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We define and study a new iterative algorithm inspired by Matsushita and Takahashi (2008).
We establish a strong convergence theorem of the proposed algorithm for asymptotically
nonexpansive in the intermediate sense mappings in uniformly convex and smooth Banach spaces
by using metric projections. This theorem generalizes and refines Matsushita and Takahashi’s
strong convergence theorem which was established for nonexpansive mappings.

1. Introduction and Preliminaries

Let E be a real Banach space, and let C be a nonempty subset of E. A mapping T : C → C is
said to be asymptotically nonexpansive if there exists a sequence {kn} in [1,∞)with limn→∞kn =
1 such that

‖Tnx − Tny‖ ≤ kn‖x − y‖ (1.1)

for all x, y ∈ C and each n ≥ 1. If kn ≡ 1, then T is known as nonexpansivemapping. T is said to
be asymptotically nonexpansive in the intermediate sense [1] provided T is uniformly continuous
and

lim sup
n→∞

sup
x,y∈C

(‖Tnx − Tny‖ − ‖x − y‖) ≤ 0. (1.2)
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T is said to be Lipschitzian if there exists a constant L > 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖ (1.3)

for all x, y ∈ C.
It follows from the above definitions that every asymptotically nonexpansive mapping

is asymptotically nonexpansive in the intermediate sense and Lipschitzian mapping but the
converse does not hold such as in the following example.

Example 1.1. Let E = �, C = [0, 1] and k ∈ (0, 1). We define T(0) = 0 and for each x ∈ (0, 1]

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

k(1 − 2nx), if x ∈
(

1
2n + 1

,
1
2n

]
,

k(2nx − 1), if x ∈
(

1
2n

,
1

2n − 1

]
,

(n ∈ �). (1.4)

We see that T is continuous on the compact interval [0, 1] and so it is uniformly continuous.
Consider the function f : [1,∞) → [0, 1] defined as

f(x) =

⎧
⎨

⎩

2n − x, if x ∈ [2n − 1, 2n),

x − 2n, if x ∈ [2n, 2n + 1),
(n ∈ �). (1.5)

Then, T(x) = kxf(1/x) for all x ∈ (0, 1] and |Tn(x)| ≤ kn → 0 uniformly. On the other hand,
compactness of [0, 1] gives that for each n ∈ � there exist xn, yn ∈ [0, 1] such that

sup
x,y∈[0,1]

(∣∣Tnx − Tny
∣∣ − ∣∣x − y

∣∣) =
∣∣Tnxn − Tnyn

∣∣ − ∣∣xn − yn

∣∣. (1.6)

Therefore,

lim sup
n→∞

sup
x,y∈[0,1]

(∣∣Tnx − Tny
∣∣ − ∣∣x − y

∣∣) = lim sup
n→∞

(∣∣Tnxn − Tnyn

∣∣ − ∣∣xn − yn

∣∣)

≤ lim sup
n→∞

(|Tnxn| +
∣∣Tnyn

∣∣)

≤ lim sup
n→∞

2 kn = 0.

(1.7)

Thus, T is asymptotically nonexpansive in the intermediate sense.
It is easy to see that T is differentiable on (1/(n + 1), 1/n) and |T ′(x)| = 2nk for all

n ∈ �. Let there exist L > 0 such that

∣
∣Tx − Ty

∣
∣ ≤ L

∣
∣x − y

∣
∣, (1.8)



Fixed Point Theory and Applications 3

for all x, y ∈ [0, 1]. Now, choose n ∈ � such that n > L/2k. Then, for each x, y ∈ (1/(n +
1), 1/n) with x /=y, it follows from (1.8) that

2nk =
∣∣T ′(x)

∣∣ =
∣
∣∣∣ limy→x

Tx − Ty

x − y

∣
∣∣∣ ≤ L. (1.9)

This contradiction shows that T is not Lipschitzian mapping and so it is not asymptotically
nonexpansive mapping. Another example of an asymptotically nonexpansive in the
intermediate sense mapping which is not asymptotically nonexpansive can be found in [2].

It is known [3] that if E is a uniformly convex Banach space and T is asymptotically
nonexpansive in the intermediate sense self-mapping of a bounded closed convex subset C
of E, then F(T)/= ∅, where F(T) denotes the set of all fixed points of T . Let E∗ be the dual of E.
We denote the value of x∗ ∈ E∗ at x ∈ E by 〈x, x∗〉. When {xn} is a sequence in E, we denote
strong convergence of {xn} to x ∈ E by xn → x and weak convergence by xn ⇀ x. A Banach
space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and
x /=y. A Banach space E is also said to be uniformly convex if limn→∞‖xn −yn‖ = 0 for any two
sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖xn + yn‖ = 2. A Banach
space E is said to have Kadec-Klee property if for every sequence {xn} in E, xn ⇀ x and
‖xn‖ → ‖x‖ imply that xn → x. Every uniformly convex Banach space has the Kadec-Klee
property [4]. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is
said to be smooth if

lim
t→ 0

‖x + ty‖ − ‖x‖
t

(1.10)

exists for each x, y ∈ U. The normalized duality mapping J from E to 2E
∗
is defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
(1.11)

for all x ∈ E. It is known that a Banach space E is smooth if and only if the normalized duality
mapping J is single-valued. Some properties of duality mapping have been given in [4–6].
Let C be a closed convex subset of a reflexive, strictly convex and smooth Banach space E.
Then for any x ∈ E there exists a unique point x0 ∈ C such that

‖x0 − x‖ = min
y∈C

‖y − x‖. (1.12)

The mapping PC : E → C defined by PCx = x0 is called the metric projection from E onto C.
Let x ∈ E and u ∈ C. Then, it is known that u = PCx if and only if

〈
u − y, J(x − u)

〉 ≥ 0 (1.13)

for all y ∈ C (see [4, 6, 7]).
Fixed points of nonlinear mappings play an important role in solving systems of

equations and inequalities that often arise in applied sciences. Approximating fixed points of
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asymptotically nonexpansive and nonexpansive mappings with implicit and explicit iterative
schemes has been studied by many authors (see, e.g., [8–14]).

On the other hand, using the metric projection, Nakajo and Takahashi [15] introduced
an iterative algorithm in the framework of Hilbert spaces and gave strong convergence
theorem for nonexpansive mappings. Xu [16] extended Nakajo and Takahashi’s theorem to
Banach spaces by using the generalized projection. Recently, Matsushita and Takahashi [17]
introduced an iterative algorithm for nonexpansive mappings in Banach spaces as follows.

Let C be a nonempty convex bounded subset of a uniformly convex and smooth
Banach space E, and let T be a nonexpansive self-mapping of C. For a given x1 = x ∈ C,
compute the sequence {xn} by the iterative algorithm

Cn = co{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n ≥ 1,

(1.14)

where coD denotes the convex closure of the set D and {tn} is a sequence in (0, 1) with
limn→∞tn = 0. They proved that {xn} generated by (1.14) converges strongly to a fixed point
of T .

Inspired and motivated by these facts, we introduce a new iterative algorithm to
find fixed points of asymptotically nonexpansive in the intermediate sense mappings in a
uniformly convex and smooth Banach space. Let x1 = x ∈ C,C0 = D0 = C, and compute the
sequence {xn} by the iterative algorithm

Cn = co{z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖},
Dn = {z ∈ Dn−1 : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n ≥ 1,

(1.15)

where {tn} is a sequence in (0, 1)with limn→∞tn = 0 and PCn∩Dn is the metric projection from
E onto Cn ∩Dn.

In the sequel, the following lemmas are needed to prove our main convergence
theorem.

Lemma 1.2 (see [18, Lemma 1.5]). Let C be a nonempty bounded closed convex subset of a
uniformly convex Banach space E and T : C → C be a mapping which is asymptotically nonexpansive
in the intermediate sense. For each ε > 0, there exist integers Kε > 0 and δε > 0 such that if n ≥ 2 is
any integer, j ≥ Kε, z1, . . . , zn ∈ C and if ‖zi − zk‖ − ‖Tjzi − Tjzk‖ ≤ δε for 1 ≤ i, k ≤ n, then

∥∥
∥∥∥

n∑

i=1

λiT
jxi − Tj

(
n∑

i=1

λixi

)∥∥
∥∥∥
≤ ε (1.16)

for any numbers λ1, . . . , λn ≥ 0 with λ1 + · · · + λn = 1.
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Lemma 1.3 (see [18, Lemma 1.6]). Let E be a real uniformly convex Banach space, let C be a
nonempty closed convex subset of E, and let T : C → C be a mapping which is asymptotically
nonexpansive in the intermediate sense. If {xn} is a sequence in C converging weakly to x and
if

lim
j→∞

(
lim sup
n→∞

‖xn − Tjxn‖
)

= 0 (1.17)

then (I − T) is demiclosed at zero; that is, for each sequence {xn} in C, if xn ⇀ x for some x ∈ C and
(I − T)xn → 0, then (I − T)x = 0.

2. Main Results

In this section, we study the iterative algorithm (1.15) to find fixed points of asymptotically
nonexpansive in the intermediate sense mappings in a uniformly convex and smooth Banach
space. We first prove that the sequence {xn} generated by (1.15) is well-defined. Then, we
prove that {xn} converges strongly to PF(T)x, where PF(T) is the metric projection from E onto
F(T).

Lemma 2.1. Let C be a nonempty closed convex subset of a reflexive, strictly convex, and smooth
Banach space E, and let T : C → C be a mapping which is asymptotically nonexpansive
in the intermediate sense. If F(T)/= ∅, then the sequence {xn} generated by (1.15) is well-
defined.

Proof. It is easy to check that Cn ∩ Dn is closed and convex and F(T) ⊆ Cn for each n ≥ 1.
Moreover D1 = C and so F(T) ⊆ C1 ∩ D1. Suppose F(T) ⊆ Ck ∩ Dk. Since xk+1 = PCk∩Dkx, it
follows from (1.13) that

〈
xk+1 − y, J(x − xk+1)

〉 ≥ 0 (2.1)

for all y ∈ Ck ∩ Dk and so for all y ∈ F(T), that is F(T) ⊆ Dk+1. Thus, F(T) ⊆ Ck+1 ∩ Dk+1.
By mathematical induction, we obtain that F(T) ⊆ Cn ∩ Dn for all n ≥ 1. Therefore, {xn} is
well-defined.

In order to prove our main result, the following lemma is needed.

Lemma 2.2. Let C be a nonempty bounded closed convex subset of a uniformly convex and smooth
Banach space E, and let T : C → C be a mapping which is asymptotically nonexpansive in the
intermediate sense. If {xn} is the sequence generated by (1.15), then

lim
n→∞

‖xn+k − Tnxn+k‖ = 0 (2.2)

for all integers k ≥ 1.
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Proof. Let k ≥ 1 be fixed, and let n ≥ 1 be arbitrary. We take m = n + k for simplicity. Since
xm = PCm−1∩Dm−1x, we have xm ∈ Cm−1 ⊆ Cm−2 ⊆ · · · ⊆ Cn. Since tn > 0, there exist elements
z1, . . . , zN in C and numbers λ1, . . . , λN ≥ 0 with λ1 + · · · + λN = 1 such that

∥
∥∥∥∥
xm −

N∑

i=1

λizi

∥
∥∥∥∥
< tn, (2.3)

‖zi − Tnzi‖ ≤ tn‖xn − Tnxn‖, (2.4)

for all i = 1, 2, . . . ,N. We put u = PF(T)x, M = supn‖xn − u‖, and Gn = supx,y∈C(‖Tnx − Tny‖ −
‖x − y‖). The inequality (2.4) implies that

‖zi − Tnzi‖ ≤ tn‖xn − Tnxn‖ ≤ tn(‖xn − u‖ + ‖Tnu − Tnxn‖)
≤ tn(2‖xn − u‖ +Gn) ≤ 2Mtn +Gntn

≤ 2Mtn +Gn

(2.5)

for all i = 1, 2, . . . ,N. Now, let ε > 0, and choose an integer Kε/3 > 0 and δε/3 > 0 with
δε/3 < (ε/3) as in Lemma 1.2. Since limn→∞tn = 0 and lim supn→∞Gn ≤ 0, we may choose an
integer K0 ≥ Kε/3 such that for all n ≥ K0

tn, Gn < min
{
δε/3
4

,
δε/3
8M

,
ε

6(1 +M)

}
. (2.6)

This together with (2.5) implies that

‖zi − Tnzi‖ ≤ 2Mtn +Gn < 2M
(
δε/3
8M

)
+
δε/3
4

=
δε/3
2

(2.7)

for all n ≥ K0 and all i = 1, 2, . . . ,N. Thus,

‖zi − zj‖ − ‖Tnzi − Tnzj‖ ≤ ‖zi − Tnzi‖ + ‖zj − Tnzj‖ < δε/3 (2.8)

and so by Lemma 1.2 we have

∥
∥∥∥
∥

N∑

i=1

λiT
nzi − Tn

(
N∑

i=1

λizi

)∥∥∥∥
∥
≤ ε

3
, (2.9)



Fixed Point Theory and Applications 7

where n ≥ K0. It follows from (2.3)–(2.9) that

‖xm − Tnxm‖ ≤
∥∥∥
∥∥
xm −

N∑

i=1

λizi

∥∥∥
∥∥
+

∥∥∥
∥∥

N∑

i=1

λizi −
N∑

i=1

λiT
nzi

∥∥∥
∥∥

+

∥∥
∥∥∥

N∑

i=1

λiT
nzi − Tn

(
N∑

i=1

λizi

)∥∥
∥∥∥
+

∥∥
∥∥∥
Tn

(
N∑

i=1

λizi

)

− Tnxm

∥∥
∥∥∥

≤ tn +
N∑

i=1

λi‖zi − Tnzi‖ +
∥∥∥
∥∥

N∑

i=1

λiT
nzi − Tn

(
N∑

i=1

λizi

)∥∥∥
∥∥

+

∥∥
∥∥∥
xm −

N∑

i=1

λizi

∥∥
∥∥∥
+Gn

≤ 2tn + 2Mtn + 2Gn +

∥∥∥
∥∥

N∑

i=1

λiT
nzi − Tn

(
N∑

i=1

λizi

)∥∥∥
∥∥

< 2(1 +M)
(

ε

6(1 +M)

)
+ 2
(
ε

6

)
+
ε

3
= ε

(2.10)

for all n ≥ K0; that is,

lim
n→∞

‖xn+k − Tnxn+k‖ = lim
n→∞

‖xm − Tnxm‖ = 0. (2.11)

This completes the proof.

Now, we state and prove the strong convergence theorem of the iterative algorithm
(1.15).

Theorem 2.3. Let C be a nonempty bounded closed convex subset of a uniformly convex and smooth
Banach space E, let T : C → C be a mapping which is asymptotically nonexpansive in the
intermediate sense and let {xn} be the sequence generated by (1.15). Then {xn} converges strongly to
the element PF(T)x of F(T).

Proof. Put u = PF(T)x. Since F(T) ⊆ Cn ∩Dn and xn+1 = PCn∩Dnx, we have

‖x − xn+1‖ ≤ ‖x − u‖ (2.12)

for all n ≥ 1. On the other hand, we observe that

‖xn+2 − Txn+2‖ ≤
∥∥
∥xn+2 − Tn+1xn+2

∥∥
∥ +
∥∥
∥Tn+1xn+2 − Txn+2

∥∥
∥ (2.13)

and so by uniform continuity of T and Lemma 2.2 we have

lim
n→∞

‖xn − Txn‖ = 0. (2.14)
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Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ v. It follows
from (2.14) and Lemma 1.3 (demiclosedness of (I −T)) that v ∈ F(T). From the weakly lower
semicontinuity of norm and (2.12), we obtain

‖x − u‖ ≤ ‖x − v‖ ≤ lim inf
i→∞

‖x − xni‖ ≤ lim sup
i→∞

‖x − xni‖ ≤ ‖x − u‖. (2.15)

This together with the uniqueness of PF(T)x implies that u = v, and hence xni ⇀ u. This gives
that xn ⇀ u. By using the same argument as in proof of (2.15), we have

lim
n→∞

‖x − xn‖ = ‖x − u‖. (2.16)

Since E is uniformly convex, by Kadec-Klee property, we obtain that x−xn → x−u. It follows
that xn → u. This completes the proof.

Since every nonexpansive mapping is asymptotically nonexpansive and every
asymptotically nonexpansive mapping is asymptotically nonexpansive in the intermediate
sense, we have the following result which generalizes and refines the strong convergence
theorem of Matsushita and Takahashi [17, Theorem 3.1].

Corollary 2.4. Let C be a nonempty bounded closed convex subset of a uniformly convex and smooth
Banach space E, let T be a nonexpansive self-mapping of C, and let {xn} be the sequence generated by
(1.15). Then {xn} converges strongly to the element PF(T)x of F(T).
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