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The first and second Zagreb indices were first introduced by Gutman and Trinajstić (1972). It
is reported that these indices are useful in the study of anti-inflammatory activities of certain
chemical instances, and in elsewhere. Recently, the first and second Zagreb coindices, a new pair
of invariants, were introduced in Došlić (2008). In this paper we introduce the a and (a, b)-analogs
of the above Zagreb indices and coindices and investigate the relationship between the enhanced
versions to get a unified theory.

1. Introduction

Like in many other branches of mathematics, one tries to find in graph theory certain
invariants of graphs which depend only on the graph G itself (or in other cases, in addition
to, an embedding into the plane or some other manifold), see, for example, [1] and the
references given therein. A graph invariant is any function on a graph that does not depend
on a labeling of its vertices. A big number of different invariants have been employed to
date in graphs structural studies as well as through a broad range of applications including
molecular biology, organic chemistry, nuclear physics, neurology, psychology, linguistics,
logistics, and economics, see [2]. Here we are interested in the theory of Zagreb indices and
Zagreb coindices. The first and second kinds of Zagreb indices were first introduced in [3]
(see also [4]). It is reported that these indices are useful in the study of anti-inflammatory
activities of certain chemical instances, and in other practical aspects. Recently, the first and
second Zagreb coindices, a new pair of invariants, were introduced in [5]. In this paper we
introduce the a and (a, b)-analogs of the above Zagreb indices and coindices and investigate



2 International Journal of Combinatorics

the relationship between the enhanced versions to get a unified theory. Insightfully, this
theory will have its place and influence in the territory of mathematical chemistry.

Throughout this work we consider only simple and finite graphs, that is, finite graphs
without multiedges or loops. For terms and concepts not mentioned here we refer, for
instance, the readers to [6–8]. Let G be a finite simple graph on n vertices and m edges. We
denote the set of vertices of G by V (G) and the set of edges of G by E(G). The complement
of G, denoted by G, is a simple graph on the set of vertices V (G) in which two vertices are
adjacent if and only if they are not adjacent in G. Thus, uv ∈ E(G) if and only if uv /∈ E(G).
Clearly, |E(G)| + |E(G| = |E(Kn)| = ( n

2 ), which implies that m = |E(G)| = ( n
2 ) −m. We denote

the degree of a vertex u in a graph G by dG(u). It is easy to see that dG(u) = n − 1 − dG(u) for
all u ∈ V (G). We will omit the subscript G in the degree and other notation if the graph is
clear from the context.

Definition 1.1. The first and second Zagreb indices are defined to be

M1(G) =
∑

u∈V (G)

d(u)2, (1.1)

M2(G) =
∑

uv∈E(G)

d(u)d(v), (1.2)

respectively.

Note that the first Zagreb index may also written as

M1(G) =
∑

uv∈E(G)

(d(u) + d(v)), (1.3)

see [9]. The first and second Zagreb indices, first appeared in a topological formula for the
total π-energy of conjugated molecules, were introduced by Gutman and Trinajstić in 1972
[3]. Since then these indices have been used as branching indices [10]. The Zagreb indices are
found to have applications in QSPR and QSAR studies as well (see [11], e.g.).

The first and second Zagreb coindices were formally introduced in [12] to take account
of the contributions of pairs of nonadjacent vertices, with regard to due properties of chemical
molecules.

Definition 1.2. The first and second Zagreb coindices are defined to be

M1(G) =
∑

uv/∈E(G)

(d(u) + d(v)), (1.4)

M2(G) =
∑

uv/∈E(G)

d(u)d(v), (1.5)

respectively.
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Note that the Zagreb coindices of G are not Zagreb indices of G: while the defining
sums are over the set of edges of G, the degrees are still with respect to G. So in general
Mi(G)/=Mi(G), i = 1, 2.

Now we introduce three a-analogs of the first Zagreb index.

Definition 1.3. The first kind vertex a-Zagreb index, edge a-Zagreb index, and a-Zagreb coindex
are defined in order as follows

Na(G) =
∑

u∈V (G)

d(u)a,

Za(G) =
∑

uv∈E(G)

(
d(u)a + d(v)a

)
,

Za(G) =
∑

uv/∈E(G)

(
d(u)a + d(v)a

)
.

(1.6)

It is not hard to see that N0(G) = n, N1(G) = Z0(G) = 2m and Z0(G) = 2( n
2 ) − 2m. Also,

N2(G) = Z1(G) = M1(G), Z1(G) = M1(G).

Recently, the indexNa(G)was defined and studied by Zhou and Trinajstić [13], which
proved to be a good language in the study of several topological indices.

Next is the analog theory of the second Zagreb index and coindex. For these invariants
involving sums of products, we need two parameters to take account of both parties. we
define the second kind (a, b)-Zagreb index and (a, b)-Zagreb coindex.

Definition 1.4. The second kind (a, b)-Zagreb index and (a, b)-Zagreb coindex are, respectively,

Z′
a,b(G) =

1
2

∑

uv∈E(G)

(
d(u)ad(v)b + d(u)bd(v)a

)
,

Z
′
a,b(G) =

1
2

∑

uv/∈E(G)

(
d(u)ad(v)b + d(u)bd(v)a

)
.

(1.7)

Clearly,

Z′
1,1(G) = M2(G),

Z
′
1,1(G) = M2(G),

Z′
a,b(G) = Z′

b,a(G),

Z
′
a,b(G) = Z

′
b,a(G).

(1.8)

Remark 1.5. The Randić [14, 15] index R1(G) =
∑

uv∈E(1/
√
d(u)d(v))(= Z′

−1/2,−1/2(G)) of a
graph G was first introduced in 1975 by computational chemist Milan Randić. In 1998,
Bollobás and Erdös extended into the general Randić index: Rα(G) =

∑
uv∈E(d(u)d(v))

α

[16]. This graph invariant, sometimes referred to as connectivity index, has been related to a
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variety of physical, chemical, and pharmacological properties of organic molecules and has
become one of the most popular molecular-structure descriptors (see in particular [14, 17–
20]). Note that the second kind (a, b)-Zagreb index actually exists as a double-variable
version of the general Randić index:

Z′
α,α(G) = Rα(G). (1.9)

Hence, by applying our general results above we may find a relationship between Rα(G) and
Rα(G).

The main goal of the second section of this paper is to establish relationship between
the three a-analogs of the first Zagreb index and coindex. And in the last section we will
investigate the second (a, b)-Zagreb index and coindex.

2. The First a-Zagreb Index and Coindex

Next we show how to express the first kind vertex a-Zagreb index and a-Zagreb coindex in
terms of the first kind edge a-Zagreb index.

We start by stating a basic relation between the vertex and edge versions of first kind
a-Zagreb indices.

Proposition 2.1. Let G be a simple graph. For all a ≥ 0, Na+1(G) = Za(G).

Proof. By the definition of Za(G), each vertex u ∈ V (G) contributes to the sum Za(G) exactly
d(u) · d(u)a. Therefore, Za(G) =

∑
u∈V (G)d(u)d(u)

a = Na+1(G), as required.

Next we explore Za(G), which looks amazingly close to Za(G). (Later in the proof of
Theorem 2.3, we will see the connection between the two.)

Proposition 2.2. Let G be a simple graph on n vertices and m edges. For all a ≥ 1,

Za

(
G
)
= n(n − 1)a+1 −

a∑

j=0

(
a + 1

j + 1

)
(−1)j(n − 1)a−jZj(G). (2.1)

Proof. Noting that

Na+1

(
G
)
=
∑

u∈V (G)

dG(u)
a+1

=
∑

u∈V (G)

(n − 1 − dG(u))
a+1

=
a+1∑

i=0

(
a + 1

i

)
(−1)i(n − 1)a+1−i

∑

u∈V (G)

dG(u)i

=
a+1∑

i=0

(
a + 1

i

)
(−1)i(n − 1)a+1−iNi(G).

(2.2)
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Hence by Proposition 2.1,

Za

(
G
)
= n(n − 1)a+1 −

a∑

j=0

(
a + 1

j + 1

)
(−1)j(n − 1)a−jZj(G), (2.3)

completing the proof.

Theorem 2.3. Let G be a simple graph on n vertices and m edges. For a ≥ 1,

Za(G) = (n − 1)Za−1(G) − Za(G). (2.4)

Proof. From the definitions,

Za(G) =
∑

uv/∈E(G)

d(u)a + d(v)a

=
∑

uv∈E(G)

(
n − 1 − dG(u)

)a +
(
n − 1 − dG(v)

)a

=
a∑

j=0

(
a

j

)
∑

uv∈E(G)
(−1)j(n − 1)a−j

(
dG(u)

j + dG(v)
j
)

=
a∑

j=0
(−1)j(n − 1)a−j

(
a

j

)
Zj

(
G
)
.

(2.5)

Thus, by Proposition 2.2,

Za(G) =
a∑

j=0
(−1)j(n − 1)a−j

(
a

j

)[
n(n − 1)j+1 −

j∑

i=0

(
j + 1

i + 1

)
(−1)i(n − 1)j−iZi(G)

]
. (2.6)

When taking off the bracket in the above expression, the first sum obtained is equivalent to
zero. So we have

Za(G) = −
a∑

j=0

j∑

i=0
(−1)j(n − 1)a−j

(
a

j

)(
j + 1

i + 1

)
(−1)i(n − 1)j−iZi(G)

= −
a∑

i=0

⎛

⎝(−1)i(n − 1)a−iZi(G)
a∑

j=i
(−1)j

(
a

j

)(
j + 1

i + 1

)⎞

⎠.

(2.7)
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Using the identity (after a little careful analysis),

a∑

j=i
(−1)j

(
a

j

)(
j + 1

i + 1

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)i, i = a

(−1)i+1, i = a − 1
0, i ≤ a − 2,

(2.8)

we obtain that Za(G) = (n − 1)Za−1(G) − Za(G), as claimed.

Example 2.4. Let a = 1, Theorem 2.3 implies that M1(G) = 2(n − 1)m − M1(G). This is the
result shown at [5, Proposition 2].

Rewriting Theorem 2.3 for the complement graph ofG, one can see the following result
about “co-complement.”

Proposition 2.5. Let a ≥ 0 and let G be any simple graph. Then

Za

(
G
)
=

a∑

j=0

(
a

j

)
(−1)j(n − 1)a−jZj(G). (2.9)

Proof. By Theorem 2.3 we have Za(G) = (n − 1)Za−1(G) − Za(G). Then according to
Proposition 2.2,

Za

(
G
)
=

a∑

j=0

((
a + 1

j + 1

)
−
(

a

j + 1

))
(−1)j(n − 1)a−jZj(G)

=
a∑

j=0

(
a

j

)
(−1)j(n − 1)a−jZj(G),

(2.10)

as desired.

Remark 2.6. To conclude, the first kind vertex a-Zagreb index Na(G), the a-Zagreb coindex
Za(G), and their operations on complement graphs Na(G) and Za(G) may all be expressed
explicitly via the first kind edge j-Zagreb indices Zj(G). Hence, from now on we will rename
the the edge a-Zagreb index Za(G) to the “first kind a-Zagreb index.”

Example 2.7. The following are the first kind a-Zagreb index and coindex for complete graphs,
paths, and cycles on n vertices by direct calculations:

Za(Kn) = n(n − 1)a+1, Za(Kn) = 0,

Za(Pn) = 2 + (n − 2)2a+1, Za(Pn) = 2(n − 2) +

(
n − 2

2

)
2a+1,

Za

(
Pn

)
= 2(n − 2)a+1 + (n − 2)(n − 3)a+1, Za

(
Pn

)
= 2(n − 2)a + 2(n − 2)(n − 3)a,

Za(Cn) = n2a+1, Za(Cn) = n(n − 3)2a,

Za

(
Cn

)
= n(n − 3)a+1, Za

(
Cn

)
= 2n(n − 3)a.

(2.11)
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3. The Second (a,b)-Zagreb Index and Coindex

Let G be any simple graph with m edges, then from the definition we have Z′
0,0(G) = m and

Z′
a,0(G) = Z′

0,a(G) = Na+1(G).
The second kind (a, b)-Zagreb index and coindex are about complementary to each

other, but not commutable. Specifically, if we think of the coindex as an operation “co”
conducted on the second kind (a, b)-Zagreb indexZ′

a,b
(G) and the graph complementZ′

a,b
(G)

as another operation on the second kind (a, b)-Zagreb index Z′
a,b(G), then the order of the

two operations does matter. Actually even for the special cases of Za(G) versus Za(G) and
of Mi(G) versus Mi(G) (i = 1, 2), there is no exchangeability. Nonetheless we demonstrate a
convolution theorem of the two operations mentioned.

Theorem 3.1. Let G be a simple graph. For all a, b ≥ 0,

Z′
a,b

(
G
)
=

a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−jZ

′
i,j(G), (3.1)

Z
′
a,b(G) =

a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−jZ′

i,j

(
G
)
. (3.2)

Proof. For (3.1), from the definitions,

Z′
a,b

(
G
)
=

1
2

∑

uv∈E(G)

(
dG(u)

adG(v)
b + dG(u)

bdG(v)
a
)

=
1
2

∑

uv/∈E(G)

(
(n − 1 − dG(u))

a(n − 1 − dG(v))
b + (n − 1 − dG(u))

b(n − 1 − dG(v))
a
)

=
a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−j

1
2

∑

uv/∈E(G)

dG(u)idG(v)j + dG(u)jdG(v)i

=
a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−jZ

′
i,j(G),

(3.3)

as claimed.
And similarly for (3.2), noting that

Z
′
a,b(G) =

1
2

∑

uv/∈E(G)

(
dG(u)adG(v)b + dG(u)bdG(v)a

)

=
1
2

∑

uv∈E(G)

((
n − 1 − dG(u)

)a(
n − 1 − dG(v)

)b +
(
n − 1 − dG(u)

)b(
n − 1 − dG(v)

)a)
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=
a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−j

1
2

∑

uv∈E(G)
dG(u)

idG(v)
j + dG(u)

jdG(v)
i

=
a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−jZ′

i,j

(
G
)
.

(3.4)

Remark 3.2. Even though the convoluted recurrences between the co-complement operations
are established by Theorem 3.1, one can not use induction to prove that Z′

a,b
(G) = Z

′
a,b(G)

because that is wrong starting from the basic step.

Theorem 3.3. Let G be a simple graph. For all a, b ≥ 0,

Z′
a,b(G) = Na(G)Nb(G) −Na+b(G) − Z

′
a,b(G). (3.5)

Proof. From the definitions we have

Na(G)Nb(G) = Na+b(G) + Z′
a,b(G) + Z

′
a,b(G),

Na

(
G
)
=

a∑

i=0

(
a

i

)
(−1)i(n − 1)a−iNi(G).

(3.6)

Thus, by Theorem 3.1 we obtain

Z′
a,b

(
G
)
=

a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−j

(
Ni(G)Nj(G) −Ni+j(G) − Z′

i,j(G)
)
,

Z
′
a,b

(
G
)
=

a∑

i=0

b∑

j=0

(
a

i

)(
b

j

)
(−1)i+j(n − 1)a+b−i−jZ′

i,j(G),

(3.7)

which implies that

Z′
a,b

(
G
)
= Na

(
G
)
Nb

(
G
)
− Z′

a,b

(
G
)
−

a+b∑

j=0
(−1)j(n − 1)a+b−jNj(G)

a∑

i=0

(
a

i

)(
b

j − i

)
. (3.8)

Using the fact that
∑a

i=0(
a
i )
(

b
j−i
)
=
(

a+b
j

)
, we obtain

Z′
a,b

(
G
)
= Na

(
G
)
Nb

(
G
)
− Z

′
a,b

(
G
)
−

a+b∑

j=0

(
a + b

j

)
(−1)j(n − 1)a+b−jNj(G), (3.9)
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which implies that

Z′
a,b

(
G
)
= Na

(
G
)
Nb

(
G
)
−Na+b

(
G
)
− Z

′
a,b

(
G
)
, (3.10)

which implies our claim.

Example 3.4. The (a, b)-Zagreb for complete graphs, paths, and cycles on n vertices are
calculated:

Z′
a,b(Kn) =

(
n

2

)
(n − 1)a+b, Z

′
a,b(Kn) = 0,

Z′
a,b(Pn) = 2a + 2b + (n − 3)2a+b, Z

′
a,b(Pn) = 1 + (n − 3)

(
2a + 2b

)
+

(
n − 3

2

)
2a+b,

Z′
a,b(Cn) = n2a+b, Z

′
a,b(Cn) = n(n − 3)2a+b−1.

(3.11)

Recently, Ashrafi et al. [21] considered the Zagreb coindices of graph operations, such as
those of union, sum, Cartesian product, disjunction, symmetric difference, composition, and
corona. Similar and interesting treatment is also found in [22]. Being a vividly growing
field of mathematical chemistry, many interesting phenomena are under discovery and much
work still needs to be done.
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