
WEAK AND STRONG CONVERGENCE THEOREMS FOR
NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

SACHIKO ATSUSHIBA AND WATARU TAKAHASHI

Received 24 February 2005

We introduce an implicit iterative process for a nonexpansive semigroup and then we
prove a weak convergence theorem for the nonexpansive semigroup in a uniformly con-
vex Banach space which satisfies Opial’s condition. Further, we discuss the strong conver-
gence of the implicit iterative process.

1. Introduction

Let C be a closed convex subset of a Hilbert space and let T be a nonexpansive mapping
from C into itself. For each t ∈ (0,1), the contraction mapping Tt of C into itself defined
by

Ttx = tu+ (1− t)Tx (1.1)

for every x ∈ C, has a unique fixed point xt, where u is an element of C. Browder [4]
proved that {xt} converges strongly to a fixed point of T as t→ 0 in a Hilbert space. Moti-
vated by Browder’s theorem [4], Takahahi and Ueda [20] proved the strong convergence
of the following iterative process in a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm (see also [14]):

xk = 1
k
x+

(
1− 1

k

)
Txk (1.2)

for every k = 1,2,3, . . . , where x ∈ C. On the other hand, Xu and Ori [21] studied the
following implicit iterative process for finite nonexpansive mappings T1,T2, . . . ,Tr in a
Hilbert space: x0 = x ∈ C and

xn = αnxn−1 +
(
1−αn

)
Tnxn (1.3)

for every n= 1,2, . . . , where {αn} is a sequence in (0,1) and Tn = Tn+r . And they proved
a weak convergence of the iterative process defined by (1.3) in a Hilbert space. Sun et al.
[17] studied the iterations defined by (1.3) and proved the strong convergence of the
iterations in a uniformly convex Banach space, requiring one mapping Ti in the family to
be semi compact.
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In this paper, using the idea of [17, 21], we introduce an implicit iterative process
for a nonexpansive semigroup and then prove a weak convergence theorem for the non-
expansive semigroup in a uniformly convex Banach space which satisfies Opial’s condi-
tion. Further, we discuss the strong convergence of the implicit iterative process (see also
[1, 2, 7, 12, 13]).

2. Preliminaries and notations

Throughout this paper, we denote by N and Z+ the set of all positive integers and the set
of all nonnegative integers, respectively. Let E be a real Banach space. We denote by Br

the set {x ∈ E : ‖x‖ ≤ r}. A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1
for each x, y ∈ B1 with x �= y, and it is said to be uniformly convex if for each ε > 0, there
exists δ > 0 such that ‖x + y‖/2 ≤ 1− δ for each x, y ∈ B1 with ‖x− y‖ ≥ ε. It is well-
known that a uniformly convex Banach space is reflexive and strictly convex (see [19]).
Let C be a closed subset of a Banach space and let T be a mapping from C into itself. We
denote by F(T) and Fε(T) for ε > 0, the sets {x ∈ C : x = Tx} and {x ∈ C : ‖x−Tx‖ ≤ ε},
respectively.

A mapping T of C into itself is said to be compact if T is continuous and maps bounded
sets into relatively compact sets. A mapping T of C into itself is said to be demicompact
at ξ ∈ C if for any bounded sequence {yn} in C such that yn−Tyn → ξ as n→∞, there
exists a subsequence {ynk} of {yn} and y ∈ C such that ynk → y as k→∞ and y−Ty = ξ.
In particular, a continuous mapping T is demicompact at 0 if for any bounded sequence
{yn} in C such that yn−Tyn→ 0 as n→∞, there exists a subsequence {ynk} of {yn} and
y ∈ C such that ynk → y as k→∞. T is also said to be semicompact if T is continuous and
demicompact at 0 (e.g., see [21]). T is said to be demicompact on C if T is demicompact
for each y ∈ C. If T is compact on C, then T is demicompact on C. For examples of
demicompact mappings, see [1, 2, 12, 13]. We also denote by I the identity mapping. A
mapping T of C into itself is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for every
x, y ∈ C. We denote by N(C) the set of all nonexpansive mappings from C into itself. We
know from [5] that if C is a nonempty closed convex subset of a strictly convex Banach
space, then F(T) is convex for each T ∈N(C) with F(T) �= ∅. The following are crucial
to prove our results (see [5, 6]).

Proposition 2.1 (Browder). Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space and let T be a nonexpansive mapping from C into itself. Let
{xn} be a sequence in C such that it converges weakly to an element x of C and {xn−Txn}
converges strongly to 0. Then x is a fixed point of T .

Proposition 2.2 (Bruck). Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. For any ε > 0, there exists δ > 0 such that for any non-
expansive mapping T of C into itself with F(T) �= ∅,

coFδ(T)⊂ Fε(T). (2.1)

Let E∗ be the dual space of a Banach space E. The value of x∗ ∈ E∗ at x ∈ E will be
denoted by 〈x,x∗〉. We say that a Banach space E satisfies Opial’s condition [11] if for each
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sequence {xn} in E which converges weakly to x,

lim
n→∞

∥∥xn− x
∥∥ < lim

n→∞

∥∥xn− y
∥∥ (2.2)

for each y ∈ E with y �= x. Since if the duality mapping x → {x∗ ∈ E∗ : 〈x,x∗〉 = ‖x‖2 =
‖x∗‖2} from E into E∗ is single-valued and weakly sequentially continuous, then E sat-
isfies Opial’s condition. Each Hilbert space and the sequence spaces �p with 1 < p <∞
satisfy Opial’s condition (see [8, 11]). Though an Lp-space with p �= 2 does not usually
satisfy Opial’s condition, each separable Banach space can be equivalently renormed so
that it satisfies Opial’s condition (see [11, 22]).

Let S be a semigroup. Let B(S) be the Banach space of all bounded real-valued func-
tions on S with supremum norm. For s∈ S and f ∈ B(S), we define an element ls f in B(S)
by (ls f )(t)= f (st) for each t ∈ S. Let X be a subspace of B(S) containing 1. An element µ
in X∗ is said to be a mean on X if ‖µ‖ = µ(1)= 1. We often write µt( f (t)) instead of µ( f )
for µ∈ X∗ and f ∈ X . Let X be ls-invariant, that is, ls(X)⊂ X for each s∈ S. A mean µ on
X is said to be left invariant if µ(ls f ) = µ( f ) for each s ∈ S and f ∈ X . A sequence {µn}
of means on X is said to be strongly left regular if ‖µn − l∗s µn‖ → 0 for each s ∈ S, where
l∗s is the adjoint operator of ls. In the case when S is commutative, a strongly left regular
sequence is said to be strongly regular [9, 10]. Let E be a Banach space, let X be a subspace
of B(S) containing 1 and let µ be a mean on X . Let f be a mapping from S into E such
that { f (t) : t ∈ S} is contained in a weakly compact convex subset of E and the mapping
t → 〈 f (t),x∗〉 is in X for each x∗ ∈ E∗. We know from [9, 18] that there exists a unique
element x0 ∈ E such that 〈x0,x∗〉 = µt〈 f (t),x∗〉 for all x∗ ∈ E∗. Following [9], we denote
such x0 by

∫
f (t)dµ(t). Let C be a nonempty closed convex subset of a Banach space E.

A family � = {T(t) : t ∈ S} is said to be a nonexpansive semigroup on C if it satisfies the
following:

(1) for each t ∈ S, T(t) is a nonexpansive mapping from C into itself;
(2) T(ts)= T(t)T(s) for each t,s∈ S.

We denote by F(�) the set of common fixed points of �, that is,
⋂

t∈S F(T(t)). Let � =
{T(t) : t ∈ S} be a nonexpansive semigroup on C such that for each x ∈ C, {T(t)x : t ∈ S}
is contained in a weakly compact convex subset of C. Let X be a subspace of B(S) with
1∈ X such that the mapping t → 〈T(t)x,x∗〉 is in X for each x ∈ C and x∗ ∈ E∗, and let
µ be a mean on X . Following [15], we also write Tµx instead of

∫
T(t)xdµ(t) for x ∈ C.

We remark that Tµ is nonexpansive on C and Tµx = x for each x ∈ F(�); for more details,
see [19].

We write xn → x (or limn→∞ xn = x) to indicate that the sequence {xn} of vectors con-
verges strongly to x. Similarly, we write xn⇀ x (or w-limn→∞ xn = x) will symbolize weak
convergence. For any element z and any set A, we denote the distance between z and A by
d(z,A)= inf{‖z− y‖ : y ∈ A}.

3. Weak convergence theorem

Throughout the rest of this paper, we assume that S is a semigroup. Let C be a nonempty
weakly compact convex subset of a Banach space E and let � = {T(s) : s ∈ S} be
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a nonexpansive semigroup of C. We consider the following iterative procedure (see [21]):
x0 = x ∈ C and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (3.1)

for every n∈N, where {αn} is a sequence in (0,1).

Lemma 3.1. Let C be a nonempty weakly compact convex subset of a Banach space E and
let � = {T(t) : t ∈ S} be a nonexpansive semigroup on C such that F(�) �= ∅. Let X be a
subspace of B(S) with 1∈ X such that the function t → 〈T(t)x,x∗〉 is inX for each x ∈ C and
x∗ ∈ E∗. Let {µn} be a sequence of means on S and let {αn} be a sequence of real numbers
such that 0 < αn < 1 for every n∈N. Let x ∈ C and let {xn} be the sequence defined by x0 = x
and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (3.2)

for every n ∈ N. Then, ‖xn+1 −w‖ ≤ ‖xn −w‖ and limn→∞‖xn −w‖ exists for each w ∈
F(�).

Proof. Let w ∈ F(�). By the definition of {xn}, we obtain that

∥∥xn−w
∥∥= ∥∥αn(xn−1−w

)
+
(
1−αn

)(
Tµnxn−w

)∥∥
≤ αn

∥∥xn−1−w
∥∥+

(
1−αn

)∥∥Tµnxn−w
∥∥

≤ αn
∥∥xn−1−w

∥∥+
(
1−αn

)∥∥xn−w
∥∥

(3.3)

and hence

αn
∥∥xn−w

∥∥≤ αn
∥∥xn−1−w

∥∥. (3.4)

It follows from αn �= 0 that {‖xn−w‖} is a nonincreasing sequence. Hence, it follows that
limn→∞‖xn−w‖ exists. �

The following lemma was proved by Shioji and Takahashi [16] (see also [3, 9]).

Lemma 3.2 (Shioji and Takahashi). Let C be a nonempty closed convex subset of a uniformly
convex Banach space E and let �= {T(t) : t ∈ S} be a nonexpansive semigroup on C. Let X
be a subspace of B(S) with 1∈ X such that it is ls-invariant for each s∈ S, and the function
t → 〈T(t)x,x∗〉 is in X for each x ∈ C and x∗ ∈ E∗. Let {µn} be a sequence of means on S
which is strongly left regular. For each r > 0 and t ∈ S,

lim
n→∞

sup
y∈C∩Br

∥∥Tµn y−T(t)Tµn y
∥∥= 0. (3.5)

The following lemma is crucial in the proofs of the main theorems.

Lemma 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space
E and let � = {T(t) : t ∈ S} be a nonexpansive semigroup on C such that F(�) �= ∅. Let X
be a subspace of B(S) with 1∈ X such that it is ls-invariant for each s∈ S, and the function
t → 〈T(t)x,x∗〉 is in X for each x ∈ C and x∗ ∈ E∗. Let {µn} be a sequence of means on S
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which is strongly left regular and let {αn} be a sequence of real numbers such that 0 < αn < 1
for every n ∈N and

∑∞
n=1(1− αn) =∞. Let x ∈ C and let {xn} be the sequence defined by

x0 = x and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (3.6)

for every n∈N. Then, for each t ∈ S,

lim
n→∞

∥∥xn−T(t)xn
∥∥= 0. (3.7)

Proof. For x ∈ C and w ∈ F(�), put r = ‖x−w‖ and set D = {u∈ E : ‖u−w‖ ≤ r}∩C.
Then, D is a nonempty bounded closed convex subset of C which is T(s)-invariant for
each s ∈ S and contains x0 = x. So, without loss of generality, we may assume that C is
bounded. Fix ε > 0, t ∈ S and set M0 = sup{‖z‖ : z ∈ C}. Then, from Proposition 2.2,
there exists δ > 0 such that

coFδ
(
T(t)

)⊂ Fε
(
T(t)

)
. (3.8)

From Lemma 3.2 there exists l ∈N such that

∥∥Tµi y−T(t)Tµi y
∥∥ < δ (3.9)

for every i≥ l and y ∈ C. We have, for each k ∈N,

xl+k = αl+kxl+k−1 +
(
1−αl+k

)
Tµl+k xl+k

= αl+k
{
αl+k−1xl+k−2 +

(
1−αl+k−1

)
Tµl+k−1xl+k−1

}
+
(
1−αl+k

)
Tµl+k xl+k

...

=
( l+k∏

i=l
αi

)
xl−1 +

l+k−1∑
j=l

{( l+k∏
i= j+1

αi

)(
1−αj

)
Tµj xj

}
+
(
1−αl+k

)
Tµl+k xl+k.

(3.10)

Put

yk = 1

1−∏l+k
i=l αi

{ l+k−1∑
j=l

{( l+k∏
i= j+1

αi

)(
1−αj

)
Tµj xj

}
+
(
1−αl+k

)
Tµl+k xl+k

}
. (3.11)

From

l+k−1∑
j=l

{( l+k∏
i= j+1

αi

)(
1−αj

)}
+
(
1−αl+k

)= 1−
l+k∏
i=l

αi, (3.12)
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we obtain yk ∈ co({Tµixi}i=l+ki=l ) and

xl+k =
( l+k∏

i=l
αi

)
xl−1 +

(
1−

l+k∏
i=l

αi

)
yk. (3.13)

From (3.9), we know that for every k ∈N, Tµixi ∈ Fδ(T(t)) for i = l, l + 1, . . . , l + k. So, it
follows from (3.8) that yk ∈ coFδ(T(t))⊂ Fε(T(t)) for every k ∈N. We know from Abel-
Dini theorem that

∑∞
i=l(1− αi) =∞ implies

∏∞
i=l αi = 0. Then, there exists m ∈ N such

that
∏l+k

i=l αi < ε/(2M0) for every k ≥m. From (3.13), we obtain

∥∥xl+k − yk
∥∥=

( l+k∏
i=l

αi

)∥∥xl−1− yk
∥∥ < ε

2M0
· 2M0 = ε (3.14)

for every k ≥m. Hence,∥∥T(t)xl+k − xl+k
∥∥≤ ∥∥T(t)xl+k −T(t)yk

∥∥+
∥∥T(t)yk − yk

∥∥+
∥∥yk − xl+k

∥∥
≤ 2

∥∥xl+k − yk
∥∥+

∥∥T(t)yk − yk
∥∥≤ 2ε+ ε= 3ε

(3.15)

for every k ≥m. Since ε > 0 is arbitrary, we get limn→∞‖T(t)xn− xn‖ = 0 for each t ∈ S.
�

Now, we prove a weak convergence theorem for a nonexpansive semigroup in a Banach
space.

Theorem 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space
E which satisfies Opial’s condition and let � = {T(t) : t ∈ S} be a nonexpansive semigroup
on C such that F(�) �= ∅. Let X be a subspace of B(S) with 1∈ X such that it is ls-invariant
for each s ∈ S, and the function t → 〈T(t)x,x∗〉 is in X for each x ∈ C and x∗ ∈ E∗. Let
{µn} be a sequence of means on S which is strongly left regular and let {αn} be a sequence of
real numbers such that 0 < αn < 1 for every n∈N and

∑∞
n=1(1−αn)=∞. Let x ∈ C and let

{xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (3.16)

for every n∈N. Then, {xn} converges weakly to an element of F(�).

Proof. Since E is reflexive and {xn} is bounded, {xn}must contain a subsequence of {xn}
which converges weakly to a point in C. Let {xni} and {xnj} be two subsequences of {xn}
which converge weakly to y and z, respectively. From Lemma 3.3 and Proposition 2.1, we
know y,z ∈ F(�). We will show y = z. Suppose y �= z. Then from Lemma 3.1 and Opial’s
condition, we have

lim
n→∞

∥∥xn− y
∥∥= lim

i→∞
∥∥xni − y

∥∥ < lim
i→∞

∥∥xni − z
∥∥

= lim
n→∞

∥∥xn− z
∥∥= lim

j→∞
∥∥xnj − z

∥∥
< lim

j→∞
∥∥xnj − y

∥∥= lim
j→∞

∥∥xn− y
∥∥.

(3.17)

This is a contradiction. Hence {xn} converges weakly to an element of F(�). �
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4. Strong convergence theorems

In this section, we discuss the strong convergence of the iterates defined by (3.1). Now,
we can prove a strong convergence theorem for a nonexpansive semigroup in a Banach
space (see also [2]).

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space
E and let � = {T(t) : t ∈ S} be a nonexpansive semigroup on C such that F(�) �= ∅. Let X
be a subspace of B(S) with 1∈ X such that it is ls-invariant for each s∈ S, and the function
t → 〈T(t)x,x∗〉 is in X for each x ∈ C and x∗ ∈ E∗. Let {µn} be a sequence of means on S
which is strongly left regular and let {αn} be a sequence of real numbers such that 0 < αn < 1
for every n ∈N and

∑∞
n=1(1− αn) =∞. Let x ∈ C and let {xn} be the sequence defined by

x0 = x and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (4.1)

for every n ∈ N. If there exists some T(s) ∈ � which is semicompact, then {xn} converges
strongly to an element of F(�).

Proof. Since the nonexpansive mapping T(s) is semicompact, there exist a subsequence
{xnj} of {xn} and y ∈ C such that xnj → y as j →∞. By Lemma 3.3, we have that

0= lim
j→∞

∥∥xnj −T(t)xnj

∥∥= ∥∥y−T(t)y
∥∥ (4.2)

for each t ∈ S and hence y ∈ F(�). Then, it follows from Lemma 3.1 that

lim
n→∞

∥∥xn− y
∥∥= lim

j→∞
∥∥xnj − y

∥∥= 0. (4.3)

Therefore, {xn} converges strongly to an element of F(�). �

Next, we give a necessary and sufficient condition for the strong convergence of the
iterates.

Theorem 4.2. Let C be a nonempty weakly compact convex subset of a Banach space E
and let � = {T(t) : t ∈ S} be a nonexpansive semigroup on C such that F(�) �= ∅. Let X
be a subspace of B(S) with 1 ∈ X such that the function t → 〈T(t)x,x∗〉 is in X for each
x ∈ C and x∗ ∈ E∗. Let {µn} be a sequence of means on S and let {αn} be a sequence of real
numbers such that 0 < αn < 1 for every n∈N. Let x ∈ C and let {xn} be the sequence defined
by x0 = x and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (4.4)

for every n ∈N. Then, {xn} converges strongly to a common fixed point of � if and only if
limn→∞d(xn,F(�))= 0.
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Proof. The necessity is obvious. So, we will prove the sufficiency. Assume

lim
n→∞

d
(
xn,F(�)

)= 0. (4.5)

By Lemma 3.1, we have

∥∥xn+1−w
∥∥≤ ∥∥xn−w

∥∥ (4.6)

for each w ∈ F(�). Taking the infimum over w ∈ F(�),

d
(
xn+1,F(�)

)≤ d
(
xn,F(�)

)
(4.7)

and hence the sequence {d(xn,F(�))} is nonincreasing. So, from limn→∞d(xn,F(�))=0,
we obtain that

lim
n→∞d

(
xn,F(�)

)= 0. (4.8)

We will show that {xn} is a Cauchy sequence. Let ε > 0. There exists a positive integer N
such that for each n≥N , d(xn,F(�)) < ε/2. For any l,k ≥N and w ∈ F(�), we obtain

∥∥xl −w
∥∥≤ ∥∥xN −w

∥∥,
∥∥xk −w

∥∥≤ ∥∥xN −w
∥∥ (4.9)

by Lemma 3.1. So, we obtain ‖xl − xk‖ ≤ ‖xl −w‖+‖w− xk‖ ≤ 2‖xN −w‖ and hence

∥∥xl − xk
∥∥≤ 2inf

{∥∥xN − y
∥∥ : y ∈ F(�)

}= 2d
(
xN ,F(�)

)
< ε (4.10)

for every l,k ≥N . This implies that {xn} is a Cauchy sequence. Since C is a closed subset
of E, {xn} converges strongly to z0 ∈ C. Further, since F(�) is a closed subset of C, (4.8)
implies that z0 ∈ F(�). Thus, we have that {xn} converges strongly to a common fixed
point of �. �

Theorem 4.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space
E and let � = {T(t) : t ∈ S} be a nonexpansive semigroup on C such that F(�) �= ∅. Let X
be a subspace of B(S) with 1∈ X such that it is ls-invariant for each s∈ S, and the function
t → 〈T(t)x,x∗〉 is in X for each x ∈ C and x∗ ∈ E∗. Let {µn} be a sequence of means on S
which is strongly left regular and let {αn} be a sequence of real numbers such that 0 < αn < 1
for every n∈N and

∑∞
n=1(1−αn)=∞. Assume that there exist s∈ S and k > 0 such that

∥∥(I −T(s)
)
z
∥∥≥ kd

(
z,F(�)

)
(4.11)
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for every z ∈ C. Let x ∈ C and let {xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

)
Tµnxn (4.12)

for every n∈N. Then, {xn} converges strongly to an element of F(�).

Proof. From Lemma 3.3, we obtain that ‖(I − T(s))xn‖ → 0 as n→ 0. Then, it follows
from (4.11) that

lim
n→∞kd

(
xn,F(�)

)= 0 (4.13)

for some k > 0. Therefore, we can conclude that {xn} converges strongly to an element of
F(�) by Theorem 4.2. �

5. Deduced theorems from main results

Throughout this section, we assume that C is a nonempty closed convex subset of a uni-
formly convex Banach space E, x is an element of C, and {αn} is a sequence of real num-
bers such that 0 < αn < 1 for each n ∈N and

∑∞
n=1(1− αn) =∞. As direct consequences

of Theorems 3.4 and 4.1, we can show some convergence theorems.

Theorem 5.1. Let T be a nonexpansive mapping from C into itself such that F(T) �= ∅. Let
{xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

) 1
n+ 1

n∑
i=0

Tixn (5.1)

for every n∈N. If E satisfies Opial’s condition, then {xn} converges weakly to a fixed point
of T , and if T is semicompact, then {xn} converges strongly to a fixed point of T .

Theorem 5.2. Let T be as in Theorem 5.1. Let {sn} be a sequence of positive real numbers
with sn ↑ 1. Let {xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

)(
1− sn

) ∞∑
i=0

sn
i Tixn (5.2)

for every n∈N. If E satisfies Opial’s condition, then {xn} converges weakly to a fixed point
of T , and if T is semicompact, then {xn} converges strongly to a fixed point of T .

Theorem 5.3. Let T be as in Theorem 5.1. Let {qn,m : n,m ∈ Z+} be a sequence of real
numbers such that qn,m ≥ 0,

∑∞
m=0 qn,m = 1 for every n ∈ Z+ and limn→∞

∑∞
m=0 |qn,m+1 −

qn,m| = 0. Let {xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

) ∞∑
m=0

qn,mT
mxn (5.3)

for every n∈N. If E satisfies Opial’s condition, then {xn} converges weakly to a fixed point
of T , and if T is semicompact, then {xn} converges strongly to a fixed point of T .
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Theorem 5.4. Let T and U be commutative nonexpansive mappings from C into itself such
that F(T)∩F(U) �= ∅. Let {xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

) 1
(n+ 1)2

n∑
i, j=0

TiU jxn (5.4)

for every n ∈ N. If E satisfies Opial’s condition, then {xn} converges weakly to a common
fixed point of T and U , and if either T or U is semicompact, then {xn} converges strongly to
a common fixed point of T and U .

Let C be a closed convex subset of a Banach space E and let � = {T(t) : t ∈ [0,∞)}
be a family of nonexpansive mappings of C into itself. Then, � is called a one-parameter
nonexpansive semigroup on C if it satisfies the following conditions: T(0)= I , T(t+ s)=
T(t)T(s) for all t,s∈ [0,∞) and T(t)x is continuous in t ∈ [0,∞) for each x ∈ C.

Theorem 5.5. Let � = {T(t) : t ∈ [0,∞)} be a one-parameter nonexpansive semigroup on
C such that F(�) �= ∅. Let {sn} be a sequence of positive real numbers with sn →∞. Let
{xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

) 1
sn

∫ sn

0
T(t)xn dt (5.5)

for every n ∈ N. If E satisfies Opial’s condition, then {xn} converges weakly to a common
fixed point of �, and if there exists some T(s)∈� which is semicompact, then {xn} converges
strongly to a common fixed point of �.

Theorem 5.6. Let � be as in Theorem 5.5. Let {rn} be a sequence of positive real numbers
with rn→ 0. Let {xn} be the sequence defined by x0 = x and

xn = αnxn−1 +
(
1−αn

)
rn

∫∞
0
e−rntT(t)xn dt (5.6)

for every n ∈ N. If E satisfies Opial’s condition, then {xn} converges weakly to a common
fixed point of �, and if there exists some T(s)∈� which is semicompact, then {xn} converges
strongly to a common fixed point of �.

Theorem 5.7. Let � be as in Theorem 5.5. Let {qn} be a sequence of continuous functions
from [0,∞) into [0,∞) such that

∫∞
0 qn(t)dt = 1 for every n∈N, limn→∞ qn(t)= 0 for t ≥ 0

and limn→∞
∫∞

0 |qn(t + s)− qn(t)|dt = 0 for all s ≥ 0. Let {xn} be the sequence defined by
x0 = x and

xn = αnxn−1 +
(
1−αn

)∫∞
0
qn(t)T(t)xn dt (5.7)

for every n ∈ N. If E satisfies Opial’s condition, then {xn} converges weakly to a common
fixed point of �, and if there exists some T(s)∈� which is semicompact, then {xn} converges
strongly to a common fixed point of �.
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