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A combinatorial interpretation of nonregular continued fractions is studied. Using a modification
of a tiling technique due to Benjamin and Quinn, combinatorial proofs of some identities for
nonregular continued fractions are obtained.

1. Introduction

In the recently popular book Proofs that Really Count [1], many identities involving linear
recurrences were proved by using beautiful tiling interpretations. Many researches provided
tiling proofs for a variety of identities. See, for example, [2–4]. By making use of the
combinatorial interpretation of continued fractions presented by Benjamin and Quinn in [1],
Benjamin and Zeilberger [5] introduced a combinatorial proof of the statement related to
prime numbers.

In this research, a combinatorial interpretation of nonregular continued fractions is
investigated. The major part of this work is devoted to establishing combinatorial proofs of
some identities for nonregular continued fractions.

A continued fraction of the form

b0 +
a1

b1 +
a2

b2 + . . .
+

an

bn + . . .

,

,

(1.1)



2 International Journal of Combinatorics

where for i > 0, ai, b0, and bi are positive integers, is called a nonregular continued fraction. It
is more convenient to use the notation [b0;a1, b1;a2, b2; . . . ;an, bn; . . .] for the above continued
fraction. If for every i, ai = 1 we denote [b0; b1, b2, . . .] := [b0;a1, b1;a2, b2; . . .] and [b0; b1,
b2, . . .] is said to be regular.

Corresponding to each continued fraction [b0;a1, b1;a2, b2; . . .], two sequences {pn}
and {qn} are defined inductively by

p0 = b0, p1 = b1b0 + a1, pn = bnpn−1 + anpn−2 (n ≥ 2),

q0 = 1, q1 = b1, qn = bnqn−1 + anqn−2 (n ≥ 2),
(1.2)

pn/qn is called the nth convergent. An importance property of these numerators and denom-
inators of continued fractions is

pn
qn

= [b0;a1, b1; . . . ;an, bn] (n ≥ 0). (1.3)

2. Combinatorial Interpretation of Nonregular Continued Fractions

As mentioned by Benjamin and Quinn in [1], a simple combinatorial interpretation of
nonregular continued fractions can be realized.

Let P(b0;a1, b1; . . . ;an, bn) be the number of ways to tile an (n+1)-boardwith dominoes
and single tiles. All n + 1 cells of the (n + 1)-board are labeled with 0, 1, 2, . . . , n from left to
right, respectively. Figure 1 illustrates a 3-board, a single tile and a domino. Tilingmust satisfy
the following three conditions.

(1) All n + 1 cells of the (n + 1)-board must be covered.

(2) For 0 ≤ i ≤ n, the ith cell can be covered by a stack of as many as bi single tiles.

(3) For 1 ≤ i ≤ n, two consecutive cells i − 1 and i can be covered by a stack of as many
as ai dominoes.

It is obvious that P(b0) = b0 and by focusing on the last cell covering, it follows that
P(b0;a1, b1) = b1b0 + a1 and

P(b0;a1, b1; . . . ;an, bn) = bnP(b0;a1, b1; . . . ;an−1, bn−1)

+ anP(b0;a1, b1; . . . ;an−2, bn−2) (n ≥ 2).
(2.1)

Since the sequence {P(b0;a1, b1; . . . ;an, bn)} satisfy the same initial conditions and recurrence
relation as the sequence {pn} defined by (1.2),

P(b0;a1, b1; . . . ;an, bn) = pn, ∀n ≥ 0. (2.2)

Next, we define Q(b0;a1, b1; . . . ;an, bn) := P(b1;a2, b2; . . . ;an, bn).
Similar to the case of {P(b0;a1, b1; . . . ;an, bn)}, we obtain

Q(b0;a1, b1; . . . ;an, bn) = qn, ∀n ≥ 0. (2.3)
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Figure 1: An empty 3-board, a single tile, and a domino.
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Figure 2: The ways to tile a 3-board with the height conditions 1; 2, 3; 4, 5.

Equations (1.3), (2.2), and (2.3) yield

P(b0;a1, b1; . . . ;an, bn)
Q(b0;a1, b1; . . . ;an, bn)

= [b0;a1, b1; . . . ;an, bn] (n ≥ 0). (2.4)

For example, described by the Figures 2 and 3, we get

P(1; 2, 3; 4, 5) = (1 × 3 × 5) + (1 × 4) + (2 × 5) = 29,

Q(1; 2, 3; 4, 5) = P(3; 4, 5) = (3 × 5) + 4 = 19.
(2.5)

Thus, [1; 2, 3; 4, 5] = 29/19.

3. Combinatorial Proofs of Some Identities

In this section, the combinatorial interpretation presented in the previous is adopted to reach
combinatorial proofs of some identities for nonregular continued fractions.

The reversal identity for the generalization of regular continued fractions recently
investigated by Anselm and Weintraub in [6] can easily be verified as Theorem 3.1.

Theorem 3.1. Let N be an arbitrary positive integer and pn/qn the nth convergent of [b0;N, b1;
. . . ;N, bn]. Then for all n ≥ 1, one has

[bn;N, bn−1; . . . ;N, b0] =
pn
pn−1

. (3.1)

Proof. This reversal identity follows immediately from (2.2)–(2.4) and the fact that the ways
to tile an (n + 1)-board with the height conditions bn;N, bn−1; . . . ;N, b0 equals the ways to tile
with the height conditions b0;N, b1; . . . ;N, bn, which leads

P(bn;N, bn−1; . . . ;N, b0) = P(b0;N, b1; . . . ;N, bn) = pn, (3.2)
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Figure 3: The ways to tile a 2-board with the height conditions 3; 4, 5.

a1

a2

a3

a4

a5

a6

a7

a8

a9

0 1 2 3 4 5 6 7 8 9

Figure 4: An illustration of the fault-free elements of Pn × Qn−1 for the case n is odd.

and the fact that the ways to tile an n-board with the height conditions bn−1;N, bn−2; . . . ;N, b0
equals the ways to tile with the height conditions b0;N, b1; . . . ;N, bn−1, which implies

Q(bn;N, bn−1; . . . ;N, b0) = P(bn−1;N, bn−2; . . . ;N, b0) = P(b0;N, b1; . . . ;N, bn−1) = pn−1.
(3.3)

Theorems 3.2 and 3.3 are proved by modifying the proofs of Identity 110 and Identity
111 in [1] for regular continued fractions to nonregular continued fractions.

Theorem 3.2. The difference between consecutive convergents of [b0;a1, b1; . . . ;an, bn] is

pn
qn

− pn−1
qn−1

=
(−1)n−1∏n

i = 1ai

qnqn−1
(n ≥ 1). (3.4)

Equivalently, after multiply both sides by qnqn−1, we have

pnqn−1 − pn−1qn = (−1)n−1
n∏

i = 1

ai (n ≥ 1). (3.5)

Proof. Denote Pn × Qn−1 := the set of tiling of two boards, where on the top board has cells
0, 1, 2, . . . , n with height conditions b0;a1, b1; . . . ;an, bn, and the bottom board has cells
1, 2, . . . , n − 1 with height conditions b1; . . . ;an−1, bn−1 and Pn −1 × Qn := the set of tiling
of two boards, where on the top board has cells 0, 1, 2, . . . , n − 1 with height conditions
b0;a1, b1; . . . ;an−1, bn−1, and the bottom board has cells 1, 2, . . . , nwith height conditions b1; . . . ;
an, bn.

Any element (A,B) in Pn×Qn−1 or Pn−1×Qn is said to has a fault at cell i ≥ 1, ifA and B
have tiles that end at i.
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Figure 5: There are no fault-free elements of Pn × Qn−2 for the case n is odd.
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Figure 6: An illustration of the fault-free elements of Pn−2 × Qn for the case n is odd.

It can be seen from the definitions that

(1) |Pn × Qn−1| = pnqn−1,

(2) |Pn−1 × Qn | = pn−1qn,

(3) when A or B contains a single tile, (A,B) must have a fault.
Next, we consider the numbers of fault-free elements of Pn × Qn−1 and Pn−1 × Qn.

Case 1 (n is odd). There are
∏n

i = 1ai fault-free elements of Pn ×Qn−1 as shown in Figure 4 and
no fault-free element of Pn−1 × Qn, since for all (A,B) ∈ Pn−1 ×Qn, A and B both cover an odd
number of cells that mean A and B must contain a single tile.

Case 2 (n is even). Similar to the case of n is odd, there are no fault-free elements of Pn ×Qn−1
and

∏n
i = 1ai fault-free elements of Pn−1 × Qn.

Finally, let (S, T) be an element in Pn ×Qn−1 with (S, T) has a fault. If we swap the tails
of S and T after the rightmost fault, then we get the element (S′, T ′) in Pn−1 × Qn that has the
same rightmost fault as (S, T). Hence, by using this swapping, a one-to-one correspondence
between the set of the elements that has a fault in Pn × Qn−1 and the set of the elements that
has a fault in Pn−1 × Qn can be constructed.

Therefore, pnqn−1 − pn−1qn = |Pn × Qn−1| − |Pn−1 × Qn | = (−1)n−1∏n
i = 1ai.

Theorem 3.3. For n ≥ 2, let pn/qn be the nth convergent of [b0;a1, b1; . . . ;an, bn]. Then

pnqn−2 − pn−2qn = (−1)nbn
n−1∏

i = 1

ai. (3.6)

Proof. Denote Pn × Qn−2 := the set of tiling of two boards, where on the top board has
cells 0, 1, 2, . . . , n with height conditions b0;a1, b1; . . . ;an, bn, and the bottom board has cells
1, 2, . . . , n − 2 with height conditions b1; . . . ;an−2, bn−2 and Pn−2 × Qn := the set of tiling of
two boards, where on the top board has cells 0, 1, 2, . . . , n − 2 with height conditions
b0;a1, b1; . . . ;an−2, bn−2, and the bottom board has cells 1, 2, . . . , n with height conditions
b1; . . . ;an, bn.
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Figure 7: An illustration of the fault-free elements of Pn × Qn−2 for the case n is even.

0 1 2 3 4 5 6 7 8 109

Figure 8: There are no fault-free elements of Pn−2 × Qn for the case n is even.

Hence |Pn × Qn−2| = pnqn−2 and |Pn−2 × Qn | = pn−2qn.
Similar to the proof of Theorem 3.2, we can construct a one-to-one correspondence

between the set of the elements that has a fault in Pn × Qn−2 and the set of the elements that
has a fault in Pn−2 × Qn by swapping the tails after the rightmost fault.

Thus, it suffices to consider the numbers of fault-free elements of Pn × Qn−2 and Pn−2 ×
Qn.

Case 1 (n is odd). There are no fault-free elements of Pn × Qn−2 and bn
∏n−1

i = 1ai fault-free
elements of Pn−2 × Qn, described by the examples illustrated in Figures 5 and 6.

Case 2 (n is even). There are bn
∏n−1

i = 1ai fault-free elements of Pn × Qn −2 and no fault-free
element of Pn −2 × Qn, see Figures 7 and 8.

Therefore, pnqn−2 − pn−2qn = |Pn × Qn−2| − |Pn−2 × Qn | = (−1)nbn
∏n−1

i=1 ai.
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