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We present some new oscillation criteria for second-order neutral partial functional differential
equations of the form (∂/∂t){p(t)(∂/∂t)[u(x, t) +

∑l
i=1 λi(t)u(x, t − τi)]} = a(t)Δu(x, t) +∑s

k=1 ak(t)Δu(x, t − ρk(t)) − q(x, t)f(u(x, t)) − ∑m
j=1 qj(x, t)fj(u(x, t − σj)), (x, t) ∈ Ω × R+ ≡ G,

where Ω is a bounded domain in the Euclidean N-space RN with a piecewise smooth boundary
∂Ω and Δ is the Laplacian in RN . Our results improve some known results and show that the
oscillation of some second-order linear ordinary differential equations implies the oscillation of
relevant nonlinear neutral partial functional differential equations.

1. Introduction

In this paper, we consider the oscillatory behavior of solutions to the neutral partial functional
differential equation

∂

∂t

{

p(t)
∂

∂t

[

u(x, t) +
l∑

i=1

λi(t)u(x, t − τi)
]}

= a(t)Δu(x, t) +
s∑

k=1

ak(t)Δu
(
x, t − ρk(t)

) − q(x, t)f(u(x, t))

−
m∑

j=1

qj(x, t)fj
(
u
(
x, t − σj

))
, (x, t) ∈ Ω × R+ ≡ G,

(1.1)

with the boundary condition

∂u(x, t)
∂ν

+ g(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω × R+ ≡ G (1.2)
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or

u(x, t) = 0, (x, t) ∈ ∂Ω × R+ ≡ G, (1.3)

where Δ is the Laplacian in Euclidean N-space RN,R+ := (0,+∞), Ω is a bounded domain in
RN with a piecewise smooth boundary ∂Ω, ν denotes the unit exterior normal vector to ∂Ω,
and g(x, t) is a nonnegative continuous function on ∂Ω × R+.

Throughout this paper we assume that the following conditions hold:

(C1) p ∈ C1(R+, R+),
∫∞
t0
(1/p(s))ds = ∞, t0 > 0;

(C2) λi ∈ C2(R+, R+), 0 ≤ ∑l
i=1 λi ≤ 1, and the numbers τi are nonnegative real constants

for i ∈ Il = {1, 2, . . . , l};
(C3) q, qj ∈ C(G,R+), q(t) = minx∈Ωq(x, t), and qj(t) = minx∈Ωqj(x, t), j ∈ Im =

{1, 2, . . . , m};
(C4) a, ak ∈ C(R+, R+), ρk ∈ C(R+, R+), limt→∞(t − ρk(t)) = ∞, k ∈ Is = {1, 2, . . . , s}, and

σj(j ∈ Im) are nonnegative constants;
(C5) f, fj ∈ C(R,R) are convex in R+ with f(u)/u ≥ α > 0, fj(u)/u ≥ αj > 0 for u/= 0,

where α and αj are positive constants for j ∈ Im.
We refer to these five conditions collectively as condition (C).
A function u ∈ C2(G) ∪ C1(G) is called a solution of the problem (1.1), (1.2) (or (1.1),

(1.3)), if it satisfies (1.1) in the domain G and the corresponding boundary condition. A
solution u of the problem (1.1), (1.2) (or (1.1), (1.3)) is called oscillatory in the domain G
if for each positive number b there exists a point (x0, t0) ∈ Ω × [b,∞) such that u(x0, t0) = 0.

The theory of partial differential equations with deviating arguments has received
much attention (see [1]). Wemention here [1–7] concerning oscillatory properties of solutions
to some parabolic equations and some hyperbolic equations with deviating arguments.

By considering the function H(t, s), in 1999 Li and Cui [4] obtained some oscillation
criteria for solutions of the problems (1.1), (1.2) and (1.1), (1.3). One of the theorems in [4] is
as follows.

Theorem 1.1. Set D = {(t, s) : t ≥ s ≥ t0}. LetH ∈ (D;R) satisfy the following conditions:

(i) H(t, t) = 0 for t ≥ t0;H(t, s) > 0 for t ≥ s ≥ t0;
(ii) H has a continuous and nonpositive partial derivative on D with respect to the second

variable.

(iii) h : D → R is a continuous function with

− ∂

∂s
H(t, s) = h(t, s)

√
H(t, s) ∀(t, s) ∈ D. (1.4)

If there exists a function φ ∈ C1[t0,∞) and there exists some j0 ∈ Im such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[

H(t, s)ψ(s) − 1
4
Φ(s)p

(
s − σj0

)
h2(t, s)

]

ds = ∞, (1.5)
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where Φ(s) = e−2
∫s
φ(ξ)dξ and

ψ(t) = Φ(t)

{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+ p
(
t − σj0

)
φ2(t) − [p(t − σj0

)
φ(t)
]′
}

, (1.6)

then every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G.

In this paper, we shall establish some new oscillation results for solutions of the
problems (1.1), (1.2) and (1.1), (1.3). Our results are extensive version of Theorem 1.1.
Meanwhile, our results show that the oscillation of some second-order linear ordinary
differential equations implies the oscillation of relevant nonlinear second-order neutral
partial functional differential (1.1), thus we can obtain some new oscillation theorems for
(1.1), which do not need the condition of the integrals of the coefficient.

2. Main Results

Theorem 2.1. Let condition (C) hold, and φ ∈ C1[t0,∞)(t0 > 0). Assume that there exists j0 ∈ Im
such that the inequality

W ′(t) + ψ(t) +
W2(t)

p
(
t − σj0

)
Φ(t)

≤ 0 (2.1)

has no eventually positive solution, where Φ(s) = exp{−2 ∫s φ(ξ)dξ} and

ψ(t) = Φ(t)

{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+ p
(
t − σj0

)
φ2(t) − [p(t − σj0

)
φ(t)
]′
}

, (2.2)

then every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the problem
(1.1), (1.2) which has no zero in Ω × [t0,∞) for some t0 > 0. Without loss of generality we
may assume that u(x, t) > 0, u(x, t − τi) > 0, u(x, t − ρk(t)) > 0, and u(x, t − σj) > 0 in
Ω × [t1,∞), t1 ≥ t0, i ∈ Il, k ∈ Is, j ∈ Im.

Integrating (1.1) with respect to x over the domain Ω, we have

d

dt

{

p(t)
d

dt

[∫

Ω
u(x, t)dx +

l∑

i=1

λi(t)
∫

Ω
u(x, t − τi)dx

]}

= a(t)
∫

Ω
Δu(x, t)dx +

s∑

k=1

ak(t)
∫

Ω
Δu
(
x, t − ρk(t)

)
dx

−
∫

Ω
q(x, t)f(u(x, t))dx −

m∑

j=1

∫

Ω
qj(x, t)fj

(
u
(
x, t − σj

))
dx, t ≥ t1.

(2.3)
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From Green’s formula and boundary condition (1.2), it follows that

∫

Ω
Δu(x, t)dx =

∫

∂Ω

∂u(x, t)
∂ν

dS = −
∫

∂Ω
g(x, t)u(x, t)dS ≤ 0, t ≥ t1, (2.4)

∫

Ω
Δu
(
x, t − ρk(t)

)
dx =

∫

∂Ω

∂u
(
x, t − ρk(t)

)

∂ν
dS

= −
∫

∂Ω
g
(
x, t − ρk(t)

)
u
(
x, t − ρk(t)

)
dS ≤ 0, t ≥ t1, k ∈ Is,

(2.5)

where dS is the surface element on ∂Ω. Moreover, from (C3), (C5), and Jensen’s inequality it
follows that

∫

Ω
q(x, t)f(u(x, t))dx ≥ q(t)

∫

Ω
f(u(x, t))dx

≥ q(t)
∫

∂Ω
dxf

(∫

Ω
u(x, t)dx

(∫

Ω
dx

)−1)

, t ≥ t1,
(2.6)

∫

Ω
qj(x, t)fj

(
u
(
x, t − σj

))
dx ≥ qj(t)

∫

Ω
fj
(
u
(
x, t − σj

))
dx

≥ qj(t)
∫

∂Ω
dxfj

(∫

Ω
u
(
x, t − σj

)
dx

(∫

Ω
dx

)−1)

, t ≥ t1.
(2.7)

Set

V1(t) =
∫

Ω
u(x, t)dx

(∫

Ω
dx

)−1
, t ≥ t1. (2.8)

In view of (2.4)–(2.8), (2.3) yields

d

dt

{

p(t)
d

dt

[

V1(t)+
l∑

i=1

λi(t)V1(t − τi)
]}

+q(t)f(V1(t)) +
m∑

j=1

qj(t)fj
(
V1
(
t − σj

)) ≤ 0, t ≥ t1.

(2.9)

Let Z(t) = V1(t) +
∑l

i=1 λi(t)V1(t − τi). We have Z(t) > 0 and [p(t)Z′(t)]′ < 0 for t ≥ t1. Hence
p(t)Z′(t) is a decreasing function in the interval [t1,∞). We can claim that p(t)Z′(t) > 0 for
t ≥ t1. In fact, if p(t)Z′(t) ≤ 0 for t ≥ t1, then there exists a T ≥ t1 such that p(T)Z′(T) < 0. This
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implies that

Z′(t) ≤ p(T)Z′(T)
p(t)

for t ≥ T,

Z(t) − Z(T) ≤ p(T)Z′(T)
∫ t

T

1
p(s)

ds, t ≥ T.
(2.10)

Therefore limt→∞Z(t) = −∞, which contradicts the fact that Z(t) > 0.
From(2.9), for the j0 in (2.1)we obtain

[
p(t)Z′(t)

]′ + qj0(t)fj0
(
V1
(
t − σj0

)) ≤ 0, t ≥ t1. (2.11)

Noting condition (C5), from (2.11) we have

[
p(t)Z′(t)

]′ + αj0qj0(t)V1
(
t − σj0

) ≤ 0, t ≥ t1 (2.12)

or

[
p(t)Z′(t)

]′ + αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

Z
(
t − σj0

) ≤ 0, t ≥ t1. (2.13)

Let

W(t) = Φ(t)

[
p(t)Z′(t)
Z
(
t − σj0

) + p
(
t − σj0

)
φ(t)

]

; (2.14)

we have

W ′(t) ≤ −2φ(t)W(t) + Φ(t)

{

−αj0qj0(t)
[

1 −
l∑

i=1

λi
(
t − σj0

)
]

−p(t)Z
′(t)Z′(t − σj0

)

Z2
(
t − σj0

) +
[
p
(
t − σj0

)
φ(t)
]′
}

.

(2.15)

Using the fact that p(t)Z′(t) is decreasing, we get

p(t)Z′(t) ≤ p(t − σj0
)
Z′(t − σj0

)
, for t ≥ t1. (2.16)
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Thus

W ′(t) ≤ −2φ(t)W(t)

+ Φ(t)

{

−αj0qj0(t)
[

1 −
l∑

i=1

λi
(
t − σj0

)
]

− 1
p
(
t − σj0

)

(
p(t)Z′(t)
Z
(
t − σj0

)

)2

+
[
p
(
t − σj0

)
φ(t)
]′
⎫
⎬

⎭

= −2φ(t)W(t) + Φ(t)

×
{

−αj0qj0(t)
[

1 −
l∑

i=1

λi
(
t − σj0

)
]

− 1
p
(
t − σj0

)

(
W(t)
Φ(t)

− p(t − σj0
)
φ(t)
)2

+
[
p
(
t − σj0

)
φ(t)
]′
}

= −ψ(t) − W2(t)
p
(
t − σj0

)
Φ(t)

,

(2.17)

that is,W(t) is a positive solution of (2.1), which contradicts the assumption. This completes
the proof of Theorem 2.1.

In order to study oscillation of the problem (1.1) and (1.3), the following fact will be
used (see [2]). The smallest eigenvalue η0 of the Dirichlet problem

Δu(x) + ηu(x) = 0, in Ω,
u(x) = 0, on ∂Ω

(2.18)

is positive, and the corresponding eigenfunction ϕ(x) is positive in Ω.

Theorem 2.2. Let all conditions in Theorem 2.1 hold, then every solution u(x, t) of the problem (1.1),
(1.3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the problem
(1.1), (1.3) which has no zero in Ω × [t0,∞) for some t0 > 0. Without loss of generality, we
may assume that u(x, t) > 0, u(x, t − τi) > 0, u(x, t − ρk(t)) > 0, and u(x, t − σj) > 0 in
Ω × [t1,∞), t1 ≥ t0, i ∈ Il, k ∈ Is, j ∈ Im.

Multiplying both sides of (1.1) by ϕ(x) > 0 and integrating (1.1)with respect to x over
the domain Ω, we have

d

dt

{

p(t)
d

dt

[∫

Ω
u(x, t)ϕ(x)dx +

l∑

i=1

λi(t)
∫

Ω
u(x, t − τi)ϕ(x)dx

]}

= a(t)
∫

Ω
Δu(x, t)ϕ(x)dx +

s∑

k=1

ak(t)
∫

Ω
Δu
(
x, t − ρk(t)

)
ϕ(x)dx

−
∫

Ω
q(x, t)f(u(x, t))ϕ(x)dx −

m∑

j=1

∫

Ω
qj(x, t)fj

(
u
(
x, t − σj

)
ϕ(x)

)
dx, t ≥ t1.

(2.19)
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From Green’s formula and boundary condition (1.3), it follows that

∫

Ω
Δu(x, t)ϕ(x)dx =

∫

Ω
u(x, t)Δϕ(x)dx = −β0

∫

Ω
u(x, t)ϕ(x)dx ≤ 0, t ≥ t1, (2.20)

∫

Ω
Δu
(
x, t − ρk(t)

)
ϕ(x)dx =

∫

Ω
u
(
x, t − ρk(t)

)
Δϕ(x)dx

= −β0
∫

Ω
u
(
x, t − ρk(t)

)
ϕ(x)dx ≤ 0, t ≥ t1, k ∈ Is.

(2.21)

Moreover, from (C3) and (C5) by Jensen’s inequality it follows that

∫

Ω
q(x, t)f(u(x, t))ϕ(x)dx

≥ q(t)
∫

Ω
f(u(x, t))ϕ(x)dx

≥ q(t)
∫

Ω
ϕ(x)dxf

(∫

Ω
u(x, t)ϕ(x)dx

(∫

Ω
ϕ(x)dx

)−1)

, t ≥ t1,

(2.22)

∫

Ω
qj(x, t)fj

(
u
(
x, t − σj

))
ϕ(x)dx

≥ qj(t)
∫

Ω
fj
(
u
(
x, t − σj

))
ϕ(x)dx

≥ qj(t)
∫

Ω
ϕ(x)dxfj

(∫

Ω
u
(
x, t − σj

)
ϕ(x)dx

(∫

Ω
ϕ(x)dx

)−1)

, t ≥ t1.

(2.23)

Set

V2(t) =
∫

Ω
u(x, t)ϕ(x)dx

(∫

Ω
ϕ(x)dx

)−1
, t ≥ t1. (2.24)

In view of (2.20)–(2.24), (2.19) yields

d

dt

{

p(t)
d

dt

[

V2(t)+
l∑

i=1

λi(t)V2(t − τi)
]}

+q(t)f(V2(t)) +
m∑

j=1

qj(t)fj
(
V2
(
t − σj

)) ≤ 0, t ≥ t1.

(2.25)

Let Z(t) = V2(t) +
∑l

i=1 λi(t)V2(t − τi); the remainder of the proof is similar to that of
Theorem 2.1, so we omit it.
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Theorem 2.3. Let the condition (C) hold, and φ ∈ C1[t0,∞), F ∈ C([t0,∞), R). Suppose that there
exists j0 ∈ Im such that

lim sup
t→∞

∫ t

t0

[

ψ(s) − 1
4
p
(
s − σj0

)
Φ(s)F2(s)

]

e
∫s
t0
F(τ)dτ

ds = ∞, (2.26)

where Φ(s) = e−2
∫s
φ(τ)dτ and ψ(s) is defined as in (2.2). Then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

Proof. (I) From Theorem 2.1, we only need to prove that (2.1) has no eventually positive
solution. Suppose to the contrary that there is a solution w(t) of system (2.1) which has no
zero in [t0,∞) for some t0 > 0. Without loss of generality we may assume that w(t) > 0 in
[t1,∞), t1 ≥ t0. Hence for all t ≥ t1, we have by (2.1)

w′(t) ≤ −
[

ψ(t) − 1
4
p
(
t − σj0

)
Φ(t)F2(t)

]

−
[

w2(t)
p
(
t − σj0

)
Φ(t)

+
1
4
p
(
t − σj0

)
Φ(t)F2(t)

]

, (2.27)

that is,

w′(t) + F(t)w(t) ≤ −
[

ψ(t) − 1
4
p
(
t − σj0

)
Φ(t)F2(t)

]

,

w(t)e
∫ t
t0
F(τ)dτ −w(T)e

∫T
t0
F(τ)dτ ≤ −

∫ t

T

[

ψ(s) − 1
4
p
(
s − σj0

)
Φ(s)F2(s)

]

e
∫s
t0
F(τ)dτ

ds.

(2.28)

Hence

∫ t

T

[

ψ(s) − 1
4
p
(
s − σj0

)
Φ(s)F2(s)

]

e
∫s
t0
F(τ)dτ

ds ≤ w(T)e
∫T
t0
F(τ)dτ −w(t)e

∫ t
t0
F(τ)dτ

. (2.29)

In view of w(t) ≥ 0, we get

lim sup
t→∞

∫ t

t0

[

ψ(s) − 1
4
p
(
s − σj0

)
Φ(s)F2(s)

]

e
∫s
t0
F(τ)dτ

ds ≤ w(T)e
∫T
t0
F(τ)dτ

, (2.30)

which contradicts assumption (2.26). Hence, (2.1) has no eventually positive solution. By
Theorem 2.1, every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G.

(II)According to Theorem 2.2, the remainder of the proof is similar to that of the proof
of part (I), so we omit the details. The proof of Theorem 2.3 is complete.

Set D = {(t, s) : t ≥ s ≥ t0}. LetH ∈ C(D,R) satisfy the following conditions:

(i) H(t, t) = 0, for t ≥ t0, H(t, s) > 0 for t > s ≥ t0;
(ii) H has a continuous and nonpositive partial derivative on D with respect to the

second variable;
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(iii) h : D → R is a continuous function with

− ∂

∂s
H(t, s) = h(t, s)

√
H(t, s), ∀(t, s) ∈ D. (2.31)

Taking F(s) = (∂H(t, s)/∂s)/H(t, s), we have the following Philo’s type theorem in
[8].

Theorem 2.4. Let the condition (C) hold, and φ ∈ C1[t0,∞). Suppose that there exists j0 ∈ Im such
that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[

H(t, s)ψ(s) − 1
4
Φ(s)p

(
s − σj0

)
h2(t, s)

]

ds = ∞, (2.32)

where Φ(s) = e−2
∫s
φ(τ)dτ and Φ(s) is defined as in (2.2). Then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

Remark 2.5. We can establish a lot of oscillation criteria from Theorem 2.3 if we choose
differential φ and F. For example, taking φ = 0, F = 0, Theorem 2.3 reduces to a
Grammatikopoulos’s type criteria in [9].

Next we present another oscillation theorem.

Theorem 2.6. Let the condition (C) hold. Suppose that there exists j0 ∈ Im such that the following
ordinary differential equation

y′′ +Q(t)y(t) = 0 (2.33)

is oscillatory, where

Q(t) =
1

p
(
t − σj0

)

{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+

[
p′
(
t − σj0

)]2

4p
(
t − σj0

) − p′′
(
t − σj0

)

2

}

, (2.34)

then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

Proof. Let y(t) be a nonoscillatory solution of (2.33) Without loss of generality, we assume
that y(t) > 0, t ≥ T0 ≥ t0. Similar to the proof Theorem 2.3, we can get

w′(t) ≤ −Q(t) −w2(t), for t ≥ T0, (2.35)

whereQ(t) is defined as in (2.34). In fact, taking φ(t) = (p′(t−σj0))/(2p(t−σj0)) in Theorem 2.3,
we obtain (2.35) from (2.1).
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Therefore, from (2.35), by using Theorem 7.2 in [10, Chap. XI], we see that (2.33) is
nonoscillatory. This contradicts the fact that (2.33) is oscillatory. The proof of Theorem 2.6 is
complete.

Corollary 2.7. Let the condition (C) hold. Suppose that there exists j0 ∈ Im such that

∞ ≥ lim
r→∞

t2
1

p
(
t − σj0

)

{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+

[
p′
(
t − σj0

)]2

4p
(
t − σj0

) − p′′
(
t − σj0

)

2

}

>
1
4
,

(2.36)

then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

Proof. From Theorem 2.5 and Theorem 7.1 in [10, Chap.XI], it is easy to see that the result of
Corollary 2.7 is true.

Corollary 2.8. Let the condition (C) hold. Suppose that there exists j0 ∈ Im such that

∞ ≥ lim inf
r→∞

t

∫∞

t

1
p
(
t − σj0

)

×
{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+

[
p′
(
t − σj0

)]2

4p
(
t − σj0

) − p′′
(
t − σj0

)

2

}

dt

>
1
4
,

(2.37)

then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

Corollary 2.9. Let condition (C) hold. If there exist T > t0, α > 3 − 2
√
2, and j0 ∈ Im such that for

every n ∈N,

∫2n+1T

2nT

1
p
(
t − σj0

)

{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+

[
p′
(
t − σj0

)]2

4p
(
t − σj0

) − p′′
(
t − σj0

)

2

}

dt >
α

2nT
, (2.38)

then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.
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Corollary 2.10. Let the condition (C) hold, λ > 1, and α0 = (
√
λ − 1)

2
. If there exist T > t0, α > α0,

and j0 ∈ Im such that for every n ∈N,

∫λn+1T

λnT

1
p
(
t − σj0

)

{

αj0qj0(t)

[

1 −
l∑

i=1

λi
(
t − σj0

)
]

+

[
p′
(
t − σj0

)]2

4p
(
t − σj0

) − p′′
(
t − σj0

)

2

}

dt >
α

(λ − 1)λnT
,

(2.39)

then

(I) every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G;

(II) every solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

Remark 2.11. Corollaries 2.8–2.10 are easy to be proved by Theorem 2.6 of this paper,
Theorems A and 2 of Huang [11], or Theorem 2 of Wong [12]. Corollaries 2.9 and 2.10 are
different from the most known ones in the sense that they are based on the information only
on a sequence of intervals such as [2nT, 2n+1T], rather than on the whole half-line [t0,∞).

Example 2.12. Let constants c > 0 and μ > 0. Consider the partial differential equation

∂

∂t

{
1

t + π + 1
∂

∂t

[

u(x, t) +
3

t + 2π
u(x, t − 2π)

]}

=
1

t + π + 1
Δu(x, t)

+

[
1

(t + π + 1)2
+

6

(t + π + 1)(t + 2π)2
+

3

(t + π + 1)2(t + 2π)

]

Δu
(

x, t − 3π
2

)

+

[
6

(t + π + 1)(t + 2π)3
+

3

(t + π + 1)2(t + 2π)2

]

Δu(x, t − π)

−
[

3
(t + π + 1)(t + 2π)

+
t + π

t + π − 3
μ

ln2(t + 1)

]

u(x, t)
[

1 +
c

1 + u2(x, t)

]

− t + π
t + π − 3

μ

ln2(t + 1)
u(x, t − π), (x, t) ∈ (0, π) × R+ ≡ G,

(2.40)

with the boundary condition

u(0, t) = u(π, t) = 0, t ≥ 0. (2.41)

A straightforward verification shows that the functions q1(t) = ((t + π)/(t + π −
3))(μ/ln2(t+ 1)), λ1(t− σ1) = λ1(t−π) = (3/(t+π)), and p(t− σ1) = p(t−π) = (1/(t+ 1)). By
simple computation, for constant μ > 0 and for each t ≥ 0, we have

Q(t) = (t + 1)

{
μ

ln2(t + 1)
+

1

4(t + 1)3
− 1

(t + 1)3

}

=
μ(t + 1)

ln2(t + 1)
− 3

4(t + 1)2
. (2.42)
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Then, for constant μ > 0,

lim
t→∞

t2Q(t) = lim
t→∞

[
μt2(t + 1)

ln2(t + 1)
− 3t2

4(t + 1)2

]

= ∞ >
1
4
. (2.43)

Hence, by Corollary 2.7, (2.40) is oscillatory if μ > 0. For example, if c = 0, u(x, t) = sinx cos t
is such a solution. However, criteria in [1–6] fail to imply this fact and in [7] fail to apply to
(2.40) when 0 < μ ≤ 1. In addition, those criteria are quite difficult to apply to get oscillation
of all solutions of problem (2.40), (2.41) for c > 0.

Acknowledgments

The project was supported by NSF of Guangdong Province (no. 1015160150100003) and
NNSF of China (no. 10971231).

References

[1] J. H. Wu, Theory and Application of Partial Differential Equations, Springer, New Youk, NY, USA, 1996.
[2] D. P. Mishev and D. D. Baı̆nov, “Oscillation of the solutions of parabolic differential equations of

neutral type,” Applied Mathematics and Computation, vol. 28, no. 2, pp. 97–111, 1988.
[3] L. H. Erbe, Q. Kong, and B. G. Zhang, “Oscillation of partial differential equations with deviating

arguments,” Utilitas Mathematican, vol. 43, pp. 129–139, 1993.
[4] W. N. Li and B. T. Cui, “Oscillation of solutions of neutral partial functional-differential equations,”

Journal of Mathematical Analysis and Applications, vol. 234, no. 1, pp. 123–146, 1999.
[5] W. N. Li, “Oscillation for solutions of partial differential equations with delays,” Demonstratio

Mathematica, vol. 33, no. 2, pp. 319–332, 2000.
[6] D. Bainov, C. Baotong, and E.Minchev, “Forced oscillation of solutions of certain hyperbolic equations

of neutral type,” Journal of Computational and Applied Mathematics, vol. 72, no. 2, pp. 309–318, 1996.
[7] Q. Yang, “On the oscillation of certain nonlinear neutral partial differential equations,” Applied

Mathematics Letters, vol. 20, no. 8, pp. 900–907, 2007.
[8] Ch. G. Philos, “Oscillation theorems for linear differential equations of second order,” Archiv der

Mathematik, vol. 53, no. 5, pp. 482–492, 1989.
[9] M. K. Grammatikopoulos, G. Ladas, and A. Meimaridou, “Oscillations of second order neutral delay

differential equations,” Radovi Matematički, vol. 1, no. 2, pp. 267–274, 1985.
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