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We introduce a new iterative algorithm for a system of generalized equilibrium problems and
a countable family of strict pseudocontractions in Hilbert spaces. We then prove that the sequence
generated by the proposed algorithm converges strongly to a common element in the solutions set
of a system of generalized equilibrium problems and the common fixed points set of an infinitely
countable family of strict pseudocontractions.

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and inducted norm ‖ · ‖. Let C
be a nonempty, closed, and convex subset of H . Let {fk}k∈Λ : C × C → � be a family of
bifunctions, and let {Ak}k∈Λ : C → H be a family of nonlinear mappings, where Λ is an
arbitrary index set. The system of generalized equilibrium problems is to find x̂ ∈ C such that

fk
(

x̂, y
)

+
〈

Akx̂, y − x̂
〉 ≥ 0, ∀y ∈ C, k ∈ Λ. (1.1)

If Λ is a singleton, then (1.1) reduces to find x̂ ∈ C such that

f
(

x̂, y
)

+
〈

Ax̂, y − x̂
〉 ≥ 0, ∀y ∈ C. (1.2)

The solutions set of (1.2) is denoted by GEP(f,A). If f ≡ 0, then the solutions set of (1.2)
is denoted by VI(C,A), and if A ≡ 0, then the solutions set of (1.2) is denoted by EP(f).
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The problem (1.2) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, and the Nash equilibrium problem
in noncooperative games; see also [1, 2]. Some methods have been constructed to solve the
system of equilibrium problems (see, e.g., [3–7]). Recall that a mapping A : C → H is
said to be

(1) monotone if

〈

Ax −Ay, x − y
〉 ≥ 0, ∀x, y ∈ C, (1.3)

(2) α-inverse-strongly monotone if there exists a constant α > 0 such that

〈

Ax −Ay, x − y
〉 ≥ α

∥

∥Ax −Ay
∥

∥

2
, ∀x, y ∈ C. (1.4)

It is easy to see that if A is α-inverse-strongly monotone, then A is monotone and
1/α-Lipschitz.

For solving the equilibrium problem, let us assume that f satisfies the following
conditions:

(A1) f(x, x) = 0 for all x ∈ C,

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C, limt→ 0f(tz + (1 − t)x, y) ≤ f(x, y),

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

Throughout this paper, we denote the fixed points set of a nonlinear mapping
T : C → C by F(T) = {x ∈ C : Tx = x}. Recall that T is said to be a κ-strict pseudocontraction if
there exists a constant 0 ≤ κ < 1 such that

∥

∥Tx − Ty
∥

∥

2 ≤ ∥

∥x − y
∥

∥

2 + κ
∥

∥(I − T)x − (I − T)y
∥

∥

2
. (1.5)

It is well known that (1.5) is equivalent to

〈

Tx − Ty, x − y
〉 ≤ ∥

∥x − y
∥

∥

2 − 1 − κ

2
∥

∥(I − T)x − (I − T)y
∥

∥

2
. (1.6)

It is worth mentioning that the class of strict pseudocontractions includes properly the
class of nonexpansive mappings. It is also known that every κ-strict pseudocontraction is
((1 + κ)/(1 − κ))-Lipschitz; see [8].

In 1953, Mann [9] introduced the iteration as follows: a sequence {xn} defined by
x0 ∈ C and

xn+1 = αnxn + (1 − αn)Sxn, n ≥ 0, (1.7)

where {αn}∞n=0 ⊂ [0, 1]. If S is a nonexpansive mapping with a fixed point and the control
sequence {αn}∞n=0 is chosen so that

∑∞
n=0 αn(1 − αn) = ∞, then the sequence {xn} defined
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by (1.7) converges weakly to a fixed point of S (this is also valid in a uniformly convex
Banach space with the Fréchet differentiable norm [10]).

In 1967, Browder and Petryshyn [11] introduced the class of strict pseudocontractions
and proved existence andweak convergence theorems in a realHilbert setting by usingMann
iterative algorithm (1.7) with a constant sequence αn = α for all n ≥ 0. Recently, Marino
and Xu [8] and Zhou [12] extended the results of Browder and Petryshyn [11] to Mann’s
iteration process (1.7). Since 1967, the construction of fixed points for pseudocontractions via
the iterative process has been extensively investigated by many authors (see, e.g., [13–22]).

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
S : C → C be a nonexpansive mapping, f : C × C → � a bifunction, and let A : C → H be
an inverse-strongly monotone mapping.

In 2008, Moudafi [23] introduced an iterative method for approximating a common
element of the fixed points set of a nonexpansive mapping S and the solutions set of a
generalized equilibrium problem GEP(f,A) as follows: a sequence {xn} defined by x0 ∈ C
and

f
(

yn, y
)

+
〈

Axn, y − yn

〉

+
1
rn

〈

y − yn, yn − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)Syn, n ≥ 1,

(1.8)

where {αn}∞n=0 ⊂ (0, 1) and {rn}∞n=0 ⊂ (0,∞). He proved that the sequence {xn} generated by
(1.8) converges weakly to an element in GEP(f,A) ∩ F(S) under suitable conditions.

Due to the weak convergence, recently, S. Takahashi andW. Takahashi [24] introduced
another modification iterative method of (1.8) for finding a common element of the fixed
points set of a nonexpansive mapping and the solutions set of a generalized equilibrium
problem in the framework of a real Hilbert space. To be more precise, they proved the
following theorem.

Theorem 1.1 (see [24]). Let C be a closed convex subset of a real Hilbert space H , and let
f : C × C → � be a bifunction satisfying (A1)–(A4). Let A be an α-inverse-strongly monotone
mapping of C into H , and let S be a nonexpansive mapping of C into itself such that F(S) ∩
GEP(f,A)/= ∅. Let u ∈ C and x1 ∈ C, and let {yn} ⊂ C and {xn} ⊂ C be sequences generated by

f
(

yn, y
)

+
〈

Axn, y − yn

〉

+
1
rn

〈

y − yn, yn − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn +
(

1 − βn
)

S
[

αnu + (1 − αn)yn

]

, n ≥ 1,

(1.9)

where {αn}∞n=1 ⊂ [0, 1], {βn}∞n=1 ⊂ [0, 1] and {rn}∞n=1 ⊂ [0, 2α] satisfy

(i) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(ii) 0 < c ≤ βn ≤ d < 1,

(iii) 0 < a ≤ rn ≤ b < 2α,

(iv) limn→∞(rn − rn+1) = 0.

Then, {xn} converges strongly to z = PF(S)∩GEP(f,A)u.
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Recently, Yao et al. [25] introduced a new modified Mann iterative algorithm which is
different from those in the literature for a nonexpansive mapping in a real Hilbert space. To
be more precise, they proved the following theorem.

Theorem 1.2 (see [25]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let S : C → C be a nonexpansive mapping such that F(S)/= ∅. Let {αn}∞n=0, and let {βn}∞n=0 be
two real sequences in (0, 1). For given x0 ∈ C arbitrarily, let the sequence {xn}, n ≥ 0, be generated
iteratively by

yn = PC[(1 − αn)xn],

xn+1 =
(

1 − βn
)

xn + βnSyn.
(1.10)

Suppose that the following conditions are satisfied:

(i) limn→∞αn = 0 and
∑∞

n=0 αn = ∞,

(ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

then, the sequence {xn} generated by (1.10) strongly converges to a fixed point of S.

We know the following crucial lemmas concerning the equilibrium problem in Hilbert
spaces.

Lemma 1.3 (see [1]). Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH , let f
be a bifunction from C × C to � satisfying (A1)–(A4). Let r > 0 and x ∈ H . Then, there exists z ∈ C
such that

f
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C. (1.11)

Lemma 1.4 (see [26]). Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH . Let
f be a bifunction from C × C to � satisfying (A1)–(A4). For x ∈ H and r > 0, define the mapping
T
f
r : H → 2C as follows:

T
f
r (x) =

{

z ∈ C : f
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

. (1.12)

Then, the following statements hold:

(1) Tf
r is single-valued,

(2) Tf
r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥

∥

∥T
f
r x − T

f
r y

∥

∥

∥

2 ≤
〈

T
f
r x − T

f
r y, x − y

〉

, (1.13)

(3) F(Tf
r ) = EP(f),

(4) EP(f) is closed and convex.
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Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let rk > 0
for each k ∈ {1, 2, . . . ,M}. Let {fk}Mk=1 : C × C → � be a family of bifunctions, let {Ak}Mk=1 :
C → H be a family of αk-inverse-strongly monotone mappings, and let {Tn}∞n=1 : C → C

be a countable family of κ-strict pseudocontractions. For each k ∈ {1, 2, . . . ,M}, denote the
mapping T

fk,Ak

rk : C → C by T
fk,Ak

rk := T
fk
rk (I − rkAk), where T

fk
rk : H → C is the mapping

defined as in Lemma 1.4.
Motivated and inspired by Marino and Xu [8], Moudafi [23], S. Takahashi and W.

Takahashi [24], and Yao et al. [25], we consider the following iteration: x1 ∈ C and

yn = PC[(1 − αn)xn],

un = T
fM,AM

rM T
fM−1, AM−1
rM−1 · · ·Tf2 ,A2

r2 T
f1 ,A1
r1 yn,

xn+1 = βnxn +
(

1 − βn
)[

γun +
(

1 − γ
)

Tnun

]

, n ≥ 1,

(1.14)

where {αn}∞n=1 ⊂ (0, 1), {βn}∞n=1 ⊂ (0, 1) and γ ∈ (0, 1).
In this paper, we first prove a path convergence result for a nonexpansive mapping

and a system of generalized equilibrium problems. Then, we prove a strong convergence
theorem of the iteration process (1.14) for a system of generalized equilibrium problems and
a countable family of strict pseudocontractions in a real Hilbert space. Our results extend the
main results obtained by Yao et al. [25] in several aspects.

2. Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . For each x ∈ H ,
there exists a unique nearest point in C, denoted by PCx, such that ‖x−PCx‖ = miny∈C‖x−y‖.
PC is called the metric projection of H onto C. It is also known that for x ∈ H and z ∈ C,
z = PCx is equivalent to 〈x − z, y − z〉 ≤ 0 for all y ∈ C. Furthermore,

∥

∥y − PCx
∥

∥

2 + ‖x − PCx‖2 ≤
∥

∥x − y
∥

∥

2
, (2.1)

for all x ∈ H , y ∈ C. In a real Hilbert space, we also know that

∥

∥λx + (1 − λ)y
∥

∥

2 = λ‖x‖2 + (1 − λ)
∥

∥y
∥

∥

2 − λ(1 − λ)
∥

∥x − y
∥

∥

2
, (2.2)

for all x, y ∈ H and λ ∈ [0, 1].
In the sequel, we need the following lemmas.

Lemma 2.1 (see [27, 28]). Let E be a real uniformly convex Banach space, and let C be a nonempty,
closed, and convex subset of E, and let S : C → C be a nonexpansive mapping such that F(S)/= ∅,
then I − S is demiclosed at zero.

Lemma 2.2 (see [29]). Let {xn} and {zn} be two sequences in a Banach space E such that

xn+1 = βnxn +
(

1 − βn
)

zn, n ≥ 1, (2.3)
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where {βn}∞n=1 satisfies conditions: 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. If lim supn→∞(‖zn+1 −
zn‖ − ‖xn+1 − xn‖) ≤ 0, then ‖xn − zn‖ → 0 as n → ∞.

Lemma 2.3 (see [30]). Assume that {an}∞n=1 is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + γnδn, n ≥ 1, (2.4)

where {γn}∞n=1 is a sequence in (0, 1) and {δn}∞n=1 is a sequence in � such that
(a)

∑∞
n=1 γn = ∞; (b) lim supn→∞δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then, limn→∞an = 0.

Lemma 2.4 (see [31]). Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH . Let
the mappingA : C → H be α-inverse-strongly monotone, and let r > 0 be a constant. Then, we have

∥

∥(I − rA)x − (I − rA)y
∥

∥

2 ≤ ∥

∥x − y
∥

∥

2 + r(r − 2α)
∥

∥Ax −Ay
∥

∥

2
, (2.5)

for all x, y ∈ C. In particular, if 0 ≤ r ≤ 2α, then I − rA is nonexpansive.

To deal with a family of mappings, the following conditions are introduced: let C
be a subset of a real Hilbert space H , and let {Tn}∞n=1 be a family of mappings of C such
that

⋂∞
n=1 F(Tn)/= ∅. Then, {Tn} is said to satisfy the AKTT-condition [32] if for each bounded

subset B of C,

∞
∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞. (2.6)

Lemma 2.5 (see [32]). Let C be a nonempty and closed subset of a Hilbert space H , and let {Tn} be
a family of mappings of C into itself which satisfies theAKTT-condition. Then, for each x ∈ C, {Tnx}
converges strongly to a point in C. Moreover, let the mapping T be defined by

Tx = lim
n→∞

Tnx, ∀x ∈ C. (2.7)

Then, for each bounded subset B of C,

lim sup
n→∞

{‖Tz − Tnz‖ : z ∈ B} = 0. (2.8)

The following results can be found in [33, 34].

Lemma 2.6 (see [33, 34]). Let C be a closed, and convex subset of a Hilbert space H . Suppose that
{Tn}∞n=1 is a family of κ-strictly pseudocontractive mappings from C intoH with

⋂∞
n=1 F(Tn)/= ∅ and

{μn}∞n=1 is a real sequence in (0, 1) such that
∑∞

n=1 μn = 1. Then, the following conclusions hold:

(1) G :=
∑∞

n=1 μnTn : C → H is a κ-strictly pseudocontractive mapping,

(2) F(G) =
⋂∞

n=1 F(Tn).
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Lemma 2.7 (see [34]). Let C be a closed and convex subset of a Hilbert spaceH . Suppose that {Si}∞i=1
is a countable family of κ-strictly pseudocontractive mappings of C into itself with

⋂∞
i=1 F(Si)/= ∅.

For each n ∈ �, define Tn : C → C by

Tnx =
n
∑

i=1

μi
nSix, x ∈ C, (2.9)

where {μi
n} is a family of nonnegative numbers satisfying

(i)
∑n

i=1 μ
i
n = 1 for all n ∈ �,

(ii) μi := limn→∞μi
n > 0 for all i ∈ �,

(iii)
∑∞

n=1
∑n

i=1 |μi
n+1 − μi

n| < ∞.

Then,

(1) Each Tn is a κ-strictly pseudocontractive mapping.

(2) {Tn} satisfies AKTT-condition.

(3) If T : C → C is defined by

Tx =
∞
∑

i=1

μiSix, x ∈ C, (2.10)

then Tx = limn→∞Tnx and F(T) =
⋂∞

n=1 F(Tn) =
⋂∞

i=1 F(Si).

In the sequel, we will write ({Tn}, T) satisfies the AKTT-condition if {Tn} satisfies the
AKTT-condition and T is defined by Lemma 2.5 with F(T) =

⋂∞
n=1 F(Tn).

3. Path Convergence Results

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let S : C → C be
a nonexpansive mapping. Let {fk}Mk=1 : C × C → � be a family of bifunctions, let {Ak}Mk=1 :
C → H be a family of αk-inverse-stronglymonotone mappings, and let rk ∈ (0, 2αk). For each
k ∈ {1, 2, . . . ,M}, we denote the mapping T

fk,Ak

rk : C → C by

T
fk,Ak

rk := T
fk
rk (I − rkAk), (3.1)

where Tfk
rk is the mapping defined as in Lemma 1.4. For each t ∈ (0, 1), we define the mapping

St : C → C as follows:

Stx = ST
fM,AM

rM T
fM−1,AM−1
rM−1 · · ·Tf1 ,A1

r1 PC[(1 − t)x], ∀x ∈ C. (3.2)

By Lemmas 1.4(2) and 2.4, we know that T
fk
rk and I − rkAk are nonexpansive for each

k ∈ {1, 2, . . . ,M}. So, the mapping T
fk,Ak

rk is also nonexpansive for each k ∈ {1, 2, . . . ,M}.
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Moreover, we can check easily that St is a contraction. Then, the Banach contraction principle
ensures that there exists a unique fixed point xt of St in C, that is,

xt = ST
fM,AM

rM T
fM−1,AM−1
rM−1 · · ·Tf1 ,A1

r1 PC[(1 − t)xt], t ∈ (0, 1). (3.3)

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
S : C → C be a nonexpansive mapping. Let {fk}Mk=1 : C × C → � be a family of bifunctions,
let {Ak}Mk=1 : C → H be a family of αk-inverse-strongly monotone mappings, and let rk ∈
(0, 2αk). For each k ∈ {1, 2, . . . ,M}, let the mapping T

fk,Ak

rk be defined by (3.1). Assume that
F := (

⋂M
k=1 GEP(fk,Ak)) ∩ (

⋂∞
n=1 F(Tn))/= ∅. For each t ∈ (0, 1), let the net {xt} be generated by

(3.3). Then, as t → 0, the net {xt} converges strongly to an element in F.

Proof. First, we show that {xt} is bounded. For each t ∈ (0, 1), let yt = PC[(1 − t)xt] and

ut = T
fM,AM

rM T
fM−1 ,AM−1
rM−1 · · ·Tf1 ,A1

r1 yt. From (3.3), we have for each p ∈ F that

∥

∥xt − p
∥

∥ =
∥

∥Sut − Sp
∥

∥ ≤ ∥

∥ut − p
∥

∥ ≤ ∥

∥yt − p
∥

∥ ≤ (1 − t)
∥

∥xt − p
∥

∥ + t
∥

∥p
∥

∥. (3.4)

It follows that

∥

∥xt − p
∥

∥ ≤ ∥

∥p
∥

∥. (3.5)

Hence, {xt} is bounded and so are {yt} and {ut}. Observe that

∥

∥yt − xt

∥

∥ ≤ t‖xt‖ −→ 0, (3.6)

as t → 0 since {xt} is bounded.
Next, we show that ‖ut − xt‖ → 0 as t → 0. Denote Θk = T

fk,Ak

rk T
fk−1 ,Ak−1
rk−1 · · ·Tf1 ,A1

r1 for
any k ∈ {1, 2, . . . ,M} andΘ0 = I. We note that ut = ΘMyt for each t ∈ (0, 1). From Lemma 2.4,
we have for each k ∈ {1, 2, . . . ,M} and p ∈ F that

∥

∥

∥Θkyt − p
∥

∥

∥

2
=
∥

∥

∥T
fk,Ak

rk Θk−1yt − T
fk,Ak

rk Θk−1p
∥

∥

∥

2

=
∥

∥

∥T
fk
rk

(

Θk−1yt − rkAkΘk−1yt

)

− T
fk
rk

(

Θk−1p − rkAkΘk−1p
)∥

∥

∥

2

≤
∥

∥

∥

(

Θk−1yt − rkAkΘk−1yt

)

−
(

Θk−1p − rkAkΘk−1p
)∥

∥

∥

2

≤
∥

∥

∥Θk−1yt − p
∥

∥

∥

2
+ rk(rk − 2αk)

∥

∥

∥AkΘk−1yt −Akp
∥

∥

∥

2
.

(3.7)
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It follows that

∥

∥ut − p
∥

∥

2 =
∥

∥

∥ΘMyt − p
∥

∥

∥

2

≤ ∥

∥yt − p
∥

∥

2 +
M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥

2

=
∥

∥PC[(1 − t)xt] − p
∥

∥

2 +
M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥

2

≤ (∥

∥xt − p
∥

∥ + t‖xt‖
)2 +

M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥

2

≤ ∥

∥xt − p
∥

∥

2 + tM1 +
M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥

2
,

(3.8)

where M1 = sup0<t<1{2‖xt − p‖‖xt‖ + t‖xt‖2}. So, we have

∥

∥xt − p
∥

∥

2 ≤ ∥

∥ut − p
∥

∥

2

≤ ∥

∥xt − p
∥

∥

2 + tM1 +
M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥

2
,

(3.9)

which implies that

lim
t→ 0

∥

∥

∥AkΘk−1yt −Akp
∥

∥

∥ = 0, (3.10)

for each k ∈ {1, 2, . . . ,M}. Since T
fk
rk is firmly nonexpansive for each k ∈ {1, 2, . . . ,M}, we

have for each p ∈ F and k ∈ {1, 2, . . . ,M} that

∥

∥

∥Θkyt − p
∥

∥

∥

2
=
∥

∥

∥T
fk,Ak

rk Θk−1yt − T
fk ,Ak

rk Θk−1p
∥

∥

∥

2

=
∥

∥

∥T
fk
rk

(

Θk−1yt − rkAkΘk−1yt

)

− T
fk
rk

(

Θk−1p − rkAkΘk−1p
)∥

∥

∥

2

≤
〈

Θk−1yt − rkAkΘk−1yt −
(

p − rkAkp
)

,Θkyt − p
〉

=
1
2

(

∥

∥

∥Θk−1yt − rkAkΘk−1yt −
(

p − rkAkp
)

∥

∥

∥

2
+
∥

∥

∥Θkyt − p
∥

∥

∥

2

−
∥

∥

∥Θk−1yt − rkAkΘk−1yt −
(

p − rkAkp
) −

(

Θkyt − p
)∥

∥

∥

2
)
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≤ 1
2

(

∥

∥

∥Θk−1yt − p
∥

∥

∥

2
+
∥

∥

∥Θkyt − p
∥

∥

∥

2 −
∥

∥

∥Θk−1yt −Θkyt − rk
(

AkΘk−1yt −Akp
)∥

∥

∥

2
)

≤ 1
2

(

∥

∥

∥Θk−1yt − p
∥

∥

∥

2
+
∥

∥

∥Θkyt − p
∥

∥

∥

2
−
∥

∥

∥Θk−1yt −Θkyt

∥

∥

∥

2

+2rk
∥

∥

∥Θk−1yt −Θkyt

∥

∥

∥

∥

∥

∥AkΘk−1yt −Akp
∥

∥

∥

)

.

(3.11)

This implies that

∥

∥

∥Θkyt − p
∥

∥

∥

2 ≤
∥

∥

∥Θk−1yt − p
∥

∥

∥

2 −
∥

∥

∥Θk−1yt −Θkyt

∥

∥

∥

2

+ 2rk
∥

∥

∥Θk−1yt −Θkyt

∥

∥

∥

∥

∥

∥AkΘk−1yt −Akp
∥

∥

∥

≤
∥

∥

∥Θk−1yt − p
∥

∥

∥

2
−
∥

∥

∥Θk−1yt −Θkyt

∥

∥

∥

2
+M2

∥

∥

∥AkΘk−1yt −Akp
∥

∥

∥,

(3.12)

where M2 = max1≤k≤M sup0<t<1{2rk‖Θk−1yt −Θkyt‖}. This shows that

∥

∥ut − p
∥

∥

2 =
∥

∥

∥ΘMyt − p
∥

∥

∥

2

≤ ∥

∥yt − p
∥

∥

2 −
M
∑

i=1

∥

∥

∥Θi−1yt −Θiyt

∥

∥

∥

2
+M2

M
∑

i=1

∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥

≤ ∥

∥xt − p
∥

∥

2 + tM1 −
M
∑

i=1

∥

∥

∥Θi−1yt −Θiyt

∥

∥

∥

2
+M2

M
∑

i=1

∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥.

(3.13)

Hence,

∥

∥xt − p
∥

∥

2 ≤ ∥

∥ut − p
∥

∥

2

≤ ∥

∥xt − p
∥

∥

2 + tM1 −
M
∑

i=1

∥

∥

∥Θi−1yt −Θiyt

∥

∥

∥

2
+M2

M
∑

i=1

∥

∥

∥AiΘi−1yt −Aip
∥

∥

∥.
(3.14)

From (3.10), we obtain

M
∑

i=1

∥

∥

∥Θi−1yt −Θiyt

∥

∥

∥ −→ 0, (3.15)

as t → 0. So, we can conclude that

lim
t→ 0

∥

∥

∥Θk−1yt −Θkyt

∥

∥

∥ = 0, (3.16)
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for each k ∈ {1, 2, . . . ,M}. Observing

∥

∥un − yt

∥

∥ =
∥

∥

∥ΘMyt − yt

∥

∥

∥

≤
∥

∥

∥ΘMyt −ΘM−1yt

∥

∥

∥ +
∥

∥

∥ΘM−1yt −ΘM−2yt

∥

∥

∥ + · · · +
∥

∥

∥Θ1yt − yt

∥

∥

∥,

(3.17)

it follows by (3.16) that

lim
t→ 0

∥

∥ut − yt

∥

∥ = 0. (3.18)

From (3.6) and (3.18), we have

lim
t→ 0

‖ut − xt‖ = 0. (3.19)

Hence,

‖xt − Sxt‖ = ‖Sut − Sxt‖ ≤ ‖ut − xt‖ −→ 0, (3.20)

as t → 0.
Next, we show that {xt} is relatively norm compact as t → 0. Let {tn} ⊂ (0, 1) be

a sequence such that tn → 0 as n → ∞. Put xn := xtn . From (3.20), we obtain

lim
n→∞

‖xn − Sxn‖ = 0. (3.21)

Since {xn} is bounded, without loss of generality, wemay assume that {xn} converges weakly
to x∗ ∈ C. Applying Lemma 2.1 to (3.21), we can conclude that x∗ ∈ F(S).

Next, we show that x∗ ∈ ⋂M
k=1 GEP(fk,Ak). Note that Θkyn = T

fk,Ak

rk Θk−1yn =
T
fk
rk (Θ

k−1yn − rkAkΘk−1yn) for each k ∈ {1, 2, . . . ,M}. Hence, for each y ∈ C and k ∈
{1, 2, . . . ,M}, we obtain

fk
(

Θkyn, y
)

+
1
rk

〈

y −Θkyn,Θkyn −
(

Θk−1yn − rkAkΘk−1yn

)〉

≥ 0. (3.22)

From (A2), we have

1
rk

〈

y −Θkyn,Θkyn −
(

Θk−1yn − rkAkΘk−1yn

)〉

≥ fk
(

y,Θkyn

)

, ∀y ∈ C. (3.23)

Therefore,

〈

y −Θkynj ,
Θkynj −Θk−1ynj

rk
+AkΘk−1ynj

〉

≥ fk
(

y,Θkynj

)

, ∀y ∈ C. (3.24)
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For each t ∈ (0, 1) and y ∈ C, put zt = ty + (1 − t)x∗. Then, we have zt ∈ C. From (3.24),
we get that

〈

zt −Θkynj , Akzt
〉

≥
〈

zt −Θkynj , Akzt
〉

−
〈

zt −Θkynj ,
Θkynj −Θk−1ynj

rk
+AkΘk−1ynj

〉

+ fk
(

zt,Θkynj

)

=
〈

zt −Θkynj , Akzt −AkΘkynj

〉

+
〈

zt −Θkynj , AkΘkynj −AkΘk−1ynj

〉

−
〈

zt −Θkynj ,
Θkynj −Θk−1ynj

rk

〉

+ fk
(

zt,Θkynj

)

.

(3.25)

We note that ‖AkΘkynj −AkΘk−1ynj‖ ≤ (1/αk)‖Θkynj −Θk−1ynj‖ → 0, Θkynj ⇀ x∗ as j → ∞,

and {Ak}Mk=1 is a family of monotone mappings. It follows from (3.25) that

〈zt − x∗, Akzt〉 ≥ fk(zt, x∗). (3.26)

So, by (A1), (A4) and (3.26), we have for each y ∈ C and k ∈ {1, 2, . . . ,M} that

0 = fk(zt, zt) ≤ tfk
(

zt, y
)

+ (1 − t)fk(zt, x∗)

≤ tfk
(

zt, y
)

+ (1 − t)〈zt − x∗, Akzt〉

= tfk
(

zt, y
)

+ t(1 − t)
〈

y − x∗, Akzt
〉

.

(3.27)

This implies that

fk
(

zt, y
)

+ (1 − t)
〈

y − x∗, Akzt
〉 ≥ 0, ∀y ∈ C. (3.28)

Letting t → 0 in (3.28), it follows from (A3) that

fk
(

x∗, y
)

+
〈

y − x∗, Akx
∗〉 ≥ 0, ∀y ∈ C. (3.29)
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Hence x∗ ∈ ⋂M
k=1 GEP(fk,Ak); consequently, x∗ ∈ F. Further, we see that

‖xt − x∗‖2 = ‖Sut − x∗‖2

≤ ‖ut − x∗‖2

≤ ∥

∥yt − x∗∥
∥

2

≤ ‖xt − x∗ − txt‖2

= ‖xt − x∗‖2 − 2t〈xt, xt − x∗〉 + t2‖xt‖2

= ‖xt − x∗‖2 − 2t〈xt − x∗, xt − x∗〉 − 2t〈x∗, xt − x∗〉 + t2‖xt‖2.

(3.30)

So, we have

‖xt − x∗‖2 ≤ 〈x∗, x∗ − xt〉 + t

2
‖xt‖2. (3.31)

In particular,

‖xn − x∗‖2 ≤ 〈x∗, x∗ − xn〉 + tn
2
‖xn‖2. (3.32)

Since xn ⇀ x∗, we have xn → x∗ as n → ∞. By using the same argument as in the proof of
Theorem 3.1 of [25], we can show that xt → x∗ ∈ F as t → 0. This completes the proof.

4. Strong Convergence Results

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert spaceH . Let {fk}Mk=1 :
C × C → � be a family of bifunctions, let {Ak}Mk=1 : C → H be a family of αk-inverse-strongly
monotone mappings and let {Tn}∞n=1 : C → C be a countable family of κ-strict pseudocontractions for
some 0 < κ < 1 such that F := (

⋂M
k=1 GEP(fk,Ak))∩(

⋂∞
n=1 F(Tn))/= ∅. Assume that {αn}∞n=1 ⊂ (0, 1),

{βn}∞n=1 ⊂ (0, 1), γ ∈ (κ, 1) and rk ∈ (0, 2αk) for each k ∈ {1, 2, . . . ,M} satisfy the following
conditions:

(i) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Suppose that ({Tn}, T) satisfies the AKTT-condition. Then, {xn} generated by (1.14)
converges strongly to an element in F.

Proof. For each n ∈ �, define Sn : C → C by Snx = γx + (1 − γ)Tnx, x ∈ C. Then, F(Sn) =
F(Tn) = F(T), since γ ∈ (0, 1). Moreover, we know that {Sn} satisfies the AKTT-condition,
since {Tn} satisfies the AKTT-condition. By Lemma 2.5, we can define the mapping S : C →
C by Sx = limn→∞Snx for x ∈ C. Hence, Sx = γx + (1 − γ)Tx, x ∈ C, since Tnx → Tx for
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x ∈ C. Further, we know that Sn is nonexpansive for each n ∈ �. Indeed, for each x, y ∈ C
and n ∈ �, we have

∥

∥Snx − Sny
∥

∥

2 =
∥

∥γx +
(

1 − γ
)

Tnx − γy − (

1 − γ
)

Tny
∥

∥

2

=
∥

∥γ
(

x − y
)

+
(

1 − γ
)(

Tnx − Tny
)∥

∥

2

= γ
∥

∥x − y
∥

∥

2 +
(

1 − γ
)∥

∥Tnx − Tny
∥

∥

2 − γ
(

1 − γ
)∥

∥(I − Tn)x − (I − Tn)y
∥

∥

2

≤ γ
∥

∥x − y
∥

∥

2 +
(

1 − γ
)∥

∥x − y
∥

∥

2 +
(

1 − γ
)

κ
∥

∥(I − Tn)x − (I − Tn)y
∥

∥

2

− γ
(

1 − γ
)∥

∥(I − Tn)x − (I − Tn)y
∥

∥

2

=
∥

∥x − y
∥

∥

2 +
(

1 − γ
)(

κ − γ
)∥

∥(I − Tn)x − (I − Tn)y
∥

∥

2

≤ ∥

∥x − y
∥

∥

2
.

(4.1)

Hence, Sn is nonexpansive for each n ∈ � and so is S.

Next, we show that {xn} is bounded. Denote Θk = T
fk,Ak

rk T
fk−1 ,Ak−1
rk−1 · · ·Tf1,A1

r1 for any
k ∈ {1, 2, . . . ,M} and Θ0 = I. We note that un = ΘMyn. From (1.14), we have for each
p ∈ F that

∥

∥xn+1 − p
∥

∥ =
∥

∥βnxn +
(

1 − βn
)

Snun

∥

∥

≤ βn
∥

∥xn − p
∥

∥ +
(

1 − βn
)∥

∥Snun − p
∥

∥

≤ βn
∥

∥xn − p
∥

∥ +
(

1 − βn
)∥

∥un − p
∥

∥

= βn
∥

∥xn − p
∥

∥ +
(

1 − βn
)

∥

∥

∥ΘMyn − p
∥

∥

∥

≤ βn
∥

∥xn − p
∥

∥ +
(

1 − βn
)∥

∥yn − p
∥

∥

≤ βn
∥

∥xn − p
∥

∥ +
(

1 − βn
)[

(1 − αn)
∥

∥xn − p
∥

∥ + αn

∥

∥p
∥

∥

]

=
(

1 − αn

(

1 − βn
))∥

∥xn − p
∥

∥ + αn

(

1 − βn
)∥

∥p
∥

∥

≤ max
{∥

∥xn − p
∥

∥,
∥

∥p
∥

∥

}

.

(4.2)

Hence, by induction, {xn} is bounded and so are {yn} and {un}.
Next, we show that

lim
n→∞

‖xn+1 − xn‖ = 0. (4.3)

Since un = ΘMyn and un+1 = ΘMyn+1,

‖un+1 − un‖ =
∥

∥

∥ΘMyn+1 −ΘMyn

∥

∥

∥

≤ ∥

∥yn+1 − yn

∥

∥.

(4.4)
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Set zn = Snun, n ∈ �. So, we have from (1.14) and (4.4) that

‖zn+1 − zn‖ = ‖Sn+1un+1 − Snun‖

≤ ‖Sn+1un+1 − Sn+1un‖ + ‖Sn+1un − Snun‖

≤ ‖un+1 − un‖ + ‖Sn+1un − Snun‖

≤ ∥

∥yn+1 − yn

∥

∥ + ‖Sn+1un − Snun‖

≤ ‖(1 − αn+1)xn+1 − (1 − αn)xn‖ + sup
z∈{un}

‖Sn+1z − Snz‖

≤ ‖xn+1 − xn‖ + αn+1‖xn+1‖ + αn‖xn‖ + sup
z∈{un}

‖Sn+1z − Snz‖.

(4.5)

Since {Sn} satisfies the AKTT-condition and limn→∞αn = 0, it follows that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (4.6)

So, by Lemma 2.2 and (ii), we obtain

lim
n→∞

‖zn − xn‖ = 0. (4.7)

Hence,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(

1 − βn
)‖zn − xn‖ = 0. (4.8)

Observe that

∥

∥yn − xn

∥

∥ = ‖PC[(1 − αn)xn] − PCxn‖ ≤ αn‖xn‖ −→ 0, (4.9)

as n → ∞. Similar to the proof of Theorem 3.1, we obtain for each p ∈ F that

∥

∥un − p
∥

∥

2 ≤ ∥

∥xn − p
∥

∥

2 + αnM
′
1 +

M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥

2
, (4.10)

∥

∥un − p
∥

∥

2 ≤ ∥

∥xn − p
∥

∥

2 + αnM
′
1 −

M
∑

i=1

∥

∥

∥Θi−1yn −Θiyn

∥

∥

∥

2
+M′

2

M
∑

i=1

∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥, (4.11)
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for some M′
1 > 0 and M′

2 > 0. Then, from (4.10), we have

∥

∥xn+1 − p
∥

∥

2 ≤ βn
∥

∥xn − p
∥

∥

2 +
(

1 − βn
)∥

∥Snun − p
∥

∥

2

≤ βn
∥

∥xn − p
∥

∥

2 +
(

1 − βn
)∥

∥un − p
∥

∥

2

≤ βn
∥

∥xn − p
∥

∥

2 +
(

1 − βn
)

×
(

∥

∥xn − p
∥

∥

2 + αnM
′
1 +

M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥

2
)

≤ ∥

∥xn − p
∥

∥

2 + αnM
′
1 +

(

1 − βn
)

M
∑

i=1

ri(ri − 2αi)
∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥

2
,

(4.12)

which implies that

(

1 − βn
)

M
∑

i=1

ri(2αi − ri)
∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥

2 ≤ ∥

∥xn+1 − p
∥

∥

2 − ∥

∥xn − p
∥

∥

2 + αnM
′
1. (4.13)

So, from (4.8), (i), (ii) and 0 < rk < 2αk for each k = 1, 2, . . . ,M, we have

lim
n→∞

∥

∥

∥AkΘk−1yn −Akp
∥

∥

∥ = 0, (4.14)

for each k ∈ {1, 2, . . . ,M}. Similarly, from (4.11), we have

∥

∥xn+1 − p
∥

∥

2 ≤ βn
∥

∥xn − p
∥

∥

2 +
(

1 − βn
)∥

∥Snun − p
∥

∥

2

≤ βn
∥

∥xn − p
∥

∥

2 +
(

1 − βn
)∥

∥un − p
∥

∥

2

≤ βn
∥

∥xn − p
∥

∥

2 +
(

1 − βn
)

×
(

∥

∥xn − p
∥

∥

2 + αnM
′
1 −

M
∑

i=1

∥

∥

∥Θi−1yn −Θiyn

∥

∥

∥

2
+M′

2

M
∑

i=1

∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥

)

≤ ∥

∥xn − p
∥

∥

2 + αnM
′
1 −

(

1 − βn
)

M
∑

i=1

∥

∥

∥Θi−1yn −Θiyn

∥

∥

∥

2
+M′

2

M
∑

i=1

∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥.

(4.15)

This implies that

(

1 − βn
)

M
∑

i=1

∥

∥

∥Θi−1yn −Θiyn

∥

∥

∥

2

≤ ∥

∥xn − p
∥

∥

2 − ∥

∥xn+1 − p
∥

∥

2 + αnM
′
1 +M′

2

M
∑

i=1

∥

∥

∥AiΘi−1yn −Aip
∥

∥

∥.

(4.16)
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From (i), (ii), (4.8), and (4.14), it follows that

lim
n→∞

∥

∥

∥Θk−1yn −Θkyn

∥

∥

∥ = 0, (4.17)

for each k ∈ {1, 2, . . . ,M}.
Next, we show that

lim
n→∞

‖xn − Sxn‖ = 0. (4.18)

Observing

∥

∥un − yn

∥

∥ =
∥

∥

∥ΘMyn − yn

∥

∥

∥

≤
∥

∥

∥ΘMyn −ΘM−1yn

∥

∥

∥ +
∥

∥

∥ΘM−1yn −ΘM−2yn

∥

∥

∥ + · · · +
∥

∥

∥Θ1yn − yn

∥

∥

∥,

(4.19)

it follows, by (4.17), that

lim
n→∞

∥

∥un − yn

∥

∥ = 0. (4.20)

From (4.9) and (4.20), we have

lim
n→∞

‖un − xn‖ = 0. (4.21)

We see that

‖xn − Sxn‖ ≤ ‖xn − Snun‖ + ‖Snun − Snxn‖ + ‖Snxn − Sxn‖

≤ ‖xn − Snun‖ + ‖un − xn‖ + sup
z∈{xn}

‖Snz − Sz‖. (4.22)

So, by (4.7), (4.21), and Lemma 2.5, we have

lim
n→∞

‖xn − Sxn‖ = 0. (4.23)

Let the net {xt} be defined by (3.3). By Theorem 3.1, we have xt → x∗ ∈ F as t → 0.
Moreover, by proving in the same manner as in Theorem 3.2 of [25], we can show that

lim sup
n→∞

〈x∗, x∗ − xn〉 ≤ 0. (4.24)



18 Fixed Point Theory and Applications

Finally, we show that xn → x∗ ∈ F as n → ∞. From (1.14), we have

‖xn+1 − x∗‖2 ≤ βn‖xn − x∗‖2 + (

1 − βn
)‖Snun − x∗‖2

≤ βn‖xn − x∗‖2 + (

1 − βn
)‖un − x∗‖2

≤ βn‖xn − x∗‖2 + (

1 − βn
)∥

∥yn − x∗∥
∥

2

≤ βn‖xn − x∗‖2 + (

1 − βn
)‖(1 − αn)(xn − x∗) − αnx

∗‖2

≤ βn‖xn − x∗‖2 + (

1 − βn
)

×
(

(1 − αn)‖xn − x∗‖2 − 2αn(1 − αn)〈x∗, xn − x∗〉 + α2
n‖x∗‖2

)

=
(

1 − αn

(

1 − βn
))‖xn − x∗‖2

+ αn

(

1 − βn
)

(

2(1 − αn)〈x∗, x∗ − xn〉 + αn‖x∗‖2
)

.

(4.25)

By (i) and (4.24), it follows from Lemma 2.3 that xn → x∗ ∈ F. This completes the proof.

As a direct consequence of Lemmas 2.6 and 2.7 and Theorem 4.1, we obtain the
following result.

Theorem 4.2. Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH . Let {fk}Mk=1 :
C × C → � be a family of bifunctions, let {Ak}Mk=1 : C → H be a family of αk-inverse-strongly
monotone mappings, and let {Si}∞i=1 be a sequence of κi-strict pseudocontractions of C into itself such
that F := (

⋂M
k=1 GEP(fk,Ak)) ∩ (

⋂∞
i=1 F(Si))/= ∅ and sup{κi : i ∈ �} = κ > 0. Assume that

γ ∈ (κ, 1) and rk ∈ (0, 2αk) for each k ∈ {1, 2, . . . ,M}. Define the sequence {xn} by x1 ∈ C and

yn = PC[(1 − αn)xn],

un = T
fM,AM

rM T
fM−1,AM−1
rM−1 · · ·Tf2 ,A2

r2 T
f1 ,A1
r1 yn,

xn+1 = βnxn +
(

1 − βn
)

[

γun +
(

1 − γ
)

n
∑

i=1

μi
nSiun

]

, n ≥ 1,

(4.26)

where {αn}∞n=1 and {βn}∞n=1 are real sequences in (0, 1) which satisfy (i)-(ii) of Theorem 4.1 and {μi
n}

is a real sequence which satisfies (i)–(iii) of Lemma 2.7. Then, {xn} converges strongly to an element
in F.

Remark 4.3. Theorems 4.1 and 4.2 extend the main results in [25] from a nonexpansive map-
ping to an infinite family of strict pseudocontractions and a system of generalized equilibrium
problems.

Remark 4.4. If we take Ak ≡ 0 and fk ≡ 0 for each k = 1, 2, . . . ,M, then Theorems 3.1, 4.1,
and 4.2 can be applied to a system of equilibrium problems and to a system of variational
inequality problems, respectively.
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Remark 4.5. Let S1, S2, . . . be an infinite family of nonexpansive mappings of C into itself,
and let ξ1, ξ2, . . . be real numbers such that 0 < ξi < 1 for all i ∈ �. Moreover, let Wn and
W be the W-mappings [35] generated by S1, S2, . . . , Sn and ξ1, ξ2, . . . , ξn and S1, S2, . . . and
ξ1, ξ2, . . .. Then, we know from [7, 35] that ({Wn},W) satisfies the AKTT-condition. Therefore,
in Theorem 4.1, the mapping Tn can be also replaced byWn.
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