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We study a Dirichlet boundary value problem for Langevin equation involving two fractional
orders. Langevin equation has been widely used to describe the evolution of physical phenomena
in fluctuating environments. However, ordinary Langevin equation does not provide the correct
description of the dynamics for systems in complex media. In order to overcome this problem and
describe dynamical processes in a fractal medium, numerous generalizations of Langevin equation
have been proposed. One such generalization replaces the ordinary derivative by a fractional
derivative in the Langevin equation. This gives rise to the fractional Langevin equation with a
single index. Recently, a new type of Langevin equation with two different fractional orders has
been introduced which provides a more flexible model for fractal processes as compared with the
usual one characterized by a single index. The contraction mapping principle and Krasnoselskii’s
fixed point theorem are applied to prove the existence of solutions of the problem in a Banach
space.

1. Introduction

Fractional differential equations have recently gained much importance and attention.
The study of fractional differential equations ranges from the theoretical aspects of
existence and uniqueness of solutions to the analytic and numerical methods for finding
solutions. Fractional differential equations appear naturally in a number of fields such
as physics, polymer rheology, regular variation in thermodynamics, biophysics, blood
flow phenomena, aerodynamics, electrodynamics of complex medium, viscoelasticity,
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Bodes analysis of feedback amplifiers, capacitor theory, electrical circuits, electronanalytical
chemistry, biology, control theory, fitting of experimental data, etc. An excellent account
in the study of fractional differential equations can be found in [1-3]. For more details
and examples, see [4-13] and the references therein. Some new and recent aspects
on fractional calculus can be seen in [14-16]. In [15], it was shown that fractional
Nambu systems can be proposed as a generalization of fractional Hamiltonian sys-
tems.

Langevin equation is widely used to describe the evolution of physical phenomena
in fluctuating environments [17]. However, for the systems in complex media, ordinary
Langevin equation does not provide the correct description of the dynamics. One of the
possible generalizations of Langevin equation is to replace the ordinary derivative by a
fractional derivative in it. This gives rise to fractional Langevin equation, see for instance
[18, 19] and the references therein. In [18], the authors studied a new type of Langevin
equation with two different fractional orders. The solution to this new version of fractional
Langevin equation gives a fractional Gaussian process parameterized by two indices, which
provides a more flexible model for fractal processes as compared with the usual one
characterized by a single index. In [19], the fractional oscillator process with two indices
was discussed.

In this paper, we study a Dirichlet boundary value problem of Langevin equation with
two different fractional orders. This work is motivated by recent work of Lim et al. [18, 19].
Precisely, we consider the problem

‘DP(CD* + X)) x(t) = f(t,x(t)), O0<t<1, 0<a, <1, W
1.1
x0)=y, x(1) =7,

where D is the Caputo fractional derivative, f : [0,1] x X — X, X is a real number and
11,12 € X. Here, (X, || - ||) is a Banach space and C = C([0,1], X) denotes the Banach space of
all continuous functions from [0,1] — X endowed with a topology of uniform convergence
with norm defined by ||x|| = sup{|x(¢)|,t € [0,1]}.

In Section1, we prove a new result for linear differential equations involving
two fractional orders. Section 2 deals with the theory of nonlinear differential equations
with two fractional orders. We first use the contraction mapping principle to prove the
existence and uniqueness of the solution of problem (1.1) in a Banach space. We then
employ Krasnoselskii’'s fixed point theorem to establish another new existence result for
problem (1.1). We also give an example for the illustration of the theory established in this
paper.

A function x € C with its Caputo derivative of fractional order existing on (0,1) is a
solution of (1.1) if it satisfies (1.1).

Relative to (1.1), we now introduce the following linear problem:

‘DP(CD* + V)x(t) =o(t), 0<t<1,0<a, B<1, 12
1.2
x(O) = Yl/ x(]-) = YZ/

where ¢ € C[0,1].
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Lemma 1.1. The unique solution of the boundary value problem (1.2) is given by

_ a1 u _ o\f-1
x(t):J‘t (t—u) <J' (u—s) o(s)ds—)tx(u)>du
0 0

I(a) r(p)
(1.3)
11 _ a1 u _ o\P-1
-t I:J‘o a 1"(:?) <f0 (ul“(;)) o(s)ds - )tx(u)>du:| + (- y)t* +n.
Proof. As argued in [2, Section 5.4], the general solution of
°DP(D* + \)x(t) = o(t) (1.4)

can be written as

tp a1l u _ o\B-1
x(t) = IO ( r(L;)) <IO (”r (;)) a(s)ds - Ax(u)> du - ﬁt“ —c. (15)

Using the boundary conditions for (1.2), we find that

_ o _({a-w /s
1=, s " J‘O @) IO ) o(s)ds —Ax(u) )du—y> + 1.
(1.6)

Substituting (1.6) in (1.5), we obtain the solution given by (1.3). This completes the proof. [

Now, we state a known result due to Krasnoselskii (see [20]) which is needed to prove
the existence of at least one solution of (1.1).
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Theorem 1.2. Let M be a closed convex and nonempty subset of a Banach space X. Let A, B be the
operators such that (i) Ax + By € M whenever x,y € M; (ii) A is compact and continuous; (iii) B
is a contraction mapping. Then there exists z € M such that z = Az + Bz.

2. Existence of Solutions

Theorem 2.1. Let f : [0,1] x X — X be a jointly continuous function satisfying the condition
|f(t,x)-f(ty)| <Llx-y|, Vte[0,1], x,yeX, (2.1)

Then the boundary value problem (1.1) has a unique solution provided A <1, where

Ao 2L 2
" T(a+p+1) T(a+1)

(2.2)

Proof. Define | : C — Cby

tog a1 u _ o\B-1
(Fx)(t) = IO < r(ua)) (fo (ur(;)) f(s,x(s))ds - )Lx(u)>du

11 _ a1 we, _ o\B-1 2.3
_t“UO(lr(’;’) <f0(”r(;)) f(s,x(s))ds—)ux(u)>du:| @3)

+(Y2_Yl)ta+}’1/ te [0,1]

Let us set SUP;e(0,1] |f(t,0)] = M and choose

1 2M
rz 1_5<r(a+ﬁ+1) + (|Y2| +2|Yl|)>’ (24)
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where 6 is such that A < 6 < 1. Now we show that F B, C B,, where B, = {x € C: ||x|| < r}.
For x € B,, we have

[(Fx)(®)]l
B t (t_u)a—l u(u_s)ﬁ—l
= ;,EE)] T ( ) f(s,x(s))ds — Ax(u) )du

1 _ a-1 u -1
_ta[ 0(1 F(IZ)) < 0(”r(;)) f(s,x(s))ds—Ax(u)>du] + (-4

tg a1 u _ o\p1
< Sup< O(t F(z;)) < O(ur(;)) (|f(s,x(s))—f(s,0)|+|f(s,0)|)ds+|J\x(u)|>du

te[0,1]

1 _ a-1 u Bl
" Uo(l F(L;)) <f0 (ur(;)) (|£(s,x()) = f(5,0)| + | f(5,0)])ds

+|)LX(u)|>du] + (2] + I e + |Y1|>

a-1
SSUp( (t- u) <I (ur(ﬁ) (L|x(s)|+|f(s,0)|)ds+|Ax(u)|>du

te[0,1]

_oa- wo o\
+t“[ :(1 1—-(1;)) 1< 0(ur(;)) 1(L|x(s)|+ |f(s,0)]|)ds + |./\x(u)|>du]

v (vl + e+ w)

t (t _ u)u—l u (u _ S)ﬂ—l
< z;g} <f0 (@) <f0 N0 ds(Llx(u)| + | f(u,0)]) + |)Lx(u)|>du

. LA —w)™t [ (" (u—s)P
e[ [ et Yo

v (al + I e + |Y1|>

( a 1

t (t— u)ll—l u (u _ S) p-1
dsd du|A
< sup [ (i [ gy seutic + 1M +t2‘3‘?f o dul x|
1 (1 _ u)vc—l u (u _ S)ﬂ—l (1 _ u)a—l

dulM[lx[| + |y2] + 2|1 |

T T@ . F(ﬂ) dsdu(L||x|| + M) + L
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L1 =)™ (= 5)P
o T(@) Jo T(B)

<2(Lr+ M) dsdu

1 a-1
(1-u)
+2|A|rj0 () du+ (|y2| +2|n|)

_ 2(Lr+ M) f(l u)a1 (| v +(|Y2|+2|Y1|)

F(a)l"(ﬁ +1)
(2.5)
Using (2.2), (2.4), and the relation for Beta function B(:, -):
B(f+1,a) = J1(1 - u)*uPdu = Har(f+1) (2.6)
) S T(a+p+1)’ '
we find that
[(Fx)O)I < (A+1-6)r<r. (2.7)

Now, for x,y € C and for each t € [0, 1], we obtain

| (Fx)(®) = (Fy)®]|

= sup |(Fx)(t) - (Fy)(®)]

te[0,1]

t (t_u)a—l u(u_s)ﬁ—l ~
< tZEE] <J‘0 T(a) <f0 0] |f(s,x(s)) = f(s,y(s))|ds )du

t t— a-1
e[ S (1x( -y©)

da-w - s)f ! ) >
o [ o T(@) <0 () |f(s,x(s)) = f(s,y(5))|ds )du

|)L|I (1- |x(u) v u)|du]>
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< e (1], i, Mgyl v
| y(t)|>
‘L f:u = § <ur(ﬂ) ~dsdux -y
[ L )

(1- u)“ L =) a-w™!
<|lx-yl| [2L f 0] dsdu + 2|A| Owdu]

(2.8)

where

oL 2
CT(a+p+1) T(a+1)

(2.9)

which depends only on the parameters involved in the problem. As A < 1, then F is
a contraction. Thus, the conclusion of the theorem follows by the contraction mapping
principle. This completes the proof. O

Theorem 2.2. Assume that f : [0,1] x X — X is a jointly continuous function and maps bounded
subsets of [0,1] x X into relatzvely compact subsets of X. Furthermore, assume that

(Hl) |f(trx) _f(tfy)| < le_y|/ fOT’ all t € [011]/ X,y eX;

(Hy) [f(t,x)| < u(t), for all (t,x) € [0,1] x X, and u € L}([0,1], R*).

If

L W
<F(a+ﬁ+1) " F(a+1)> <l 210

then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Let us fix

(2.11)

. <2||ﬂ||L1/r(“ +B+1) + |y +2|Y1|>

1—2[A|/T(a+1)
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and consider B, = {x € C: ||x|| < r}. We define the operators ® and ¥ on B, as

tog a1 u _ o\P1
((I)x)(t)=J‘O(tr(L;)) <IO(” s) f(s,x(s))ds—)tx(u))du,

r(p)
L A= =) (2.12)
(Px)(t) = -t [ T jo ) f(s,x(s))ds — Ax(u) )du
+ (2 - )t + 1.
For x,y € B,, we find that
2 1 2|1
|@x + ¥yl < (F(a”f[l}li 0 + F(; 4|-r1) + |12 +2|Y1|> <r. (2.13)

Thus, ®x + ¥y € B,. From the assumption

L |A|
<F(u+[5+1) " F(a+1)> <1 (2.14)

it follows that ¥ is a contraction mapping. The continuity of f implies that the operator @ is
continuous. Also, @ is uniformly bounded on B, as

Il Al
() . 2.15
12 < T T 1) * Tlar ) (2.15)
Now we prove the compactness of the operator ®@. Setting Q = [0,1] x B,, we define
Sup pealf (£ X)| = f, and consequently we have
t a 1 p-1
(t - J' (u-s)
Dx) () — (Dx) (¢ , ds -\ d
[(@x)(t1) - (Dx) (B2)]| = “ r(a) < T(p) f(s,x(s))ds — Ax(u) )du
ty 0{ 1 p-1
(t2 — f (u-s)
s,x(s))ds — Ax(u) )du 2.16
e < Fy RO ~Ax(w) Jau| - 216)
f a+p 3 ta+ﬁ |A|r | a
F(a+ﬂ+1) Fa+1)""t 2V

which is independent of x. Thus, @ is equicontinuous. Using the fact that f maps bounded
subsets into relatively compact subsets, we have that ®(<#)(t) is relatively compact in X for
every t, where & is a bounded subset of C. So @ is relatively compact on B,. Hence, by the
Arzela Ascoli theorem, @ is compact on B,. Thus all the assumptions of Theorem 1.2 are
satisfied and the conclusion of Theorem 1.2 implies that the boundary value problem (1.1)
has at least one solution on [0, 1]. This completes the proof. O
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Example 2.3. Consider the boundary value problem

cpr(epve D - LBl oy,
4 (t+3)2 1+ x| (2.17)

x(0) =y, x(1)=n.

Here, f(t,x) = (1/(t +3)2)(|x|/(1 +1x])), a =1/2, p=1/4and A = 1/4. Clearly |f (¢, x) -
ft,y) <(1/9)|x —y|with L =1/9. Further,

8 1

A:m+\/—5<l. (218)

Thus, by Theorem 2.1, the boundary value problem (2.17) has a unique solution on [0, 1].

3. Conclusions

The existence of solutions for a Dirichlet boundary value problem involving Langevin
equation with two different fractional orders has been discussed. We apply the concepts of
fractional calculus together with fixed point theorems to establish the existence results. First
of all, we find the unique solution for a linear Dirichlet boundary value problem involving
Langevin equation with two different fractional orders, which in fact provides the platform
to prove the existence of solutions for the associated nonlinear fractional Langevin equation
with two different orders. Our approach is simple and is applicable to a variety of real world
problems.
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