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We prove that each analytic self-map of the open unit disk which interpolates between
certain n-tuples must have a fixed point.

1. Introduction

Let U denote the open unit disk centered at the origin and T its boundary. For any pair of
distinct complex numbers z and w and any positive constant k, we consider the locus of
all points ζ in the complex plane C having the ratio of the distances to w and z equal to
k, that is, we consider the solution set of the equation

|ζ −w|
|ζ − z| = k. (1.1)

We denote that set by A(z,w,k) and (following [1]) call it the Apollonius circle of constant
k associated to the points z and w. The set A(z,w,k) is a circle for all values of k other
than 1 when it is a line.

In this paper, we consider z,w ∈ U, show that if z �= w, then necessarily A(z,w,√
(1−|w|2)/(1−|z|2)) meets the unit circle twice, consider the arc on the unit circle

with those endpoints, situated in the same connected component of C \ A(z,w,√
(1−|w|2)/(1−|z|2)) as z, and denote it by Γz,w. We prove that if Z = (z1, . . . ,zN ) and

W = (w1, . . . ,wN ) are N-tuples with entries in U such that zj �= wj for all j = 1, . . . ,N
and

T=
N⋃

j=1

Γzj ,wj , (1.2)

then each analytic self-map of U interpolating between Z and W must have a fixed point.
The next section contains the announced fixed point theorem (Theorem 2.2).
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2. The fixed point theorem

For each eiθ ∈ T and k > 0, the set

HD
(
eiθ ,k

)
:= {z ∈ U :

∣∣eiθ − z
∣∣2

< k
(
1−|z|2)} (2.1)

called the horodisk with constant k tangent at eiθ is an open disk internally tangent to T at
eiθ whose boundary HC(eiθ ,k) := {z ∈ U : |eiθ − z|2 = k(1− |z|2)} is called the horocycle
with constant k tangent at eiθ .

The center and radius of HC(eiθ ,k) are given by

C = eiθ

1 + k
, R= k

1 + k
, (2.2)

respectively. One should note that HD(eiθ ,k) extends to exhaust U as k→∞.
Let ϕ be a self-map of U. For each positive integer n, ϕ[n] = ϕ ◦ ϕ ◦ ··· ◦ ϕ, n times.

The following is a combination of results due to Denjoy, Julia, and Wolff.

Theorem 2.1. Let ϕ be an analytic self-map of U. If ϕ has no fixed point, then there is a
remarkable point w on the unit circle such that the sequence {ϕ[n]} converges to w uniformly
on compact subsets of U and

ϕ
(

HD(w,k)
)⊆HD(w,k) k > 0. (2.3)

The remarkable point w is called the Denjoy-Wolff point of ϕ. Relation (2.3) is a con-
sequence of a geometric function-theoretic result known as Julia’s lemma. In case ϕ has a
fixed point, but is not the identity or an elliptic disk automorphism, one can use Schwarz’s
lemma in classical complex analysis to show that {ϕ[n]} tends to that fixed point, (which
is also regarded as a constant function), uniformly on compact subsets of U. These facts
show that if ϕ is not the identity, then it may have at most a fixed point in U. Good
accounts on all the results summarized above can be found in [2, Section 2.3] and [4,
Sections 4.4–5.3].

In the sequel, ϕ will always denote an analytic self-map of U other than the identity.
For each z ∈ U such that ϕ(z) �= z, we consider the intersection of the unit circle T and

A(z,ϕ(z),
√

(1−|ϕ(z)|2)/(1−|z|2)). It necessarily consists of two points.
Indeed, it cannot be a singleton. If one assumes that the aforementioned intersection

is the singleton {eiθ}, then the relation

∣∣eiθ −ϕ(z)
∣∣2

1−∣∣ϕ(z)
∣∣2 =

∣∣eiθ − z
∣∣2

1−|z|2 (2.4)

must be satisfied, and this means that both z and ϕ(z) are on a horocycle tangent to
T at eiθ , which is contradictory due to the fact of, under our assumptions, A(z,ϕ(z),√

(1−|ϕ(z)|2)/(1−|z|2)) is also such a horocycle and hence fails to separate z and ϕ(z)
(the points z and ϕ(z) should be in different connected components of C \A(z,ϕ(z),√

(1−|ϕ(z)|2)/(1−|z|2))).
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On the other hand, T∩A(z,ϕ(z),
√

(1−|ϕ(z)|2)/(1−|z|2)) cannot be empty. Indeed,

for any z,w ∈ U, z �= w, A(z,w,
√

(1−|w|2)/(1−|z|2)) meets T. To prove that, one can
assume without loss of generality that (1−|w|2)/(1−|z|2) > 1. If, arguing by contradic-
tion, we assume that A(z,w,

√
(1−|w|2)/(1−|z|2))∩T=∅, then T must be exterior to

A(z,w, (1−|w|2)/(1−|z|2)), that is,

∣∣∣∣
eiθ −w

eiθ − z

∣∣∣∣
2

<
1−|w|2
1−|z|2 or, equivalently,

∣∣eiθ −w
∣∣2

1−|w|2 <

∣∣eiθ − z
∣∣2

1−|z|2 eiθ ∈ T. (2.5)

The last inequality implies that, for each eiθ ∈ T, w is interior to the horocycle H tangent
to T at eiθ that passes through z. This leads to a contradiction since there exist horocycles
that are exteriorly tangent to each other at z.

Thus T∩A(z,ϕ(z),
√

(1−|ϕ(z)|2)/(1−|z|2)) necessarily consists of two points. Let
Γz,ϕ(z) denote the open arc of T with those endpoints, situated in the same connected

component of C \A(z,ϕ(z),
√

(1−|ϕ(z)|2)/(1−|z|2)) as z.
By straightforward computations, one can obtain the following formulas for the end-

points eiθ1 and eiθ2 of Γz,ϕ(z):

eiθ1,2 =
−µ± i

√
|Λ|2−µ2

Λ
, (2.6)

where

Λ= z
(
1−∣∣ϕ(z)

∣∣2)−ϕ(z)
(
1−|z|2), µ= ∣∣ϕ(z)

∣∣2−|z|2. (2.7)

It is always true that Λ �= 0 and |Λ| > |µ|, as the reader can readily check.
We are now ready to state and prove the main result of this mathematical note.

Theorem 2.2. If there exist z1,z2, . . . ,zN such that ϕ(zj) �= zj , j = 1, . . . ,N , and

T=
N⋃

j=1

Γzj ,ϕ(zj ), (2.8)

then ϕ has a fixed point in U. In particular, if z1,z2, . . . ,zN ∈ C \ {0} are zeros of ϕ and

T=
N⋃

j=1

{
eiθ :

∣∣θ− arg
(
zj
)∣∣ < arccos

∣∣zj
∣∣}, (2.9)

then ϕ has a fixed point in U. Conversely, if ϕ is an analytic self-map of U other than the
identity and ϕ has a fixed point, then there exist finitely many points z1, . . . ,zk in U such that
condition (2.8) is satisfied.

Proof. Observe that if eiθ ∈ Γz,ϕ(z), then eiθ cannot be the Denjoy-Wolff point of ϕ. In-
deed, arguing by contradiction, assume eiθ is the Denjoy-Wolff point of ϕ. Note that
one can consider a horodisk HD(eiθ ,k) for which z is interior and ϕ(z) exterior, since
|eiθ − z|2/(1− |z|2) < |eiθ − ϕ(z)|2/(1− |ϕ(z)|2). This leads to a contradiction by (2.3).
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Figure 2.1

Thus if (2.8) holds, then ϕ does not have a Denjoy-Wolff point, that is, it has a fixed
point in U. Finally, observe that if z �= 0 and ϕ(z) = 0, a simple computation leads to
Γz,ϕ(z) = {eiθ : |θ− arg(z)| < arccos|z|}, which takes care of (2.9).

To prove the necessity of condition (2.8) now, assume ϕ is not the identity and has a
fixed point ω ∈ U. Let ρ(z,w) := |z−w|/|1−wz|, z,w ∈ U, denote the pseudohyperbolic
distance on U. For each z0 ∈ U and r > 0, let K(z0,r) := {z ∈ U : ρ(z,z0) < r} be the pseu-
dohyperbolic disk of center z0 and radius r. Pseudohyperbolic disks are also Euclidean
disks inside U (see [3, page 3]), and if r < 1, then K(z0,r) �= U. By the invariant Schwarz
lemma, (see [3, Lemma 1.2]), one has that ρ(ϕ(z),ω) ≤ ρ(z,ω), z ∈ U. This means that
ϕ maps closed pseudohyperbolic disks with pseudohyperbolic center ω into themselves.
We record this fact for later use and proceed by noting that condition (2.8) is satisfied for
some finite set of points in U if and only if

T=
⋃

z∈U\{ω}
Γz,ϕ(z), (2.10)

which is a direct consequence of the compactness of T. Thus, arguing by contradiction,
one should assume that there exists eiθ ∈ T such that, for each z �= ω, one has that eiθ /∈
Γz,ϕ(z), that is, |eiθ − z|2/(1−|z|2) > |eiθ −ϕ(z)|2/(1−|ϕ(z)|2). One deduces that, for each
z �= ω, ϕ(z) is interior to the horocycle H tangent to T at eiθ that passes through z. This
generates a contradiction. Indeed, consider some 0 < r < 1 and the pseudohyperbolic disk
K(ω,r). Let H be the horocycle tangent at eiθ to T which is also exteriorly tangent to
∂K(ω,r). Denote this tangence point by z. Since ω ∈ K(ω,r), z �= ω. On the other hand, it
is impossible that ϕ(z) be simultaneously interior to H and in the closure of K(ω,r). �

Example 2.3. Any holomorphic self-map ofU interpolating between the triples (0.34,0.5i,
−0.5i) and (0.335,0.25 + 0.125i,0.25− 0.125i) has a fixed point in U, because

T= Γ0.34,0.335∪Γ0.5i,0.25+0.125i∪Γ−0.5i,0.25−0.125i (2.11)
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as one can readily check by using relations (2.6) and (2.7) (see also Figure 2.1 which
illustrates the equality above). The fact that such holomorphic self-maps exist can be
checked by using Pick’s interpolation theorem, (see [3, Theorem 2.2]) or (much easier)
by noting that ϕ(z)= (z+ 1)/4 is such a map.
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