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A new iterative technique is employed to solve a system of nonlinear fractional partial differential
equations. This new approach requires neither Lagrange multiplier like variational iteration
method (VIM) nor polynomials like Adomian’s decomposition method (ADM) so that can be more
easily and effectively established for solving nonlinear fractional differential equations, and will
overcome the limitations of these methods. The obtained numerical results show good agreement
with those of analytical solutions. The fractional derivatives are described in Caputo sense.

1. Introduction

In recent years, it has been turned out that fractional differential equations can be
used successfully to model many phenomena in various fields such as fluid mechanics,
viscoelasticity, physics, chemistry, and engineering. For instance, the fluid−dynamics traffic
model with fractional derivatives [1] is able to eliminate the deficiency arising from the
assumption of continuum traffic flow, and the nonlinear oscillation of earthquakes can be
modeled by fractional derivatives [2]. Fractional differentiation and integration operators can
also be used for extending the diffusion and wave equations [3]. Most of fractional differential
equations do not have exact analytical solutions, hence considerable heed has been focused
on the approximate and numerical solutions of these equations. Although variational
iteration method [4−8] and Adomian’s decomposition method [9−14] are approaches that
have been utilized extensively to provide analytical approximations of linear and nonlinear
problems, they have limitations due to complicated algorithms of calculating Adomian
polynomials for nonlinear fractional problems, and an inherent inaccuracy in determining
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the Lagrange multiplier for fractional equations. In this study, a new alternative procedure
that needs no Lagrange multiplier or Adomian polynomials is used to obtain an analytical
approximate solution of a system of nonlinear fractional partial differential equations (1.1) to
illustrate the effectiveness, accuracy, and convenience of this method.

In this work, we consider the solution of generalized Hirota−Satsuma coupled KdV
of time−fractional order which is presented by a system of nonlinear partial differential
equations, of the form:

Dα
t u =

1
2
uxxx − 3uux + 3(vw)x,

Dα
t v = −vxxx + 3uvx,

Dα
t w = −wxxx + 3uwx,

0 < α < 1, (1.1)

subject to the following initial conditions:

u(x, 0) =
β − 2k2

3
+ 2k2tanh2(kx),

v(x, 0) = −
4k2c0

(
β + k2)

3c2
1

+
4k2(β + k2)tanh(kx)

3c1
,

w(x, 0) = c0 + c1tanh(kx),

(1.2)

where k, c0, c1 /= 0, and β are arbitrary constants. The Hirota−Satsuma system of equations
[15] was introduced to describe the interaction of two long waves with different dispersion
relations. The case of α = 1 in system (1.1) was solved by Wu et al. [16]. If c = −β, then in one
case the u(x, t) = ((β − 2k2)/3) + 2k2tanh2(k(x − ct)), v(x, t) = −(4k2c0(β + k2)/3c2

1) + (4k2(β +
k2)/3c1)tanh(k(x − ct)) and w(x, t) = c0 + c1tanh(k(x − ct)) are travelling−wave solutions of
system (1.1) when α = 1.

2. Basic Definitions

In this section, there are some basic definitions and properties of the fractional calculus theory
which are used in this paper.

Definition 2.1. A real function f(x), x > 0, is mentioned to be in the space Cμ, μ ∈ R if there
exists a real number p(> μ) such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞), and it is said to
be in the space Cm

μ if f (m) ∈ Cμ, m ∈N.

Definition 2.2. The left−sided Riemann−Liouville fractional integral operator of order α ≥ 0,
of a function f ∈ Cμ, μ ≥ −1 is defined as

D−αf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, x > 0,

D0f(x) = f(x).

(2.1)
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The properties of the operator D−α can be found in [1, 17], and we only mention the
following (in this case, f ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ > −1):

D−αD−βf(x) = D−(α+β)f(x),

D−αD−βf(x) = D−βD−αf(x),

D−αxγ =
Γ
(
γ + 1

)

Γ
(
α + γ + 1

)xα+γ .

(2.2)

The Riemann−Liouville derivative has certain disadvantages, in trying way to model
real−world phenomena with fractional differential equations. Therefore, we will employ a
modification of fractional differential operator Dα

∗ proposed by Caputo, in his work [18] on
the theory of viscoelasticity.

Definition 2.3. The (left−sided) Caputo fractional derivative of f(x) is defined as

Dα
∗f(x) = D

α−mDmf(x)

=
1

Γ(m − α)

∫x

0
(x − t)m−α−1f (m)(t)dt,

(2.3)

for m − 1 < α ≤ m, m ∈N, x > 0, f ∈ Cm
−1

Also, we need two of its basic properties.

Lemma 2.4. If m − 1 < α ≤ m, m ∈N, and f ∈ Cm
μ , μ ≥ −1, then one has:

Dα
∗D

−αf(x) = f(x),

D−αDα
∗f(x) = f(x) −

m−1∑

k=0

f (k)(0+)
xk

k!
, x > 0.

(2.4)

The Caputo fractional derivative is considered here, because it allows traditional initial
and boundary conditions to be included in the formulation of the problem.

In this work, we consider the one−dimensional linear nonhomogeneous fractional
partial differential equations in fluid mechanics, where the unknown function u(x, t) is
assumed to be a causal function of time, that is, vanishing for t < 0.

Definition 2.5. For m as the smallest integer that exceeds α, the Caputo time−fractional
derivative operator of order α > 0 is defined as

Dα
∗tu(x, t) =

∂αu(x, t)
∂tα

=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(m − α)

∫ t

0
(t − τ)m−α−1 ∂

mu(x, τ)
∂τm

dτ, m − 1 < α < m,

∂mu(x, t)
∂tm

, α = m ∈N.

(2.5)

For more information on the mathematical properties of fractional derivatives and
integrals, one can consult the mentioned references.
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Figure 1: h−curves of u(x, t): dash, v(x, t): dash dot, and w(x, t): solid when k = 0.1, α = 1, β = 1.5, c0 = 1.5,
c1 = 0.1 at point (1,0.6).

3. Basic Ideas of Fractional Iteration Method (FIM)

As pointed in [19], to illustrate fractional iteration method, we consider the following
nonlinear fractional differential equation (more general form can be considered without loss
of generality):

Dα
∗y(x) − f

(
x, y(x)

)
= 0, y(k)(0) = ak, k = 0, 1, . . . , m − 1, (3.1)

where the fractional differential operator Dα
∗ is dened as in (2.3), m − 1 < α ≤ m, m ∈ N, f is

a nonlinear function of y, and y is an unknown function to be determined later. We want to
find a solution y of (3.1) having the form

y(x) = lim
n→∞

yn(x). (3.2)

Let H(x)/= 0 denote the so−called auxiliary function. Multiplying (3.1) by H(x) and
then applying D−γ , the Riemann−Liouville fractional integral operator, of order γ ≥ 0 defined
by (2.1), on both sides of the resulted term yields

D−γ
(
H(x)

[
Dα
∗y(x) − f

(
x, y(x)

)])
= 0. (3.3)

Let h/= 0 denote the so−called auxiliary parameter. Multiplying (3.3) by h and then adding y,
the solution of (3.1), on both sides of the resulted term yields

y(x) = y(x) + hD−γ
(
H(x)

[
Dα
∗y(x) − f

(
x, y(x)

)])
. (3.4)
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Figure 2: The solitary wave solution of u(x, t), FIM result (a) and exact solution (b), when k = 0.1, α = 1,
β = 1.5, c0 = 1.5, c1 = 0.1.
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Figure 3: The solitary wave solution of v(x, t), FIM result (a) and exact solution (b), when k = 0.1, α = 1,
β = 1.5, c0 = 1.5, c1 = 0.1.

However (3.4) can be solved iteratively as follows:

yn+1(x) = yn(x) + hD−γ
(
H(x)

[
Dα
∗yn(x) − f

(
x, yn(x)

)])
. (3.5)

In (3.5), the subscript n denotes the nth iteration, and provided that the right hand of
it, that is, y(x)+hD−γ(H(x)[Dα

∗y(x)−f(x, y(x))]), is a contractive mapping. The convergence
of (3.5) is ensured by Banach’s fixed point theorem [20], as is shown in [19].

Now, we introduce a new convenient technique for controlling the convergence region
and rate of solution series for this method. Assume that we gain a family of solution series in
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Figure 4: The solitary wave solution of w(x, t), FIM result (a) and exact solution (b), when k = 0.1, α = 1,
β = 1.5, c0 = 1.5, c1 = 0.1.

Table 1: Numerical values when α = 0.5, 0.75, 1.0 and k = 0.1, β = 1.5, c0 = 1.5, c1 = 0.1 for u(x, t).

t x
α = 0.5 α = 0.75 α = 1.0

uFIM uHPM uFIM uHPM uFIM uHPM uExact

0.2

0 0.4935113355 0.4933513333 0.4933937249 0.4933513333 0.4933513226 0.4933513333 0.4933513225
0.25 0.4935979177 0.4934136490 0.4934546200 0.4934060408 0.4933937118 0.4933937581 0.4933937115
0.5 0.4937081918 0.4935005536 0.4935399023 0.4934853752 0.4934607890 0.4934608711 0.4934607891
0.75 0.4938416235 0.4936116158 0.4936491516 0.4935889426 0.4935522228 0.4935523392 0.4935522227

1 0.4939975728 0.4937462882 0.4937818335 0.4937162326 0.4936675611 0.4936677111 0.4936675613

0.4

0 0.4936853330 0.4934053333 0.4935033001 0.4934053333 0.4934051602 0.4934053333 0.4934051609
0.25 0.4938008948 0.4935090262 0.4935963610 0.4934954686 0.4934771397 0.4934775983 0.4934771401
0.5 0.4939391903 0.4936368323 0.4937131147 0.4936097847 0.4935733947 0.4935741334 0.4935733945
0.75 0.4940995646 0.4937881198 0.4938529939 0.4937477171 0.4936934501 0.4936944620 0.4936934499

1 0.4942812668 0.4939621476 0.4940153259 0.4939085897 0.4938367205 0.4938379949 0.4938367203

0.6

0 0.4938553137 0.4934953333 0.4936435681 0.4934953333 0.4934944586 0.4934953333 0.4934944625
0.25 0.4939921388 0.4936348749 0.4937639292 0.4936174202 0.4935955155 0.4935973485 0.4935955186
0.5 0.4941508292 0.4937979026 0.4939071763 0.4937630802 0.4937202663 0.4937230371 0.4937202675
0.75 0.4943306471 0.4939836133 0.4940726248 0.4939315968 0.4938681006 0.4938717813 0.4938681010

1 0.4945307679 0.4941911034 0.4942594934 0.4941221502 0.4940383061 0.4940428589 0.4940383061

the auxiliary parameter h by the means of fractional iteration method. Like HAM, by plotting
the amount of the function or one of its derivatives at a particular point with respect to the
auxiliary parameter h (which is the so−called h−curve), we can obtain a proper value of h
that ensures the convergence of the solution series. This proper value of h corresponds to the
curve segment nearly parallel to the horizontal axis in the h−curve plot. Therefore, if we set
h any value in this region, which is so−called the valid region of h, we are quite sure that the
corresponding solution series converge.

Having freedom for choosing the auxiliary function H(x), the auxiliary parameter h,
the initial approximation y0(x), and the fractional integral order γ, that is, fundamental to
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Table 2: Numerical values when α = 0.5, 0.75, 1.0 and k = 0.1, β = 1.5, c0 = 1.5, c1 = 0.1 for v(x, t).

t x α = 0.5 α = 0.75 α = 1.0
vFIM vHPM vFIM vHPM vFIM vHPM vExact

0.2

0 −3.004851885 −3.009951963 −3.010186962 −3.011485031 −3.013961813 −3.013960000 −3.013961811
0.25 −2.999873282 −3.004930481 −3.005175951 −3.006462592 −3.008937820 −3.008936014 −3.008937819
0.5 −2.994919279 −2.999927784 −3.000183326 −3.001457026 −3.003927607 −3.003925818 −3.003927606
0.75 −2.989995777 −2.994950010 −2.995215173 −2.996474487 −2.998937350 −2.998935586 −2.998937348

1 −2.985108534 −2.990003168 −2.990277460 −2.991521007 −2.993973118 −2.993971391 −2.993973120

0.4

0 −2.998707345 −3.001587258 −3.003540427 −3.004319121 −3.007934500 −3.007920000 −3.007934475
0.25 −2.993774914 −2.996584581 −2.998560913 −2.999314737 −3.002927784 −3.002913367 −3.002927763
0.5 −2.988873896 −2.991611047 −2.993607731 −2.994336092 −2.997942249 −2.997927984 −2.997942228
0.75 −2.984009951 −2.986672646 −2.988686777 −2.989389199 −2.992983946 −2.992969899 −2.992983924

1 −2.979188572 −2.981775197 −2.983803790 −2.984479922 −2.988058789 −2.988045031 −2.988058768

0.6

0 −2.994081735 −2.994318388 −2.997767879 −2.997835535 −3.001928965 −3.001880000 −3.001928766
0.25 −2.989192682 −2.989342884 −2.992826759 −2.992857834 −2.996948389 −2.996899772 −2.996948197
0.5 −2.984339775 −2.984405468 −2.987918608 −2.987913837 −2.991996239 −2.991948208 −2.991996054
0.75 −2.979528475 −2.979511953 −2.983049116 −2.983009390 −2.987078404 −2.987031190 −2.987078224

1 −2.974764060 −2.974667936 −2.978223778 −2.978150144 −2.982200600 −2.982154433 −2.982200431

Table 3: Numerical values when α = 0.5, 0.75, 1.0 and k = 0.1, β = 1.5, c0 = 1.5, c1 = 0.1 for w(x, t).

t x
α = 0.5 α = 0.75 α = 1.0

wFIM wHPM wFIM wHPM wFIM wHPM wExact

0.2

0 1.507523900 1.504990747 1.504874024 1.504229289 1.502999100 1.503000000 1.502999100
0.25 1.509996714 1.507484860 1.507362938 1.506723878 1.505494461 1.505495357 1.505494461
0.5 1.512457311 1.509969643 1.509842719 1.509210085 1.507982979 1.507983864 1.507982977
0.75 1.514902760 1.512442049 1.512310343 1.511684858 1.510461580 1.510462458 1.510461582

1 1.517330199 1.514899088 1.514762850 1.514145194 1.512927259 1.512928117 1.512927258

0.4

0 1.510575823 1.509145401 1.508175285 1.507788516 1.505992798 1.506000000 1.505992810
0.25 1.513025704 1.511630175 1.510648553 1.510274137 1.508479570 1.508486739 1.508479588
0.5 1.515459985 1.514100473 1.513108742 1.512746974 1.510955834 1.510962922 1.510955847
0.75 1.517875852 1.516553321 1.515552926 1.515204040 1.513418571 1.513425547 1.513418581

1 1.520270576 1.518985828 1.517978251 1.517642422 1.515864843 1.515871673 1.515864850

0.6

0 1.512873311 1.512755768 1.511042443 1.511008840 1.508975680 1.509000000 1.508975778
0.25 1.515301647 1.515227046 1.513496642 1.513481209 1.511449479 1.511473624 1.511449571
0.5 1.517712032 1.517679404 1.515934464 1.515936836 1.513909155 1.513933009 1.513909245
0.75 1.520101750 1.520109958 1.518353088 1.518372820 1.516351785 1.516375237 1.516351875

1 1.522468182 1.522515926 1.520749779 1.520786351 1.518774537 1.518797467 1.518774621

the validity and flexibility of the FIM, we can suppose that all of them are properly chosen,
therefore, the iterative scheme (3.5) will converge to the exact solution. Accordingly, the
successive approximations yn(x), n ≥ 0, of the solution y(x) will be obtained by choosing
y0(x) that at least satises the initial and/or boundary conditions. Consequently, the exact
solution may be obtained by using y(x) = limn→∞yn(x).

4. Applications

In this section, we implement fractional iteration method to generalized Hirota−Satsuma
coupled KdV of time−fractional order when 0 < α ≤ 1. For convenience in applying FIM
method, we choose the initial conditions given in (1.2) as the initial approximations:
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u0(x, t) =
β − 2k2

3
+ 2k2tanh2(kx),

v0(x, t) = −
4k2c0

(
β + k2)

3c2
1

+
4k2(β + k2)tanh(kx)

3c1
,

w0(x, t) = c0 + c1tanh(kx).

(4.1)

Choosing γ = α and H(x, t) = 1, we can construct the iterative scheme (3.5) for
investigation of the traveling wave solution of (1.1) as follows:

un+1(x, t) = un(x, t) + hDt
−α

×
[

D∗t
αun(x, t) −

1
2
∂3

∂x3
un(x, t) + 3un(x, t)

∂

∂x
un(x, t) − 3

∂

∂x
(vn(x, t)wn(x, t))

]

,

vn+1(x, t) = vn(x, t) + hDt
−α

×
[

D∗t
αvn(x, t) +

∂3

∂x3
vn(x, t) − 3un(x, t)

∂

∂x
vn(x, t)

]

,

wn+1(x, t) = wn(x, t) + hDt
−α

×
[

D∗t
αwn(x, t) +

∂3

∂x3
wn(x, t) − 3un(x, t)

∂

∂x
wn(x, t)

]

.

(4.2)

Substituting the initial approximations, (4.1), into (4.2), for the case α = 1, yields

u1 = 0.493 + 0.02 tanh(0.1x)2 + h
(

0.016
(

0.1 − 0.1 tanh(0.1x)2
)2

tanh(0.1x)t

− 0.0008 tanh(0.1x)3
(

0.1 − 0.1 tanh(0.1x)2
)
t + 0.12

(
0.493 + 0.02 tanh(0.1x)2

)

× tanh(0.1x)
(

0.1 − 0.1 tanh(0.1x)2
)
t − 3

(
0.001342 − 0.001342 tanh(0.1x)2

)

×(1.5 + 1.5 tanh(0.1x))t−3(−0.001342 + 0.001342 tanh(0.1x))
(

0.15 − 0.15 tanh(0.1x)2
)
t

)
,

v1 = −0.001342 + 0.001342 tanh(0.1x) + h
(
−0.002684

(
0.1 − 0.1 tanh(0.1x)2

)2
t

+ 0.0005368 tanh(0.1x)2
(

0.1 − 0.1 tanh(0.1x)2
)
t − 3

(
0.493 + 0.02 tanh(0.1x)2

)

×
(

0.001342 − 0.001342 tanh(0.1x)2
)
t

)
,

w1 = 1.5 + 1.5 tanh(0.1x) + h
(
−0.3

(
0.1 − 0.1 tanh(0.1x)2

)2
t

+ 0.06 tanh(0.1x)2
(

0.1 − 0.1 tanh(0.1x)2
)
− 3

(
0.493 + 0.02 tanh(0.1x)2

)

×
(

0.15 − 0.15 tanh(0.1x)2
)
t

)
.

(4.3)
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5. Result and Discussion

In this section, four figures are presented corresponding to FIM results and exact solutions
for the solitary wave solutions u(x, t), v(x, t), and w(x, t) with the initial conditions (1.2),
when k = 0.1, α = 1, β = 1.5, c0 = 1.5, c1 = 0.1. Furthermore, numerical values for the case
α = 0.5, 0.75, 1.0, and k = 0.1, β = 1.5, c0 = 1.5, c1 = 0.1 are obtained for u(x, t), v(x, t), and
w(x, t).

Demonstrating the exactness of FIM, the numerical results are presented and only
few iterations are required to achieve accurate solutions. The convergence of FIM for the
generalized fractional−order Hirota−Satsuma−coupled KdV equation is controllable, using
the so−called h−curves presented in Figure 1 which are obtained based on the fourth−order
FIM approximate solutions. In general, by the means of the so−called h−curve, it is straight
forward to choose a proper value of h which ensures that the solution series is convergent.
This proper value of h corresponds to the curve segment nearly parallel to the horizontal axis.
Both exact results and approximate solutions obtained for the first four approximations are
plotted in Figures 2, 3, and 4. There are no visible differences in two solutions of each pair of
diagrams.

Tables 1, 2, and 3 show the numerical values by FIM when α = 0.5, 0.75, 1.0 and
k = 0.1, β = 1.5, c0 = 1.5, c1 = 0.1 for u(x, t), v(x, t), and w(x, t) respectively.

6. Conclusion

In this paper, the fractional iteration method (FIM) has been successfully applied to study
Hirota−Satsuma−coupled KdV of time−fractional−order equation. FIM results are compared
with the exact solutions and those obtained by Homotopy perturbation method [21].

The results show that fractional iteration method is a powerful and efficient technique
in finding exact and approximate solutions for nonlinear partial differential equations of
fractional order. The method provides the user with more realistic series solutions that
converge very rapidly in real physical problems.

Compared with the ADM and VIM, the FIM has following advantages, [19].

(1) The auxiliary parameter h provides us with a convenient way to modify and control
the convergence region of the solution.

(2) The solution of a given nonlinear problem can be expressed by an infinite number of
solution series and thus can be more efficiently approximated by a better selection
of the auxiliary parameter values.

(3) Unlike the ADM, the FIM method is free from the need to use Adomian
polynomials.

(4) This method has no need for the Lagrange multiplier, correction functional,
stationary conditions, the variational theory, and so forth, which eliminates the
complications that exist in the VIM.

(5) The fractional iteration method can be easily comprehended with only a basic
knowledge of fractional calculus.

(6) Compared to the ADM and VIM, the presented method proves simpler in its
principles and more convenient for computer algorithms.

In this work, we used Maple Package to calculate the series obtained by fractional
iteration method.
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