data Fν,Gν approximate the original data
F,G by

Fν −→ F, in L2(Rn
+), Gν −→ G, in H−1/2

(
R
n−1
)
, as ν −→ +∞. (4.38)

The same analysis performed to the BVP (1.2)-(1.3) can be applied to the BVP solved by uν,
for each ν; in particular, we find that λm−1,γ

χ,δ (Z)uν satisfies the analogue to (4.10), where F is
replaced by Fν. Because of the regularity of uν, formula (4.18) can be used to represent the
normal commutator term [λm−1,γ

χ,δ (Z), AI,I
1 ∂1]uIν. Directly from system (γ + L + B)uν = Fν, ∂1uIν

can be represented in terms of tangential derivatives of uν only, as follows:

∂1u
I
ν =

(
AI,I

1

)−1
FIν +LIuν, (4.39)

where LI = LI(x,Z, γ) denotes the tangential partial differential operator

LIuν := −
(
AI,I

1

)−1
⎡
⎢⎣γuIν +H1Z1u

II
ν +

⎛
⎝

n∑
j=2

AjZjuν + Buν

⎞
⎠

I
⎤
⎥⎦, (4.40)

and we have set H1 := x−1
1 A

I,II
1 (recall that H1 ∈ C∞

(0)(R
n
+) since A

I,II
1|x1=0 = 0). Inserting (4.39)

into (4.18), written for w = uIν, leads to

[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
uIν = qm,δ

(
x,Z, γ

)((
AI,I

1

)−1
FIν +LIuν

)
. (4.41)
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On the other hand, plugging λ̃−m+1,γ
δ

(Z)λm−1,γ
χ,δ

(Z) + λ̃−m+1,γ
δ

(Z)rm,δ(Z, γ) = I into (4.41) gives

[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
uIν = qm,δ

(
x,Z, γ

)((
AI,I

1

)−1
FIν

)

+ qm,δ
(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)

(
λ
m−1,γ
χ,δ (Z)uν

)

+ qm,δ
(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)rm,δ

(
Z, γ

)
uν.

(4.42)

Now, we let ν → +∞.
From (1.2) (written for u and uν), and using that u�ν → u� in L2(Rn), one finds

(A1∂1uν)
� −→ (A1∂1u)

�, in S′(Rn), (4.43)

hence (because �−1 is a linear continuous operator from S′(Rn) ⊂ D′(Rn) to D′(Rn
+))

λ
m−1,γ
χ,δ (Z)

(
AI,I

1 ∂1u
I
ν

)
−→ λ

m−1,γ
χ,δ (Z)

(
AI,I

1 ∂1u
I
)
, in D′(Rn

+). (4.44)

On the other hand, u�ν → u� in L2(Rn) implies that

λ
m−1,γ
χ,δ (Z)(uν) −→ λ

m−1,γ
χ,δ (Z)(u), in D′(Rn

+), (4.45)

hence

AI,I
1 ∂1

(
λ
m−1,γ
χ,δ (Z)

(
uIν

))
−→ AI,I

1 ∂1
(
λ
m−1,γ
χ,δ (Z)

(
uI
))
, in D′(Rn

+). (4.46)

Adding (4.44), (4.46) then gives

[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
uIν −→

[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
uI, in D′(Rn

+). (4.47)

As to the right-hand side of (4.42), all the involved operators, acting on Fν and uν, are
conormal. Hence the L2-convergences uν → u and Fν → F and the fact that conormal
operators continuously extend to the space of distributions u ∈ D′(Rn

+), for which u� ∈ S′(Rn),
give the convergences

qm,δ
(
x,Z, γ

)((
AI,I

1

)−1
FIν

)
−→ qm,δ

(
x,Z, γ

)((
AI,I

1

)−1
FI
)
,

qm,δ
(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)

(
λ
m−1,γ
χ,δ (Z)uν

)
−→ qm,δ

(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)

(
λ
m−1,γ
χ,δ (Z)u

)
,

qm,δ
(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)rm,δ

(
Z, γ

)
uν −→ qm,δ

(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)rm,δ

(
Z, γ

)
u, in D′(Rn

+).
(4.48)
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Therefore, the uniqueness of the limit inD′(Rn
+) together with (4.47), (4.48) implies that (4.42)

holds true for the L2-solution u of (1.2)-(1.3), that is,

[
λ
m−1,γ
χ,δ (Z), AI,I

1 ∂1
]
uI = qm,δ

(
x,Z, γ

)((
AI,I

1

)−1
FI
)

+ qm,δ
(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)

(
λ
m−1,γ
χ,δ (Z)u

)

+ qm,δ
(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)rm,δ

(
Z, γ

)
u.

(4.49)

Let us come back to the commutator term [λm−1,γ
χ,δ (Z), L + B]u appearing in the interior

equation (4.10).
Substituting (4.15), (4.49) into (4.14) gives for this term the following representation:

[
λ
m−1,γ
χ,δ (Z), L + B

]
u = ρm,δ

(
x,Z, γ

)(
λ
m−1,γ
χ,δ (Z)u

)
+ τm,δ

(
x,Z, γ

)
u + ηm,δ

(
x,Z, γ

)
F, (4.50)

where we have set for short

ρm,δ
(
x,Z, γ

)
:=
[
λ
m−1,γ
χ,δ (Z), Ltan + B

]
λ̃
−m+1,γ
δ (Z) +

⎛
⎝qm,δ

(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)

0

⎞
⎠,

τm,δ
(
x,Z, γ

)
:= sm,δ

(
x,Z, γ

)
+

⎛
⎝qm,δ

(
x,Z, γ

)LI λ̃
−m+1,γ
δ (Z)rm,δ

(
Z, γ

)

0

⎞
⎠,

ηm,δ
(
x,Z, γ

)
:=

⎛
⎝qm,δ

(
x,Z, γ

)(
AI,I

1

)−1
0

0 0

⎞
⎠.

(4.51)

Consequently, the interior equation (4.10) can be restated as

(
γ+L+B+ρm,δ

(
x,Z, γ

))(
λ
m−1,γ
χ,δ (Z)u

)
+τm,δ

(
x,Z, γ

)
u+ηm,δ

(
x,Z, γ

)
F=λm−1,γχ,δ (Z)F, in R

n
+ .

(4.52)

Since Ltan + B and LI are conormal operators with symbol in Γ1, Lemma 4.5 and
Proposition 4.8 imply that ρm,δ(x,Z, γ) is a conormal operator with symbol in Γ0, for each
0 < δ ≤ 1; moreover, it amounts that the family of symbols {ρm,δ}0<δ≤1 is a bounded subset of
Γ0. Therefore, ρm,δ(x,Z, γ) can be regarded, jointly with B, as a lower-order term in (4.52), as
considered in the statement of Theorem 1.1.

Concerning the terms τm,δ(x,Z, γ)u, ηm,δ(x,Z, γ)F, they can be both moved into the
right-hand side of (4.52), to be treated as a part of the interior source term, as will be detailed
in Section 4.5.
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4.4. The Boundary Condition

Now we are going to seek for an appropriate boundary condition to be coupled with the
interior equation (4.10), in order to state a BVP solved by λm−1,γ

χ,δ (Z)u.
To this end, it is worthwhile to make an additional hypothesis about the smooth

function χ involved in the definition of λm−1,γ
χ,δ

(Z). We assume that χ has the form

∀x =
(
x1, x

′) ∈ R
n, χ(x) = χ1(x1)χ̃

(
x′), (4.53)

where χ1 ∈ C∞(R) and χ̃ ∈ C∞(Rn−1) are given positive even functions, to be chosen in such
a way that conditions (4.2) are made satisfied.

As it was done for the analysis of the normal commutator (cf. Proposition 4.8), we start
our reasoning by dealing with smooth functions. In this case, following closely the arguments
employed to prove Proposition 4.8 and Lemma 4.9, we are able to get the following.

Proposition 4.10. Assume that χ obeys the assumptions (4.2), (4.53). Then, for all δ ∈ ]0, 1], γ ≥ 1,
andm ∈ N, the function b′m,δ(ξ

′, γ) defined by

b′m,δ
(
ξ′, γ

)
:= (2π)−n

∫

Rn

λ
m−1,γ
δ

(
η1, η

′ + ξ′
)(
e(·)1/2χ1

)∧1(
η1
)̂̃χ(η′)dη, ∀ξ′ ∈ R

n−1, (4.54)

(where ξ′ := (ξ2, . . . , ξn) are the Fourier dual variables of the tangential variables x′ = (x2, . . . , xn))
is a γ-depending symbol in R

n−1 belonging to Γm−1. Moreover, for all functions w ∈ C∞
(0)(R

n
+) there

holds

∀x′ ∈ R
n−1,

(
λ
m−1,γ
χ,δ (Z)w

)
|x1=0

(
x′) = b′m,δ

(
D′, γ

)(
w|x1=0

)(
x′), (4.55)

where one has set D′ = (D2, . . . , Dn), Dj = −i∂j (for j = 2, . . . , n) and b′
m,δ

(D′, γ) stands for the
ordinary pseudodifferential operator in R

n−1 with symbol b′m,δ.
Eventually, the following estimates are satisfied by the symbol b′

m,δ
(ξ′, γ): for all α′ =

(α2, . . . , αn) ∈ N
n−1 there exists a positive constant Cm,α′ , independent of γ and δ, such that

∣∣∣∂α′ξ′ b′m,δ
(
ξ′, γ

)∣∣∣ ≤ Cm,α′λ
m−1−|α′ |,γ
δ

(
ξ′
)
, ∀ξ′ ∈ R

n−1. (4.56)

Proof. That b′m,δ belongs to Γm−1 immediately follows from estimates (4.56), using the (n − 1)-
dimensional counterpart of (3.18).

Let w ∈ C∞
(0)(R

n
+); to find a symbol b′

m,δ
satisfying (4.55), from (4.3)we firstly compute

(
λ
m−1,γ
χ,δ (Z)w

)�
(x) = λm−1,γ

χ,δ (D)
(
w�
)
(x) =

(
F−1

(
λ
m−1,γ
χ,δ

)
∗w�

)
(x)

= 〈F−1
(
λ
m−1,γ
χ,δ

)
, w�(x − ·)〉

=
〈
F−1

(
λ
m−1,γ
δ

)
, χ(·)e(x1−(·)1)/2w

(
ex1−(·)1 , x′ − (·)′

)〉
, ∀(x1, x′) ∈ R

n,

(4.57)
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hence

λ
m−1,γ
χ,δ (Z)w(x)

=
〈
F−1

(
λ
m−1,γ
δ

)
, χ(·)e−(·)1/2w

(
x1e

−(·)1 , x′ − (·)′
)〉

=
〈
λ
m−1,γ
δ

,F−1
(
χ(·)e−(·)1/2w

(
x1e

−(·)1 , x′ − (·)′
))〉

= (2π)−n
∫
λ
m−1,γ
δ (ξ)

(∫
eiξ·yχ

(
y
)
e−y1/2w

(
x1e

−y1 , x′ − y′)dy
)
dξ, ∀x1 > 0, ∀x′ ∈ R

n−1.

(4.58)

The regularity ofw legitimates all the above calculations. Setting x1 = 0 in the last expression
above, we deduce the corresponding expression for the trace on the boundary of λm−1,γ

χ,δ
(Z)w

(
λ
m−1,γ
χ,δ (Z)w

)
|x1=0

(
x′) = (2π)−n

∫
λ
m−1,γ
δ (ξ)

(∫
eiξ·yχ

(
y
)
e−y1/2

(
w|x1=0

)(
x′ − y′)dy

)
dξ.

(4.59)

Now we substitute (4.53) into the y-integral appearing in the last expression above; then
Fubini’s theorem gives

∫
eiξ·yχ1

(
y1
)
χ̃
(
y′)e−y1/2(w|x1=0

)(
x′ − y′)dy

=
∫
eiξ

′ ·y′
(∫

eiξ1y1e−y1/2χ1
(
y1
)
dy1

)
χ̃
(
y′)(w|x1=0

)(
x′ − y′)dy′

=
(
e(·)1/2χ1

)∧1
(ξ1)

∫
eiξ

′ ·y′
χ̃
(
y′)(w|x1=0

)(
x′ − y′)dy′,

(4.60)

where ∧1 is used to denote the one-dimensional Fourier transformation with respect to y1.
Writing, by the inversion formula, (w|x1=0)(x

′ − y′) = (2π)−n+1
∫
ei(x

′−y′)·η′ŵ|x1=0(η
′)dη′ and

using once more Fubini’s theorem, we further obtain

∫
eiξ

′ ·y′
χ̃
(
y′)(w|x1=0

)(
x′ − y′)dy′

= (2π)−n+1
∫
eiξ

′ ·y′
χ̃
(
y′)
(∫

ei(x
′−y′)·η′ŵ|x1=0

(
η′
)
dη′
)
dy′

=
∫
eix

′ ·η′
(
(2π)−n+1

∫
ei(ξ

′−η′)·y′
χ̃
(
y′)dy′

)
ŵ|x1=0

(
η′
)
dη′

= (2π)−n+1
∫
eix

′ ·η′ ̂̃χ(ξ′ − η′)ŵ|x1=0
(
η′
)
dη′;

(4.61)
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∧ is used here to denote the (n − 1)-dimensional Fourier transformation with respect to x′.
Inserting (4.60), (4.61) into (4.59) then leads to

(
λ
m−1,γ
χ,δ (Z)w

)
|x1=0

(
x′)

= (2π)−n
∫
λ
m−1,γ
δ (ξ)

(
e(·)1/2χ1

)∧1
(ξ1)

(
(2π)−n+1

∫
eix

′ ·η′ ̂̃χ(ξ′ − η′)ŵ|x1=0
(
η′
)
dη′
)
dξ.

(4.62)

Because (e(·)1/2χ1)
∧1 ∈ S(R), ̂̃χ ∈ S(Rn−1), and ŵ|x1=0 ∈ S(Rn−1), the double integral

∫∫
eix

′ ·η′λm−1,γ
δ (ξ)

(
e(·)1/2χ1

)∧1
(ξ1) ̂̃χ

(
ξ′ − η′)ŵ|x1=0

(
η′
)
dη′dξ (4.63)

converges absolutely; hence Fubini’s theorem allows to exchange the order of the integrations
in (4.62) and find

(
λ
m−1,γ
χ,δ (Z)w

)
|x1=0

(
x′) = (2π)−n+1

∫
eix

′ ·η′b′m,δ
(
η′, γ

)
ŵ|x1=0

(
η′
)
dη′, (4.64)

where b′
m,δ

(η′, γ) is defined by (4.54). This shows the identity (4.55).
The proof of estimates (4.56) is similar to that of estimates (4.32) in Lemma 4.9 (see

Appendix A); so we will omit it.

Let us now illustrate how formula (4.55) can be used to derive the desired boundary
condition satisfied by λm−1,γ

χ,δ
(Z)u.

Again, let u be the L2-solution to the original BVP (1.2)-(1.3) and {uν}+∞ν=1 the
corresponding sequence in C∞

(0)(R
n
+), approximating u in the sense of (4.36).

The last convergence in (4.36) and the Sobolev continuity of standard pseudodifferen-
tial operators gives in particular that

b′m,δ
(
D′, γ

)(
uIν|x1=0

)
−→ b′m,δ

(
D′, γ

)(
uI|x1=0

)
, in H−m+1/2

(
R
n−1
)
. (4.65)

On the other hand, (4.36) and (4.52) (written for u and uν) can be used to prove that
(λm−1,γ

χ,δ
(Z)uI)|x1=0 and (λm−1,γ

χ,δ
(Z)uIν)|x1=0, for each ν, are traces well defined in H−1/2(Rn−1)

and the convergence

(
λ
m−1,γ
χ,δ (Z)uIν

)
|x1=0

−→
(
λ
m−1,γ
χ,δ (Z)uI

)
|x1=0

(4.66)

holds true, at least in D′(Rn−1). The proof of this assertion is postponed to Appendix A (see
Lemma A.2).

Since uν are smooth functions, from Proposition 4.10, it comes that for each ν:

(
λ
m−1,γ
χ,δ (Z)uIν

)
|x1=0

= b′m,δ
(
D′, γ

)(
uIν|x1=0

)
. (4.67)
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Then, letting ν → +∞, (4.65) and (4.66) yield

(
λ
m−1,γ
χ,δ (Z)uI

)
|x1=0

= b′m,δ
(
D′, γ

)(
uI|x1=0

)
. (4.68)

Recalling that M = (Id, 0), from the boundary condition (1.3) and (4.68), we immediately
find

(
M
(
λ
m−1,γ
χ,δ (Z)u

))
|x1=0

=M
(
λ
m−1,γ
χ,δ (Z)uI

)
|x1=0

=Mb′m,δ
(
D′, γ

)(
uI|x1=0

)

= b′m,δ
(
D′, γ

)(
Mu|x1=0

)
= b′m,δ

(
D′, γ

)
G.

(4.69)

4.5. Derivation of the Conormal Regularity at the Order m

We are now in the position to get the desired conormal regularity of the solution u to (1.2)-
(1.3), under the assumptions that F ∈ Hs+m,r+m

tan,γ (Rn
+), G ∈ Hs+m

γ (Rn−1). From now on, assume
that γ ≥ γm−1; so far, from the inductive hypothesis we know that, for such a γ , u belongs to
Hm−1

tan,γ(R
n
+), u

I
|x1=0 ∈ Hm−1

γ (Rn−1) and the estimate (4.1) is satisfied (see the end of Section 4.1).

Because of the calculations made in Sections 4.3 and 4.4, it follows that λm−1,γ
χ,δ (Z)u is an L2

solution of the problem

(
γ + L + B + ρm,δ

(
x,Z, γ

))(
λ
γ,m−1
χ,δ (Z)u

)

=
(
λ
m−1,γ
χ,δ (Z) − ηm,δ

(
x,Z, γ

))
F − τm,δ

(
x,Z, γ

)
u, in R

n
+,

(4.70)

M
(
λ
m−1,γ
χ,δ (Z)u

)
= b′m,δ

(
D′, γ

)
G, on R

n−1. (4.71)

The previous one reads as the original BVP (1.2)-(1.3) solved by u, where the role of the
lower-order term B is played here by the conormal operator B + ρm,δ(x,Z, γ). As already
discussed in the end of Section 4.3, in view of Proposition 3.8 and Lemma 4.5, the symbol of
B + ρm,δ(x,Z, γ) belongs to Γ0, and {ρm,δ}0<δ≤1 is a bounded subset of Γ0.

As regards to the terms τm,δ(x,Z, γ)u and ηm,δ(x,Z, γ)F appearing into the right-hand
side of (4.70), they can be regarded as a part of the source term in the interior equation (4.70)
(this is the reason why they have been moved in the right-hand side of (4.70)).

Let us firstly focus on τm,δ(x,Z, γ)u. After Lemma 4.5 and Proposition 3.8 (see also
Proposition 4.8, Remark 4.7, and formulas (4.16), (4.51)), we know that for any k ∈ N

the operators [λm−1,γ
χ,δ (Z), Ltan + B]λ̃−m+1,γ

δ (Z) and qm,δ(x,Z, γ)LI λ̃
−m+1,γ
δ (Z) extend as linear-

bounded mappings from Hk
tan,γ(R

n
+) into itself, and their operator norms are uniformly

bounded with respect to γ and δ. Combining with the result of Lemma 4.2, it follows that
a positive constant Cs > 0, independent of γ and δ, can be found in such a way that

∥∥τm,δ
(
x,Z, γ

)
u
∥∥
Hs,r

tan,γ (R
n
+)
≤ ∥∥τm,δ

(
x,Z, γ

)
u
∥∥
Hs

tan,γ (R
n
+)
≤ Csγ

s‖u‖L2(Rn
+). (4.72)

Concerning now the term (λm−1,γ
χ,δ (Z)−ηm,δ(x,Z, γ))F, after Lemma 4.5 and Proposition 4.8 we

already know that the symbol ηm,δ(x, ξ, γ) has orderm−2 and obeys the same decay estimates
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as in (4.19). From (3.17) it then follows that {ηm,δ}0<δ≤1 is a bounded subset of Γm−1; because

{λm−1,γ
χ,δ

}
0<δ≤1

is also a bounded subset of Γm (as a consequence of (4.4) and (3.17) again), after
Proposition 3.10 we conclude that there exists a positive constant Cm,s,r such that

∥∥∥
(
λ
m−1,γ
χ,δ (Z) − ηm,δ

(
x,Z, γ

))
F
∥∥∥
Hs,r

tan,γ (R
n
+)
≤ Cm,s,r‖F‖Hs+m,r+m

tan,γ (Rn
+). (4.73)

As regards to the boundary datum b′
m,δ

(D′, γ)G in (4.71), the family of symbols {b′
m,δ

}
0<δ≤1

in R
n−1 defines a bounded subset of Γm; this follows from estimates (4.56) and the inequality

(3.17) (in dimension n − 1). Therefore, the Sobolev continuity of ordinary pseudodifferential
operators in R

n−1 implies the existence of a positive constant Cm,s, independent of γ and δ,
such that:

∥∥∥b′m,δ
(
D′, γ

)
G
∥∥∥
Hs

γ (Rn−1)
≤ Cm,s‖G‖Hs+m

γ (Rn−1). (4.74)

From the assumptionsmade about the BVP (1.2)-(1.3) in Theorem 1.1, we find some constants
γ̃m ≥ 1, C̃m > 0 such that for all γ ≥ γm := max{γm−1, γ̃m} and every δ ∈ ]0, 1], λm−1,γ

χ,δ (Z)u is the
only L2-solution of (4.70)-(4.71) and obeys the estimate

γ
∥∥∥λm−1,γ

χ,δ (Z)u
∥∥∥
2

L2(Rn
+)
+
∥∥∥∥
(
λ
m−1,γ
χ,δ (Z)uI

)
|x1=0

∥∥∥∥
2

L2(Rn−1)

≤ C̃m

(
1

γ2s+1

∥∥∥
(
λ
m−1,γ
χ,δ (Z) − ηm,δ

(
x,Z, γ

))
F − τm,δ

(
x,Z, γ

)
u
∥∥∥
2

Hs,r
tan,γ (R

n
+)

+
1
γ2s

∥∥∥b′m,δ
(
D′, γ

)
G
∥∥∥
2

Hs
γ(Rn−1)

)
.

(4.75)

We remark that, according to the statement of Theorem 1.1, the constants γ̃m, C̃m are only
dependent on a δ, γ-uniform upper bound of the kth-order norm (3.14), computed on the
symbol of B + ρm,δ(x,Z, γ), besides the coefficients Aj , 1 ≤ j ≤ n, and the integer numbers r, s.

Then, using (4.72)–(4.74) and (1.7) to estimate the right-hand side of (4.75), we get

γ
∥∥∥λm−1,γ

χ,δ (Z)u
∥∥∥
2

L2(Rn
+)
+
∥∥∥∥
(
λ
m−1,γ
χ,δ (Z)uI

)
|x1=0

∥∥∥∥
2

L2(Rn−1)

≤ C̃m,s,r

(
1

γ2s+1
‖F‖2Hs+m,r+m

tan,γ (Rn
+)
+

1
γ2s

‖G‖2
Hs+m

γ (Rn−1)

)
,

(4.76)

where C̃m,s,r is a suitable positive constant independent of γ ≥ γm and δ. Since the L2-norms
‖λm−1,γ

χ,δ
(Z)u‖

L2(Rn
+)

are bounded by (4.76), uniformly with respect to δ ∈ ]0, 1], Corollary 4.4

gives u ∈ Hm
tan,γ(R

n
+).
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As to the Sobolev regularity of the trace on the boundary of the noncharacteristic
component uI of the solution, the estimate (4.76) gives a bound of ‖(λm−1,γ

χ,δ
(Z)uI)|x1=0‖L2(Rn−1)

=

‖b′m,δ(D′, γ)(uI|x1=0)‖L2(Rn−1)
uniform with respect to δ ∈ ]0, 1] (cf. (4.68)). Then uI|x1=0 ∈

Hm
γ (R

n−1) can be derived from the next result, the proof of which will be given in
Appendix A.

Lemma 4.11. Form ∈ N and δ ∈ ]0, 1], let b′
m,δ

(ξ′, γ) be defined by (4.54). Then there exists a symbol
βm,δ(ξ′, γ) ∈ Γm−2 such that

b′m,δ
(
ξ′, γ

)
= λm−1,γ

δ

(
ξ′
)
+ βm,δ

(
ξ′, γ

)
, ∀ξ′ ∈ R

n−1. (4.77)

In addition, the symbol βm,δ satisfies the following estimates: for every α′ ∈ N
n−1, there exists a positive

constant Cm,α′ , independent of γ and δ, such that

∣∣∣∂α′ξ′ βm,δ
(
ξ′, γ

)∣∣∣ ≤ Cm,α′λ
m−2−|α′ |,γ
δ

(
ξ′
)
, ∀ξ′ ∈ R

n−1. (4.78)

Arguing as was done to derive Corollary 4.4 from Lemma 4.2, from Lemma 4.11 we deduce
the following.

Corollary 4.12. For every positive integer m and γ ≥ 1, v ∈ Hm
γ (R

n−1) if and only if v ∈
Hm−1

γ (Rn−1) and the set {‖b′m,δ(D′, γ)v‖
L2(Rn−1)

}
0<δ≤1

is bounded.

After the result of Corollary 4.12, we conclude that uI|x1=0 ∈ Hm
γ (R

n−1).
It remains to prove that the solution of (1.2)-(1.3) satisfies the a priori estimate (1.8) of

orderm. From estimate (4.76) and the use of the identities (4.7), (4.68), (4.77), we also deduce

γ
∥∥∥λm−1,γ

δ (Z)u
∥∥∥
2

L2(Rn
+)
+
∥∥∥λm−1,γ

δ

(
D′)(uI|x1=0

)∥∥∥
2

L2(Rn−1)

≤ C′
m,s,r

(
1

γ2s+1
‖F‖2Hs+m,r+m

tan,γ (Rn
+)
+

1
γ2s

‖G‖2
Hs+m

γ (Rn−1)

)

+ 2γ
∥∥rm,δ

(
Z, γ

)
u
∥∥2
L2(Rn

+)
+ 2
∥∥∥βm,δ

(
D′, γ

)(
uI|x1=0

)∥∥∥
2

L2(Rn−1)
,

(4.79)

where the positive constant C′
m,s,r is again independent of γ ≥ γm and δ. On the other hand,

using Lemma 4.2 and that {βm,δ}0<δ≤1 is a bounded subset of Γm−1 (that follows at once from
Lemma 4.11 and inequality (3.17)), one can estimate

γ
∥∥rm,δ

(
Z, γ

)
u
∥∥2
L2(Rn

+)
+
∥∥∥βm,δ

(
D′, γ

)(
uI|x1=0

)∥∥∥
2

L2(Rn−1)
≤ Cm

(
γ‖u‖2L2(Rn

+)
+
∥∥∥uI|x1=0

∥∥∥
2

Hm−1
γ (Rn−1)

)

(4.80)

with positive constant Cm independent, once again, of γ and δ.
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In the end, combining (4.79), (4.80) and using the a priori estimate (4.1) of orderm− 1
on u, which holds true by the inductive assumption, we conclude that there exists a constant
C′′
m,s,r > 0 such that

γ
∥∥∥λm−1,γ

δ (Z)u
∥∥∥
2

L2(Rn
+)
+
∥∥∥λm−1,γ

δ

(
D′)(uI|x1=0

)∥∥∥
2

L2(Rn−1)

≤ C′′
m,s,r

(
1

γ2s+1
‖F‖2Hs+m,r+m

tan,γ (Rn
+)
+

1
γ2s

‖G‖2
Hs+m

γ (Rn−1)

) (4.81)

for all γ ≥ γm and δ ∈ ]0, 1].
The energy estimate (1.8) of orderm hence follows by letting δ → 0 into the left-hand

side of (4.81) (for an arbitrarily fixed γ ≥ γm) and exploiting the results of Propositions 3.1
and 3.2.

Appendices

A. Proof of Some Technical Lemmata

A.1. Proof of Lemma 4.1

The proof that λm−1,γ
χ,δ

obeys estimates (4.4) relies on the following γ-weighted version of
Peetre’s inequality.

For all s ∈ R, γ ≥ 1, and ξ, η ∈ R
n

λs,γ(ξ) ≤ 2|s|λs,γ
(
ξ − η)λ|s|(η). (A.1)

The proof of (A.1) follows by an easy account of the parameter γ into the arguments used
to prove the classical Peetre’s inequality (cf., e.g., [11], [15, Lemma 1.18]). As an easy
consequence of (A.1) and (3.15), it can be also proved that the following holds:

λ
s−1,γ
δ (ξ) ≤ 2|s|+1λs−1,γδ

(
ξ − η)λ|s|(η)λ1(δη), ∀ξ, η ∈ R

n, (A.2)

for an arbitrary δ ∈ ]0, 1].
For an arbitrary α ∈ N

n, we use (A.2) with s = m − |α| and (3.16) to find

∣∣∣∂αλm−1,γ
χ,δ (ξ)

∣∣∣ =
∣∣∣
(
F−1χ ∗ ∂αλm−1,γ

δ

)
(ξ)
∣∣∣ ≤

∫∣∣∣F−1χ
(
η
)∣∣∣
∣∣∣∂αλm−1,γ

δ

(
ξ − η)

∣∣∣dη

≤ Cm,α2m+1+|α|λm−1−|α|,γ
δ (ξ)

∫∣∣∣F−1χ
(
η
)∣∣∣λm+1+|α|(η)dη.

(A.3)

Since F−1χλm+1+|α| ∈ S(Rn), the integral above is finite; moreover it does not depend on γ and
δ. Therefore (A.3) is precisely an estimate of type (4.4). That λm−1,γ

χ,δ ∈ Γm−1 follows at once

from the same arguments applied to λm−1,γ
δ

(see (3.19)).
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A.2. Proof of Lemma 4.5

The symbol of Opγ(aδ)Opγ(b) is aδ#b. Because of (3.17), we already know that {aδ}0<δ≤1 is a
bounded subset of Γr . Then the rules of symbolic calculus give that aδ#b is a symbol in Γr+l,
for every δ; moreover, from (3.23) one has

aδ#b
(
x, ξ, γ

)
=
∑
|α|<N

(−i)|α|
α!

∂αξ aδ
(
x, ξ, γ

)
∂αxb

(
x, ξ, γ

)
+ RN,δ

(
x, ξ, γ

)
, (A.4)

for every integerN ≥ 1, and {RN,δ}0<δ≤1 is a bounded subset of Γr+l−N .
In particular, settingN = 1 in (A.4) gives

aδ#b
(
x, ξ, γ

)
= aδ

(
x, ξ, γ

)
b
(
x, ξ, γ

)
+ R1,δ

(
x, ξ, γ

)
, (A.5)

where R1,δ ∈ Γr+l−1 and for all α, β ∈ N
n there exists Cr,l,α,β > 0, independent of γ and δ, such

that

∣∣∣∂αξ ∂
β
xR1,δ

(
x, ξ, γ

)∣∣∣ ≤ Cr,l,α,βλ
r+l−1−|α|,γ(ξ), ∀x, ξ ∈ R

n. (A.6)

Then, combining (A.6) with the right inequality in (3.18), we easily derive that R1,δ satisfies
the estimates (4.9). By Leibniz’s rule and the use of (4.8), one can trivially check that estimates
(4.9) are satisfied by the product of symbols aδ(x, ξ, γ)b(x, ξ, γ) as well. That aδ#b ∈ Γr+l−1

follows again from estimates (4.9) themselves and the left inequality in (3.18).
As regards to the remaining assertions about the symbols of the operators

Opγ(aδ)Opγ(b)λ̃−m+1,γ
δ (D) and [Opγ(aδ), Opγ(b)]λ̃−m+1,γ

δ (D) (in the case of scalar-valued aδ),
they follow at once from Leibniz’s rule and Proposition 3.6, combinedwith the estimates (4.9)
and (3.20).

A.3. Proof of Lemma 4.9

Recall that we have defined for each k = 1, . . . , n

qk,m,δ
(
x, ξ, γ

)
:= (2π)−n

∫

Rn

b̂k
(
x, η

)
Dkλ

m−1,γ
δ

(
ξ − η)dη, (A.7)

where the functions bk = bk(x, y) (cf. (4.24)) are given in C∞(Rn × R
n), have bounded

derivatives in R
n × R

n, and satisfy for all x ∈ R
n

supp bk(x, ·) ⊆
{∣∣y∣∣ ≤ ε}, (A.8)

with some constant ε > 1. Recall also that b̂k(x, ζ) denotes the partial Fourier transform of
bk(x, y) with respect to y.

In the sequel, we remove the subscript k for simplicity.
The following lemma is concerned with the behavior at infinity of b̂(x, ζ).
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Lemma A.1. Let the function b = b(x, y) ∈ C∞(Rn × R
n) obey all of the preceding assumptions.

Then, for every positive integerN and all multi-indices α ∈ N
n, there exists a positive constant CN,α

such that

(
1 + |ζ|2

)N∣∣∣∂αxb̂(x, ζ)
∣∣∣ ≤ CN,α, ∀x, ζ ∈ R

n. (A.9)

Proof. Since for each x ∈ R
n, the function b(x, ·) has compact support (independent of x),

integrating by parts we get for an arbitrary integerN > 0

(
1 + |ζ|2

)N
b̂(x, ζ) =

∑
|α|≤N

N!
α!(N − |α|)!

∫

{|y|≤ε}
ζ2αe−iζ·yb

(
x, y

)
dy

=
∑
|α|≤N

N!
α!(N − |α|)!(−1)

|α|
∫

{|y|≤ε}
e−iζ·y∂2αy b

(
x, y

)
dy,

(A.10)

from which (A.9) trivially follows, using that y-derivatives of b(x, y) are bounded in R
n ×R

n

by a positive constant independent of x.

We are going now to analyze the behavior at infinity of the derivatives of the symbol
qm,δ(x, ξ, γ) defined as in (A.7), where bk is replaced by b. For all multi-indices α, β ∈ N

n,
differentiation under the integral sign in (A.7) gives

∂αξ ∂
β
xqm,δ

(
x, ξ, γ

)
= −i(2π)−n

∫
∂
β
xb̂
(
x, η

)
∂α+e

k

λ
m−1,γ
δ

(
ξ − η)dη, (A.11)

where ek := (0, . . . , 1︸︷︷︸
k

, . . . , 0). Then using (3.16) and (A.9) and combining with (A.2), for

s = m − 1 − |α|, we obtain

∣∣∣∂αξ ∂
β
xqm,δ

(
x, ξ, γ

)∣∣∣ ≤ CN,βCm,α

∫
λ−2N

(
η
)
λ
m−2−|α|,γ
δ

(
ξ − η)dη

≤ CN,m,α,βλ
m−2−|α|,γ
δ (ξ)

∫
λm+2+|α|−2N(η)dη,

(A.12)

where the integral in the last line is finite, provided that the integer N is taken to be
sufficiently large. This provides the estimate (4.32), with constant CN,m,α,β

∫
λm+2+|α|−2N(η) dη

independent of γ and δ.

A.4. Proof of Lemma 4.11

Setting for short

φ(x) := ex1/2χ1(x1)χ̃
(
x′), (A.13)
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the symbol (4.54) can be rewritten as

b′m,δ
(
ξ′, γ

)
= (2π)−n

∫
λ
m−1,γ
δ

(
η1, η

′ + ξ′
)
φ̂
(
η
)
dη. (A.14)

By a first-order Taylor expansion of η �→ λ
m−1,γ
δ

(η1, η′ + ξ′) about η = 0, we further obtain

b′m,δ
(
ξ′, γ

)

= (2π)−nλm−1,γ
δ

(
ξ′
) ∫

φ̂
(
η
)
dη − i(2π)−n

n∑
j=1

∫(∫1

0
∂jλ

m−1,γ
δ

(
tη1, tη

′ + ξ′
)
dt

)
∂̂jφ

(
η
)
dη.

(A.15)

Then, using (2π)−n
∫
φ̂(η)dη = φ(0) = 1 and the definition of φ (see (4.2)), (A.15) yields (4.77),

where

βm,δ
(
ξ′, γ

)
:= −i(2π)−n

n∑
j=1

∫(∫1

0
∂jλ

m−1,γ
δ

(
tη1, tη

′ + ξ′
)
dt

)
∂̂jφ

(
η
)
dη. (A.16)

To prove (4.78), differentiation under the integral sign of (A.16) gives for an arbitrary α′ ∈
N
n−1

∂α
′
ξ′ βm,δ

(
ξ′, γ

)
= −i(2π)−n

n∑
j=1

∫[∫1

0

(
∂e

j+(0,α′)λ
m−1,γ
δ

)(
tη1, tη

′ + ξ′
)
dt

]
∂̂jφ

(
η
)
dη, (A.17)

hence from (3.16) we get

∣∣∣∂α′ξ′ βm,δ
(
ξ′, γ

)∣∣∣ ≤ Cm,α′

n∑
j=1

∫(∫1

0
λ
m−2−|α′ |,γ
δ

(
tη1, tη

′ + ξ′
)
dt

)∣∣∣∂̂jφ
(
η
)∣∣∣dη. (A.18)

Then, applying (A.2) (for s = m − 1 − |α′|) to estimate the right-hand side of (A.18) and using
that ∂̂jφ ∈ S(Rn) for each 1 ≤ j ≤ n, we get

∣∣∣∂α′ξ′ βm,δ
(
ξ′, γ

)∣∣∣ ≤ C′
m,N,α′λ

m−2−|α′ |,γ(ξ′)
∫
λm+2+|α′ |−N(η)dη, (A.19)

for an arbitrary integer N > 0 and C′
m,N,α′ > 0 independent of γ and δ. This provides the

estimate of type (4.78), once N is chosen large enough to ensure the convergence of the last
integral.

A.5. A Further Technical Result

We conclude this appendix with the following result, that was involved in the arguments
given in Section 4.4.
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Lemma A.2. Let u ∈ Hm−1
tan,γ(R

n
+) be a solution to (1.2)-(1.3), with data F ∈ Hs+m,r+m

tan,γ (Rn
+), G ∈

Hs+m
γ (Rn−1), such that uI|x1=0 ∈ Hm−1

γ (Rn−1), for a given integer m ≥ 1. Let {uν} be a sequence in

C∞
(0)(R

n
+) approximating the solution u in the sense of (4.36). Then the trace (λm−1,γ

χ,δ
(Z)uI)|x1=0 is

well defined inH−1/2(Rn−1) and one has

(
λ
m−1,γ
χ,δ (Z)uIν

)
|x1=0

−→
(
λ
m−1,γ
χ,δ (Z)uI

)
|x1=0

, in D′
(
R
n−1
)
. (A.20)

Proof. Since λm−1,γ
χ,δ

(Z) is of orderm−1, in view of Proposition 3.8 it follows from u ∈ Hm−1
tan,γ(R

n
+)

that λm−1,γ
χ,δ

(Z)u ∈ L2(Rn
+). We use (4.52) to find

(L + B)λm−1,γ
χ,δ (Z)u =

(
λ
m−1,γ
χ,δ (Z) − ηm,δ

(
x,Z, γ

))
F − γλm−1,γ

χ,δ (Z)u

− ρm,δ
(
x,Z, γ

)
λ
m−1,γ
χ,δ (Z)u − τm,δ

(
x,Z, γ

)
u,

(A.21)

where the operators involved in the right-hand side are defined by (4.51). Because of (4.73),
(4.74) and since ρm,δ(x,Z, γ) is L2-bounded (by Proposition 3.8), from (A.21) we derive that
(L + B)λm−1,γ

χ,δ (Z)u ∈ L2(Rn
+). Then, it is known from [14] that the trace on the boundary of

(λm−1,γ
χ,δ

(Z)u)I = λm−1,γ
χ,δ

(Z)uI exists inH−1/2(Rn−1); moreover the Green formula

∫

R
n
+

(L + B)
(
λ
m−1,γ
χ,δ (Z)u

)
v =

∫

R
n
+

λ
m−1,γ
χ,δ (Z)u

[
(L + B)∗v

]
+
∫

Rn−1

(
A1λ

m−1,γ
χ,δ (Z)u

)
|x1=0

v|x1=0dx
′

(A.22)

holds true for all functions v ∈ C∞
(0)(R

n
+).

Notice that uν ∈ C∞
(0)(R

n
+) implies that (λm−1,γ

χ,δ (Z)uν)
� = λ

m−1,γ
χ,δ (D)(u�ν) ∈ L2(Rn), and

then λ
m−1,γ
χ,δ

(Z)uν ∈ L2(Rn
+). Therefore, starting from the same equation as (4.52), where u

and F are replaced by uν and Fν := (γ + L + B)uν, and arguing as before, one also gets
(L + B)λm−1,γ

χ,δ (Z)uν ∈ L2(Rn
+); then (λm−1,γ

χ,δ (Z)uIν)|x1=0 ∈ H−1/2(Rn−1), for each ν, and (A.22)
is fulfilled, where u is replaced by uν.

Because the Green formulas hold for u and uν, (A.20) is true, granted that the
convergences

∫

R
n
+

(L + B)
(
λ
m−1,γ
χ,δ (Z)uν

)
v −→

∫

R
n
+

(L + B)
(
λ
m−1,γ
χ,δ (Z)u

)
v,

∫

R
n
+

λ
m−1,γ
χ,δ (Z)uν

[
(L + B)∗v

] −→
∫

R
n
+

λ
m−1,γ
χ,δ (Z)u

[
(L + B)∗v

] (A.23)

have been proved, whenever v ∈ C∞
(0)(R

n
+).
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For each ν, we use (A.21) (and a change of variables) to get

∫

R
n
+

(L + B)
(
λ
m−1,γ
χ,δ (Z)uν

)
v =

∫

Rn

[(
λ
m−1,γ
χ,δ (D) − ηm,δ

(
x,D, γ

))
F
�
ν − γλm−1,γ

χ,δ (D)u�ν

−ρm,δ
(
x,D, γ

)
λ
m−1,γ
χ,δ (D)u�ν − τm,δ

(
x,D, γ

)
u
�
ν

]
v�

=
∫

Rn

F
�
νa
(
x,D, γ

)∗
v� +

∫
u
�
νb
(
x,D, γ

)∗
v�,

(A.24)

where we have set

a
(
x,D, γ

)
:= λm−1,γ

χ,δ (D) − ηm,δ
(
x,D, γ

)
,

b
(
x,D, γ

)
:= −γλm−1,γ

χ,δ (D) − ρm,δ
(
x,D, γ

)
λ
m−1,γ
χ,δ (D) − τm,δ

(
x,D, γ

)
.

(A.25)

Repeating the same calculations on
∫
(L + B)(λm−1,γ

χ,δ
(Z)u)v also gives

∫

R
n
+

(L + B)
(
λ
m−1,γ
χ,δ (Z)(u − uν)

)
v =

∫

Rn

(
F
�
ν − F�

)
a
(
x,D, γ

)∗
v� +

∫(
u
�
ν − u�

)
b
(
x,D, γ

)∗
v�.

(A.26)

Then the first convergence in (A.23) is proven, as a consequence of the convergences F�ν →
F�, u�ν → u� in L2(Rn) and Cauchy-Schwarz’s inequality.

In a completely similar way, one can check the validity of the second convergence in
(A.23).
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