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By using a Danes̆’ drop theorem in locally convex spaces we obtain a vectorial form of Ekeland-
type variational principle in locally convex spaces. From this theorem, we derive some versions
of vectorial Caristi-Kirk’s fixed-point theorem, Takahashi’s nonconvex minimization theorem, and
Oettli-Théra’s theorem. Furthermore, we show that these results are equivalent to each other. Also,
the existence of solution of vector equilibrium problem is given.

1. Introduction and Preliminaries

A very important result in nonlinear analysis about the existence result for an approximate
minimizer of a lower semicontinuous and bounded below function was first presented by
Ekeland [1]. Known nowadays as Ekeland’s variational principle (in short, EVP), it has
significant applications in the geometry theory of Banach spaces, optimization theory, game
theory, optimal control theory, dynamical systems, and so forth; see [1–11] and references
therein. It is well known that EVP is equivalent to many famous results, namely, the Caristi-
Kirk fixed-point theorem, the petal theorem, Phelp’s lemma, Danês’ drop theorem, Oettli-
Théra’s theorem and Takahashi’s theorem, see, for example, [4, 6, 7, 10, 12–19]. Many
authors have obtained EVP on complete metric spaces [1, 10, 19, 20] and in locally convex
spaces [20–24]. Along with the development of vector optimization and motivated by the
wide usefulness of EVP, many authors have been interested in obtaining this principle
for vector-valued functions and set-valued mappings; see [3, 5, 8, 9, 11–15, 21, 22, 25].
Recently, this principle has been obtained for bifunctions and applied to solve equilibrium
problem in nonconvex setting [10, 12, 14–16, 20, 26, 27]. Our goal in this paper is to obtain
Ekeland’s variational principle for vector-valued bifunctions in locally convex spaces. By
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using this result we derive the existence of solution of vector equilibrium problem in the
setting of seminormed spaces. Also, we obtain vectorial Caristi-Kirk’s fixed-point theorem,
vectorial Takahashi’s nonconvex minimization theorem and vectorial Oettli-Théra’s theorem.
Moreover, we show that these results and Danes̆’ drop theorem are equivalent to each other.
Let us, introduce some known definitions and results which will be used in the sequel.

Let E be a Hausdorff locally convex real vector space. A subset B of E is said to be a
disc, if B is bounded and absolutely convex. Let sp[B] be the vector subspace spanned by
B, and pB be the Minkowski functional of B, then EB := (sp[B], pB) is a normed space. If EB

is a Banach space, then B is called a Banach disc. A sequence {xn} in E is said to be locally
convergent to an element x if there is a disc B in E such that the sequence {xn} is convergent to
x in EB and {xn} is said to be locally Cauchy if there is a disc B in E such that {xn} is a Cauchy
sequence in EB. We say that E is a locally complete space if every locally Cauchy sequence
is locally convergent. This is equivalent to that each bounded subset of E is contained in a
certain Banach disc. A nonempty subset X of E is said to be locally complete if every locally
Cauchy sequence in X is locally convergent to a point in X. The subset X is said to be locally
closed if for any locally convergent sequence in X, its local limit point belongs to X. It is
well known that every sequentially complete locally convex space is locally complete and the
converse is not true; see [28, 29].

Let (Y,C) be a locally convex space ordered by the nontrivial closed convex cone C as
follows:

x ≤C y ⇐⇒ y − x ∈ C. (1.1)

For every x, y ∈ Y we write

x /≤C y ⇐⇒ x − y /∈ − C. (1.2)

Definition 1.1. Let X be a nonempty subset of a locally convex space E, (Y,C) be a locally
convex space ordered by the nontrivial closed convex cone C. A vector-valued function φ :
X → Y is said to be

(1) (e, C)-locally lower semicontinuous if for every r ∈ R the set {x ∈ X : φ(x)≤C re} is
locally closed in X;

(2) C-upper semicontinuous at x0 ∈ X if for any neighborhood U of φ(x0), there exists
a neighborhood V of x0 such that φ(x) ∈ U − C, for all x ∈ V . If φ is C-upper
semicontinuous at each point of X, then φ is said to be C-upper semicontinuous on
X;

(3) C-bounded from below, if there exists b ∈ Y such that b ≤C φ(x) for all x ∈ X.

Assume that the interior of C (intC) is nonempty and g : X × X → Y is a vector-valued
function. The vector equilibrium problem (in short, VEP) is to find x ∈ X such that

g
(
x, y
)
/∈ − intC ∀y ∈ X. (1.3)

It is well known that VEP includes fundamental mathematical problems like vector
optimization, vector variational inequality, and vector complementarity problem. For further
details on VEP, one can refer to [23, 24, 30–32].
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Let e ∈ intC. Recall the definition of the Gerstewitz function [33]:

ξe
(
y
)
:= inf

{
r ∈ R : y ∈ re − C

}
, ∀y ∈ Y. (1.4)

The following lemma describes some properties of the Gerstewitz function and it will be used
in the sequel. For its proof we refer the reader to [5, 6, 33].

Lemma 1.2. For each r ∈ R and y ∈ Y , the following statements are satisfied:

(i) ξe(y) ≤ r ⇔ y ≤C re.

(ii) ξe(y) > r ⇔ y /≤C re.

(iii) ξe(y) ≥ r ⇔ y /∈ re − intC.

(iv) ξe(y) < r ⇔ y ∈ re − intC.

(v) ξe(·) is positively homogeneous and continuous on Y .

(vi) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2), for all y1, y2 ∈ Y .

(vii) ξe(·) is monotone, that is, if y2 ∈ y1 + C, then ξe(y1) ≤ ξe(y2).

In order to obtain a vectorial form of Ekeland-type variational principle we need the
following result.

Theorem 1.3 (see [17]). Let A be a locally closed subset of a locally convex space E and B a locally
closed, bounded convex subset of E with 0/∈ cl(A − B). If either A or B is locally complete, then for
each x0 ∈ A, there exists a ∈ D(x0, B) ∩A such that D(a, B) ∩A = {a}, where D(a, B) denotes the
convex hull of {a} ∪ B.

2. Vectorial Ekeland-Type Variational Principle

Recently, Qiu [18] obtained some versions of Ekeland’s variational principle in locally convex
spaces, which only need to assume local completeness of some related sets. Motivated by this
paper we obtain some versions of EVP for vector-valued bifunctions in locally convex spaces.
These results extend Qiu’s results to vector-valued bifunctions.

Throughout this section E is a locally convex space, X is locally closed subset of
E, {pλ}λ∈Λ is a family of seminorms generating the locally convex topology on E, Y is a
Hausdorff locally convex space ordered by a closed convex coneCwith intC/= ∅ and e ∈ intC.
We consider a vector-valued bifunction f : X × X → Y , a family of positive real numbers
{αλ}λ∈Λ and the following assumptions:

(A1) f(x, x) = 0 for all x ∈ X.

(A2) f(z, x)≤C f(z, y) + f(y, x) for any x, y, z ∈ X.

(A3) y → f(x, y) is C-bounded from below for all x ∈ X.

(A4) y → f(x, y) is (e, C)-locally lower semicontinuous for any x ∈ X.

(A5) There exists x0 ∈ X such that the set {x ∈ X : f(x0, x)≤C 0} is locally complete.

(A6) The set
⋂

λ∈Λ{x ∈ E : αλpλ(x) ≤ 1} is locally complete.

Notice that if assumptions (A1) and (A2) hold, then f is called half distance. The following
result is a vectorial form of Ekeland-type variational principle.
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Theorem 2.1. Suppose that assumptions (A1)–(A4) are satisfied. If either assumption (A5) or
assumption (A6) holds, then for any ε > 0, there exists z ∈ X such that

(i) f(x0, z) + εαλpλ(z − x0)e ≤C 0, for any λ ∈ Λ;

(ii) For any x /= z, there exists μ ∈ Λ such that f(z, x) + εαμpμ(x − z)e /≤C 0.

Proof. Without loss of generality, we may assume that ε = 1 and put M := E × R with the
product topology, then the topology can be generated by a family {qλ : λ ∈ Λ} of seminorms,
where qλ(x, t) = pλ(x) + |t|, for all (x, t) ∈ M. If A = {(x, t) ∈ X × R : f(x0, x)≤C te, t ≤ 0} and
m := inf{t : (x, t) ∈ A}, then since y → f(x, y) is C-bounded from below for all x ∈ X we
have −∞ < m ≤ 0. Take any fixed real number r < m and put B := {(x, r) ∈ M : αλpλ(x−x0) ≤
−r, ∀λ ∈ Λ}. Then K := cone(B) is exactly the set {(y, t) ∈ M : αλpλ(y − x0) ≤ −t, for all
λ ∈ Λ}. If the set {x ∈ X : f(x0, x)≤C 0} is locally complete, then A is locally complete and if⋂

λ∈Λ{x ∈ E : αλpλ(x) ≤ 1} is locally complete, then B is locally complete. Furthermore, B is
bounded closed convex subset ofM and qλ(A −B) ≥ m − r > 0. Hence, by Theorem 1.3, there
exists

(z, s) ∈ A ∩D((0, 0), B) ⊂ A ∩K (2.1)

such that

A ∩D((z, s), B) = {(z, s)}. (2.2)

According to (2.1), we have (z, s) ∈ A ∩K, so

f(x0, z)≤C es (2.3)

and for each λ ∈ Λ

αλpλ(z − x0)e ≤C − es. (2.4)

Therefore, by (2.3) and (2.4), we have

αλpλ(z − x0)e ≤C − es≤C − f(x0, z), ∀λ ∈ Λ. (2.5)

Hence, the part (i) holds. We show that the point z satisfies in the part (ii). Let δ =
ξe(f(x0, z)) − r/s − r. Since re≤C me≤C f(x0, z)≤C se and ξe is monotone, then 0 ≤ δ ≤ 1.
On the other hand we have δs + (1 − δ)r = ξe(f(x0, z)). Hence,

(
z, ξe
(
f(x0, z)

))
= (z, δs + (1 − δ)r) = δ(z, s) + (1 − δ)(z, r). (2.6)

But from (2.5) we have

αλpλ(z − x0)e ≤C − f(x0, z)≤C − re, ∀λ ∈ Λ. (2.7)
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Therefore, (z, r) ∈ B. Thus, (z, ξe(f(x0, z))) ∈ D((z, s), B). Also, clearly (z, ξe(f(x0, z))) ∈ A.
Hence, we have

(
z, ξe
(
f(x0, z)

)) ∈ A ∩D((z, s), B). (2.8)

Therefore, by (2.1), (z, ξe(f(x0, z))) = {(z, s)} and so s = ξe(f(x0, z)).
Supposing that x ∈ X and x /= z, we consider the following two cases.

Case 1. If (x, ξe(f(x0, x)))/∈A, then ξe(f(x0, x)) > 0. Since ξe is monotone, then for all λ ∈ Λ
we have

ξe
(
f(x0, x) + αλpλ(z − x)

)
e ≥ ξe

(
f(x0, x)

)
> 0 ≥ ξe

(
f(x0, z)

)
. (2.9)

But f is half distance and ξe is sublinear, thus

ξe
(
f(z, x) + αλpλ(z − x)e

) ≥ ξe
(
f(x0, x) − f(x0, z) + αλpλ(z − x)e

)

≥ ξe
((
f(x0, x) + αλpλ(z − x)e

) − ξef(x0, z)
)
> 0.

(2.10)

Hence, by the part (ii) of Lemma 1.2;

f(z, x) + αλpλ(z − x)e /≤C 0. (2.11)

Case 2. Let (x, ξe(f(x0, x))) ∈ A, we will show that (x, ξe(f(x0, x)))/∈ (z, s) + K. If not, we
assume that (x − z, ξe(f(x0, x)) − s) ∈ K, that is,

s − ξe
(
f(x0, x)

) ≥ αλpλ(x − z), ∀λ ∈ Λ. (2.12)

Since x /= z and {pλ}λ∈Λ separates points in X, we conclude that there exists μ ∈ Λ such that
pμ(x − z) > 0 thus s − ξe(f(x0, x)) > 0. Put

η =
s − ξe

(
f(x0, x)

)

s − r
, 0 < η < 1. (2.13)

Since K is a cone,

(
x − z

η
,
ξe
(
f(x0, x)

) − s

η

)

∈ K (2.14)

that is,

(
x − z

η
, r − s

)
∈ K. (2.15)
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By (2.1),

(z, s) ∈ K. (2.16)

Since K is a convex cone, by (2.15) and (2.16) we have

(z, s) +
(
x − z

η
, r − s

)
∈ K, (2.17)

so

(
z +

x − z

η
, r

)
∈ K ∩ (E × {r}) = B. (2.18)

It is easy to verify that

(
1 − η

)
s + ηr =

ξe
(
f(x0, x)

) − r

s − r
s +

s − ξe
(
f(x0, x)

)

s − r
= ξe
(
f(x0, x)

)
. (2.19)

Hence,

(
x, ξe

(
f(x0, x)

)) ∈ D((z, s), B) ∩A = {(z, s)}. (2.20)

Therefore, (x, ξe(f(x0, x))) = (z, s) and so x = z, which it is a contradiction. This shows that
(x, ξe(f(x0, x)))/∈ (z, s) +K. Thus, there exists μ ∈ Λ such that

ξe
(
f(x0, x)

) − ξe
(
f(x0, z)

)
+ αμpμ(x − z) > 0. (2.21)

On the other hand by (A2) we have

ξe
(
f(z, x)

) ≥ ξe
(
f(x0, x)

) − ξe
(
f(x0, z)

)
. (2.22)

Hence,

ξe
(
f(z, x) + αμpμ(x − z)e

)
> 0. (2.23)

Therefore,

f(z, x) + αμpμ(x − z)e /≤C 0. (2.24)
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Remark 2.2. In the above theorem, if assumption (A5) holds, then instead of assumption (A3),
we can assume that y �→ f(x0, y) is C-bounded from below. Also, if assumption (A6) holds,
assumption (A3) can be replaced by the following assumption: y �→ f(x, y) is C-bounded
from below for some x ∈ X.

As a consequence of the above theorem we can obtain the following result which is a
vectorial version of Theorem 3.1 of [18].

Corollary 2.3. Let φ : X → Y be a function such that φ is C-bounded from below and φ is (e, C)-
locally lower semicontinuous. Furthermore, let assumption (A6) holds or there exists x0 ∈ X such that
the set {x ∈ X : φ(x)≤C φ(x0)} is locally complete. Then there exists z ∈ X such that

(i) φ(z) + εαλpλ(z − x0)e ≤C φ(x0), for any λ ∈ Λ;

(ii) for any x /= z, there exists μ ∈ Λ such that φ(x) + εαμpμ(x − z)e /≤C φ(z).

Proof. It is enough in Theorem 2.1 to consider f(x, y) = φ(y) − φ(x) for all x, y ∈ X.

In the following theorem we show that the previous results are equivalent to each
other.

Theorem 2.4. Corollary 2.3 implies Theorem 2.1.

Proof. Let φ : X → Y be defined as follows:

φ(x) = f(x0, x) ∀x ∈ X. (2.25)

It is an easy task to derive the assumptions of Corollary 2.3 for the above function from the
assumptions of Theorem 2.1. Therefore, there exists z ∈ X which satisfies the conditions (i)
and (ii) of Corollary 2.3. Hence,

(i) f(x0, z) + εαλpλ(z − x0)e ≤C 0, for any λ ∈ Λ;

(ii) for any x /= z, there exists μ ∈ Λ such that f(x0, x) − f(x0, z) + εαμpμ(x − z)e /≤C 0.

Also, by assumption (A2) we have f(x0, x)≤C f(x0, z) + f(z, x). Thus,

f(z, x) + f(x0, z) − f(x0, x) + f(x0, x) − f(x0, z) + εαμpμ(x − z)e

= f(z, x) + εαμpμ(x − z)e /≤C 0.
(2.26)

Let S be a convex subset of E containing 0. The Minkowski functional of S is defined
as follows:

pS(x) =

⎧
⎨

⎩

inf{t > 0 : x ∈ tS} if there exists t > 0 such that x ∈ tA

+∞, otherwise.
(2.27)

We extend Y by an additional element∞∗ such that∞∗+y /≤C 0 for all y ∈ Y and c×(+∞) = ∞∗

for all c ∈ intC.
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By using Theorem 2.1 we obtain another version of vectorial form of Ekeland-type
variational principle in which the perturbation function is the Minkowski functional of a
bounded set.

Theorem 2.5. Suppose that assumptions (A1)–(A4) are satisfied. Let S ⊆ E be a locally closed,
bounded convex set containing 0 and α be a positive real number. Let S be locally complete or
assumption (A5) holds. Then, for any ε > 0, there exists z ∈ X such that:

(i) f(x0, z) + εαpS(z − x0)e ≤C 0;

(ii) For any x /= z, f(z, x) + εαpS(x − z)e /≤C 0.

Proof. Suppose that T is the absolutely convex hull of the set S∪{x0}, then (XT, pT ) is a normed
space. Assume that

D :=
{
x ∈ XT : f(x0, x) + εαpS(x − x0)e ≤C 0

}
. (2.28)

Since x0 ∈ T , then x0 ∈ D. Also, f(x0, ·) is (e, C)-locally lower semicontinuous and pS is
locally lower semicontinuous, then D is closed in (XT, pT ). Suppose that g is restricted f to
D × D. If S is locally complete then T is a Banach disk and (XT, pT ) is a Banach space. If the
set {x ∈ X : f(x0, x)≤C 0} is locally complete, then {x ∈ D : g(x0, x)≤C 0)} = D ∩ {x ∈ X :
f(x0, x)≤C 0} is a complete set in (XT, pT ). Therefore, by Theorem 2.1 there exists z ∈ D such
that:

(a) g(x0, x) + εαpT (z − x0)e≤C 0.

(b) For any x ∈ D and x /= z,

g(z, x) + εαpT (x − z)e /≤C 0. (2.29)

Since z ∈ D, then the part (a) holds. Now, we show that the part (b) holds. If x /= z and x ∈ D,
then (2.29) becomes

f(z, x) + εαpS(x − z)e /≤C 0. (2.30)

Let x /= z and x /∈XT , then pS(x − z) = +∞, so the part (b) holds. Let x /= z, x ∈ XT , x ∈ X \D
and f(z, x) + εαpS(z − x)e≤C 0. Since f(x0, z) + εαpS(z − x0)e ≤C 0, then

f(x0, x) + εαpS(x − x0)e ≤C f(x0, z) + εαps(z − x0)e + f(z, x) + εαpS(z − x)e ≤C 0. (2.31)

Therefore, x ∈ D which is a contradiction. Hence,

f(z, x) + εαpS(z − x)e /≤C 0, ∀x ∈ X \D. (2.32)
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Assuming that E is a locally complete locally convex space, the condition on local
completeness of some related subsets is automatically satisfied. However, we give the
following examples of spaces which are not locally complete but the condition on local
completeness of some related subsets is satisfied.

Example 2.6. LetC[0, 1] be the space of all continuous functions defined on [0, 1]. By Corollary
11-7-3, 11-7-4 of [29], C[0, 1] with weak-topology is quasi barreled but it is not barreled.
Therefore, by Proposition 11-2-5 of [29],M[0, 1]with weak∗-topology is not locally complete.

Moreover,

⋂

x∈C[0,1]
{x∗ ∈ M[0, 1] : |〈x∗, x〉| ≤ 1} = {x∗ ∈ M[0, 1] : ‖x∗‖ ≤ 1}. (2.33)

But by Banach-Alaoglu theorem this set is weak∗-compact. Also C[0, 1] is separable, so weak∗-
topology on unit ball M[0, 1] is metrizable. Hence, this set is locally complete.

Example 2.7. Let (C1[0, 1], ‖ ‖∞) be the space of all differentiable functions whose derivative is
continuous. Then (C1[0, 1], ‖ ‖∞) is not a complete space. Therefore, by Proposition 5.1.9 [28]
(C1[0, 1], ‖‖∞) is not a locally complete space.

Also, the set {x ∈ C1[0, 1] : ‖x‖∞ ≤ 1} is not locally complete. Suppose that
f : C1[0, 1] × C1[0, 1] → C[0, 1] is defined as follows:

f
(
x, y
)
= y2 − x2 ∀x, y ∈ C1[0, 1], (2.34)

where C[0, 1] is ordered by the cone C = {x ∈ C[0, 1] : x(t) ≥ 0}. If we choose x0 = 0, then the
set {x ∈ C1[0, 1] : x2(t) ≤ x2

0(t) = 0, ∀t ∈ [0, 1]} = {0} is locally complete.

3. Caristi-kirk’s Fixed-Point Theorem,
Takahashi’s Nonconvex Minimization Theorem, and
Oettli-Théra’s Theorem and Equilibrium Problem

In this section, we obtain an existence result for solution of vector equilibrium problem
in nonconvex setting. Also, some new versions of the vectorial Caristi-Kirk fixed-point
theorem, vectorial Takahashi’s nonconvex minimization theorem and the vectorial Oettli-
Théra theorem are given.

Theorem 3.1. Let X be a weakly compact subset of a semi normed space (Z, p). Suppose that f :
X × X → Y is a function satisfying assumptions (A1)–(A5) together with some x0 ∈ X and f(·, y)
is C-upper semicontinuous for every y ∈ X. Then, there exists x ∈ X such that

f
(
x, y
)
/∈ − intC, ∀y ∈ X. (3.1)

Proof. Assume that S = {x ∈ Z : p(x) ≤ 1}, then pS(x) = p(x) for all x ∈ Z. Taking ε = 1/n
and α = 1, from Theorem 2.5, we find a sequence {xn}, such that

f
(
xn, y

)
+
1
n
p
(
xn − y

)
e /≤C 0, ∀y /=xn. (3.2)
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By the weakly compactness of X, we can assume that {xn} weakly converges to x ∈ X.
Suppose that f(x, y) ∈ − intC for a suitable y ∈ X. Take a neighborhood U of f(x, y) such
that U ⊂ − intC. By C-upper semicontinuity of f(·, y), there exists a natural number N such
that f(xn, y) ∈ U − C, for n ≥ N. Moreover, if n is big enough, (1/n)p(xn − y)e +U ⊆ − intC,
thus

f
(
xn, y

)
+
1
n
p
(
xn − y

)
e ∈ U − C +

1
n
p
(
xn − y

)
e ⊆ − intC. (3.3)

This is a contradiction.

In the above theorem, when X is not necessarily weakly compact we have the
following result. Since its proof is similar to Theorem 4 of [20], we omit it.

Theorem 3.2. Let X be a nonempty subset of a reflexive semi normed space (Z, p). Suppose that
f : X × X → Y is a function satisfying assumptions (A1)–(A5) together with some x0 ∈ X and
f(·, y) is C-upper semicontinuous for every y ∈ X. Let the following coercivity condition holds:

There exists a nonempty closed bounded subsetK of X such that for all x ∈ X \K there exists
y ∈ X with p(y) < p(x) satisfying f(x, y)≤C 0.

Then, there exists x ∈ X such that

f
(
x, y
)
/∈ − intC, ∀y ∈ X. (3.4)

As a consequence of Theorems 2.1 and 2.5 we can obtain two versions of vectorial
Caristi-Kirk’s fixed-point theorem.

Theorem 3.3. Suppose that all of the conditions of Theorem 2.1 are satisfied. Assume that T : X →
2X is a set-valued mapping with nonempty valued and the following property holds:

f
(
x, y
)
+ αλpλ

(
y − x

)
e ≤C 0; ∀λ ∈ Λ, ∀x ∈ X, ∀y ∈ T(x). (3.5)

Then, there exists z ∈ T(x0) such that Tz = {z}.

Proof. Let z be a point which satisfies in the parts (i) and (ii) with ε = 1. We show that
Tz = {z}. If there exists x ∈ Tz and x /= z, then by Theorem 2.1 there is a μ ∈ Λ such that
f(z, x) + αμpμ(x − z)e /≤C 0 and it is a contradiction.

The proof of the following results is similar to that of Theorem 3.3 and we omit it.

Theorem 3.4. Suppose that all of the conditions of Theorem 2.5 are satisfied and T : X → 2X is a
set-valued mapping with nonempty valued and the following condition holds:

f
(
x, y
)
+ αpS

(
y − x

)
e ≤C 0; ∀x ∈ X, y ∈ T(x). (3.6)

Then, there exists z ∈ T(x0) such that Tz = {z}.

In the following we give two versions of vectorial Takahashi’s nonconvex minimiza-
tion.
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Theorem 3.5. Suppose that all of conditions of Theorem 2.1 are satisfied and for each y ∈ X with
f(x0, X) ∩ (f(x0, y)−C)/= {f(x0, y)}, there exists x /=y such that f(y, x)+eαλpλ(x−y)≤C 0 for any
λ ∈ Λ. Then, there exists x ∈ X such that f(x0, x) ∈ Min f(x0, X) that is f(x0, X) ∩ (f(x0, x)−C) =
{f(x0, x)}.

Proof. By Theorem 2.1 there exists z ∈ X such that for each x /= z there exists μ ∈ Λ such that
f(z, x) + eαμpμ(x − z)/≤C 0. If f(x0, X) ∩ (f(x0, z) − C)/= {f(x0, z)}, then by assumption there
exists x /= z such that f(z, x) + eαμpμ(x − z)≤C 0, and this is a contradiction.

The proof of the following results is similar to that of Theorem 3.5 and we omit it.

Theorem 3.6. Suppose that all of the conditions of Theorem 2.5 are satisfied and for each y ∈ X with
f(x0, X) ∩ (f(x0, y) −C)/= {f(x0, y)}, there exists x /=y such that f(y, x) + epS(x − y)≤C 0. Then,
there exists x ∈ X such that f(x0, x) ∈ Min f(x0, X).

In the final step we obtain a vectorial form of Oettli-Théra type theorem.

Theorem 3.7. Assume that all of the conditions of Theorem 2.1 are satisfied and S0 = {x ∈ X :
f(x0, x) + εαλpλ(x − x0)e ≤C 0}. Let Ψ ⊆ X such that for every x ∈ S0 \Ψ there exists x ∈ X such
that x /=x and f(x, x) + εαμpμ(x − x)e ≤C 0. Then S0 ∩Ψ/= ∅.

Proof. By Theorem 2.1 there exists z ∈ S0 such that satisfies the condition (ii) in Theorem 2.1.
It is easy to see that z ∈ S0 ∩Ψ.

4. Equivalences

In this section, we show that Danes̆’ drop theorem (Theorem 1.3), two versions of vectorial
form of Ekeland-type variational principle, vectorial Caristi-Kirk’s fixed-point theorem and
vectorial Takahashi’s nonconvex minimization theorem are equivalent. In order to show that
Theorems 1.3 and 2.1 are equivalent to each other we need the following definition which
was introduced by Cheng et al. [34].

Definition 4.1. Two nonempty subsets A and B of the locally convex space E are said to be
strongly Minkowski separated if and only if there exist a continuous seminorm p and z ∈ E
such that either

inf
{
p(a + z) : a ∈ A

}
> sup

{
p(b + z) : b ∈ B

}
(4.1)

or

sup
{
p(a + z) : a ∈ A

}
< inf

{
p(b + z) : b ∈ B

}
. (4.2)

Theorem 4.2. Theorems 2.1 and 1.3 are equivalent to each other.

Proof. It is only enough to show that Theorem 2.5 implies Theorem 1.3. Since 0/∈ cl(A − B),
then there exist η ∈ Λ and δ > 0 such that

pη(a − b) ≥ δ, ∀a ∈ A, b ∈ B. (4.3)
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Therefore, by Lemma 1 of [7] A and B are strongly Minkowski separated. Hence, there exist
a continuous seminorm p and z ∈ E such that

inf
{
p(a + z) : a ∈ A

}
> sup

{
p(b + z) : b ∈ B

}
. (4.4)

Without loss of generality we may assume that z = 0 and put

d1 := inf
{
p(x) − p

(
y
)
: x ∈ A, y ∈ b

}
. (4.5)

Also, B is bounded, thus d2 := sup{p(x − y) : x, y ∈ D(x0, B)} is finite. Now, we apply
Theorem 2.5 for the set X = D(x0, B) ∩ A, function f(x, y) := e(p(y) − p(x)), ε = 1 and a
positive number α which α ≤ d1/d2. It is easy to see that the assumptions (A1)–(A4) are
satisfied. If A or B is locally complete, then X is locally complete, so {x ∈ X : f(x0, x)≤C 0} is
locally complete. Therefore, by Theorem 2.5 there exists a point z ∈ X such that

f(z, x) + αp(x − z)e /≤C 0, ∀x ∈ X, x /= z. (4.6)

Let x ∈ D(z, B) ∩A, then x = tz + (1 − t)b, where b ∈ B and 0 ≤ t ≤ 1. Hence,

ξe
(
f(z, x) + αp(x − z)e

)
= p(tz + (1 − t)b) − p(z) + αp((1 − t)(b − z))

≤ tp(z) + (1 − t)p(b) + α(1 − t)p(b − z) − p(z)

≤ tp(z) + (1 − t)p(z) − d1 + αd2 − p(z)

≤ 0.

(4.7)

Therefore, f(z, x) + αp(x − z)e ∈ −C and so by (4.6), we conclude that x = z.

Theorem 4.3. Theorems 2.1, 2.5, 3.3, 3.5 and 3.7 are mutually equivalent.

Proof. (1) Theorem 2.5 ⇔ Theorem 2.1.
It is enough to show that Theorem 2.5 ⇒ Theorem 2.1. Choose

S =
⋂

λ∈Λ

{
x ∈ X : αλpλ(x) ≤ 1

}
. (4.8)

Then S ⊂ X is a bounded, closed absolutely convex set. If pS is the Minkowski functional of
S, then

pS(x) = sup
λ∈Λ

αλpλ(x), ∀x ∈ X. (4.9)

Now, if we apply Theorem 2.5 for the set S, then we obtain Theorem 2.1.
(2) Theorem 3.3 ⇔ Theorem 2.1.
It is enough to show that Theorem 3.3 ⇒ Theorem 2.1. Define T : X → 2X as follows:

Tx =
{
y ∈ X : f

(
x, y
)
+ αλpλ

(
y − x

)
e≤C 0, ∀λ ∈ Λ

}
. (4.10)
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Obviously, for any x ∈ X, Tx /= ∅. And for each x ∈ X and y ∈ Tx,

f
(
x, y
)
+ αλpλ

(
y − x

)
e≤C 0, ∀λ ∈ Λ. (4.11)

By Theorem 3.3, there exists z ∈ Tx0 such that Tz = {z}. Therefore, x /∈ Tz for any x ∈ X,
x /= z. Thus, there exists μ ∈ Λ, such that f(z, x) + αμpμ(x − z)e /≤C 0. Hence, the part (ii) in
Theorem 2.1 holds.

(3) Theorem 3.5 ⇔ Theorem 2.1.
It is enough to show that Theorem 3.5 ⇒ Theorem 2.1. Without loss of generality we

assume that ε = 1. Let

X0 =
{
x ∈ X : f(x0, x) + αλpλ(x − x0)e ≤C 0, ∀λ ∈ Λ

}
. (4.12)

Since x0 ∈ X0, then X0 is nonempty. Also, for any x ∈ X, f(x, ·) is (e, C)-locally lower semi
continuous, thusX0 is locally closed. Hence, if {x ∈ X : f(x0, x)≤C 0} is locally complete, then
{x ∈ X0 : f(x0, x)≤C 0} is locally complete. Suppose that the part (ii) of Theorem 2.1 does not
hold, that is, for all x ∈ X0 there exists w/=x such that

f(x,w) + αλpλ(w − x)e ≤C 0, ∀λ ∈ Λ. (4.13)

Therefore,

f(x0, w) + αλpλ(w − x0)e

≤Cf(x0, w) + αλpλ(w − x)e + αλpλ(x − x0)e

≤Cf(x,w) + f(x0, x) + αλpλ(w − x)e + αλpλ(x − x0)e

≤C0.

(4.14)

Hence, w ∈ X0, so by Theorem 3.5, there exists x ∈ X0 such that f(x0, X) ∩ (f(x0, x) − C) =
{f(x0, x)}.

However, there exists w ∈ X0 such that w/=x which satisfies (4.13). Therefore,
f(x,w)≤C 0 and so f(x0, , w)≤C f(x0, x) + f(x,w)≤C f(x0, x), which is a contradiction.

(4) Theorem 3.7 ⇔ Theorem 2.1.
It is enough to show that Theorem 3.7 ⇒ Theorem 2.1. Suppose that T : X → 2X is

defined as follows:

Tx =
{
y ∈ X : f

(
x, y
)
+ εαλpλ

(
y − x

)
e ≤C 0, ∀λ ∈ Λ

}
. (4.15)

Choose Ψ = {x ∈ X : T(x) = {x}}. If x /∈Ψ, then there exists y ∈ T(x) such that y /=x.
Therefore, assumption of Theorem 3.7 is satisfied. Hence, there exists z ∈ S0 ∩ Ψ. From the
definition of Ψ the results (i) and (ii) of Theorem 2.1 are satisfied.

Remark 4.4. (a) By the same proof as that of Theorem 4.3, one can show that Theorems 2.5,
3.4, and 3.6 are equivalent to each other.

(b) By the same proof as that of Theorems 5.2 and 5.3 in [18] one can prove that
Theorem 2.1 and the Phelp’s lemma ([18, Theorem 5.1]) are equivalent.
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