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ABSTRACT. Solutions are given to some singular integral equations which arise in two-

dimensional Dirichlet and Newmann boundary value problems of two equal infinite co-

axial circular strips in various branches of potential theory. For illustration,

these solutions are applied to solve some boundary value problems in electrostatics,

hydrodynamics, and expressions for the physical quantities of interest are derived.
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I. INTRODUCTION.

Recently many authors [I-5] have presented solutions of various two dimensional

boundary value problems of two infinite strips, by integral equation techniques [6-

8]. Shall [9] has given the solution of the Fredholm singular integral equation of

the first kind with logarithmic kernal{q + logmla si(0 01)I},- < i, < ,
where a and q are known constants. This type of singular integral equation governs

the solutions of various two-dimensional Dirichlet boundary value problems involving

an infinite circular strip in electrostatics, hydrodynamics, and low-frequency

acoustic scattering. The solution to this singular integral equation is derived in a

closed form from those of some well known integral equations of Carlemann type [I0,

We present here solutions of Fredholm singular integral equations of the first

kind of the type
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where the known function f(6)) is of class C I, for the values of 0 satisfying the

inequality 0 B I01 a 7, and a q are known constants. The singular integral

equations of the type (I.I) govern solutions of various two-dimensional Dirichlet

boundary value problems of two equal infinite co-axial circular strips in potential

theory. In the corresponding Newmann boundary value problems, the governing integral

equations are of the type

2+ l(01)cosec (6) 01)d01 f(0), < 16)I < ’ (1.2)

where the unkown density function satisfies the edge condtlons

( ) ( =) o. (.B)

Integrating by parts and using edge conditions (1.3), (1.2) becomes

/ +/ g(o >=or- (o 6)l)dO f(6)), IB < 16)( < c

where g(O) l’(O).

(1.4)

(.5)

We present here a simple technique of solving integral equations of the types

1. I) and (1.2) For illustration, this technique is applied to solve an

electrostatic Dirichlet boundary value problem and a hydrodynamic Newmann boundary

value problem of two equal infinite co-axial circular strips.

We have also solved the two-dimensional problems of scattering of a low-frequency

incident plane acoustic wa. by two equal infinite co-axial soft and rigid circular

strips by the integral equation technique. This work will appear separately.

The plan of this paper is as follows. In section 2, we first present a simple

technique of solving integral equations of the type (I.I) without reducing it to some

well known integral equations of the Carleman type [10, II, 12]. This is achieved by

reducing the solution of (I.I) to that of two Fredholm singular integral equations of

first kind with kernels (i) (Const.) + logl2(cosx- cosy)l, 0 < x,y < 7,the and
-I(ii) (cosy- cosx) 0 < x,y < 7. The unknown and known functions are both even

degree functions in each of these two integral equations. The first of these two

equations readily yields the Fourier expansion of the unknown even degree funtion over

the interval 0 < y < , when the well known expansion of the the kernel [1,7] and the

Fourier expansion of the known even degree function over the interval 0 < x < n are

made in it. Similarly, we obtain the series expansion of the unknown even degree

function of the second integral equation in terms of Chebychev polynomials T (cosy) of
n

the first kind when we use the series expansion of its known even degree function in

terms of Chebychev polynomials U (cosx)of the second kind. The solution of this
n

second integral equation contains an unknown constant which is evaluated by making its

solution to satisfy an appropriate inner edge condition. Then we illustrate this
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technique to solve the integral equation (I.I), when the known function f(0) in it is

of a particular form, for our subsequent analysis. Lastly, we explain how equation

(1.2) can be transformed to the form of integral equation (i.i) and is therefore

solvable by the above technique.

In Section 2 we apply the integral equation technique given in Section to solve

the two-dimensional electrostatic Dirichlet boundary value problem of two equal

infinite co-axial perfectly conducting circular strips in a free space, when the total

charge per unit height of the two strips is unity. Section 3 is devoted to the study

of the two-dimensional hydrodynamic Newmann boundary value problem of uniform flow of

an inviscid homogeneous liquid streaming past two equal infinite co-axial fixed rigid

circular strips. The expression for the kinetic energy per unit height of the

secondary fluid flow is derived.

2. SOLUTIONS OF INTEGRAL EQUATIONS.

We present here a simple technique to derive solutions of equations (i.I) and

(1.2).

INTEGRAL EQUATION (1.1): To solve equation (I.I) we first substitute in it [II]

f(0) fl () + f2 (0); g(O) gl (0) + g2(O), (2.1)

where the subscripts and 2 represent the even degree and the odd degree parts of the

corresponding functions respectively. These substitutions readily decouple the

integral equation (I.I) into the following two integral equations

2 =f (O) E < 0 < agl (){2q + loglma (cosO cos0l)l}d01
E

sin( 0

f g2( )log d01 f2 (0) E < 0 <
sl ( + i)

(2.2)

(2.3)

for the determination of gl(0) and g2(0).
substitutions

We first solve equation (2.2). The

cos 01 = {(cosE cos=)cosy + (cosE + cos=)},

cos 0 -- {(nOsE cos=)cosx + (nose + cos=)},

reduce the equation (2.2) to a simple form

where

Gl(y){ A + log 21cosx- cosy I} dy Fl(x), 0 < x < ,
0

Gl(Y) [(cosE cos)gI(8l)sinh]/sin81 [gl(Ol)R(Ol)l/sin01’

1/2R(0) [cosE cos0)(cos0 cosa)]

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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Fl(x fl(0), A 2q + log[a2(cosB cosa)/2],

and in (2.7) we have used the relations

(2.9)

cos cos0 I/2 cos0 cosa I/2
I) cos =sin (cosB cosa cosB cosa

(2. lO)

readily derivable from the substitution (2.4). Lastly, the well known formula [7]

cosnx cosnylog 2 cosy- cos x --2 r. 0 < x,y < (2.11)
nn;1

and the Fourier expansion of the known even degree function Fl(x)

where

Fl(X)- z= a + E a cosnx,o nn

a Fl(cosnx dx, n 0
n

0 < x < 7, (2.12)

(2.13)

readily yield the solution Gl(Y) of the equation (2.6). This is given by

Gl(y) b + Z b cosny, (2.14)
O n

n=l

where bo ao/(2A), bn -(nan)/ n I, (2.15)

and the known coefficients a n O, are defined by the relations (2.13). Finally,
n

substituting the above value of Gl(Y) in the relation (2.7), we obtain the required

solution of the equation (2.2)

gl(01 [b + Z b cosny] [sin0I]/R(oI) B < O < a
0 n

n=l
(2.16)

Now we take up the solution of the equation (2.3). We first differentiate both sides

of equation (2.3) with respect to 0 and obtain

a g2(0 )sln0

B cos0- -cos0 d01 f2 (0)’ B < 0 < a, (2.17)

where the integral in the left hand member is to be inerpreted as a Cauchy principal

value. When we make the substitutions (2.4) and (2.5) in the above equations, we get

C2(Y)
dy F2(x), 0 < x <cosy cosx

(2.18)

where G2(Y) g2(01) slny [2g2(Ol)R(01)]/[cosB cosa], (2.19)

’(0),F2(x) f2 (2.20)

and F2(x) is a known even degree function of x. Next, when we substitute
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-I -I
x cos (X), y cos (Y),

in (2.18), we obtain

-I
G
2
(cos Y) dY

-I (I _y2) I/2(Y-X) F2(cos-Ix) -I < X < I.

(2.21)

(2.22)

The above integral equation can be readily solved when we substitute it in the

expansion of the known function F
2

in terms of the Chebychev polynomials U (X) of the
n

second kind

F2(cos IX) Z c U (X), -I < X < I, (2.23)
n n

n:l

and use the well known formula

T (Y)dY
n

-I (I y2)I/2(y X)

0 n--O,

U (X), n I,n-I

(2.24)

where T (Y) is the nth degree Chebychev polynomial of the first kind. Thus then
solution of the equation (2.22) is given by

G2(Y ATo(cOsy + I Cn-ITn(csy)’ 0 < y < , (2.25)
n=l

where A is an arbitrary constant and the constant coefficients c are defined by the
n

expansion (2.23) of the known function F2. These values are

Cn f sinx sln(n + l)x F2(x)dx, n 0.
0

(2.26)

Lastly, relations (2.19) and (2.25) lead to the required solution of the equation

(2.3)

g2(01) (cos- cos)[A + r. c cosny]/R(0 < 0 < (2 27)n-I
n

where relation (2.4) gives the value of cosy in terms of cos 0 I. The value of the

constant A in (2.27) is readily obtained by using the edge condition satisfied by the

density function g2(01) at the inner edge i=. This edge condition is

1/2), as 0 + 0g2(O1 O([cosB -cosO 1] (2.28)

The value of g2(01) given by (2.27) satisfies this edge condition if in (2.25),

G2 y O, as y 0+, and hence

Therefore,

A---- l c (2 29)n-I
n

g2(01) 2-cos cosa) l Cn_I(I cosny)]/R(0I), < 01 < a. (2.30)
n=l
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Since, sin2 Yl or (cosBCSB _-cosacs01’) is a common factor of all the terms occuring in the

infinite series in the right member of the above equation, therefore, the above

expression for g2(01) satisfies the required edge condition (2.28). Finally,

relations (2.1), (2.16) and (2.30) yield the required solution g(0 I) of equation

(I.I). We illustrate the above results by solving the integral equatlon, < [0[ < B,

+ g(01){ q + loglma siq(0 01)[}d01 [Bl0 + BllCOS0] + [B200 + B21sin0],(2.31)

where all B’s are known constants. Its solution is also very useful in solving

various boundary value problems presented in our subsequent analysis. Comparing

equation (2.31) with (I.I), we have, in this case,

fl(0) Blo + BllCOS0, f2 (0) B200 + B21sin0, (2.32)

(cos8 cosa)cosx, i 1,2,Fi(x) [Bio + Bil(COS8 + cosa)] + (2.33)

G1(Y I_.{ (cosB + cosa)] B (cosB cosa) cosy}, (2.34)

Cz(y [B20 + 1/2B21 (cosS + cosa)](1 cosy) + [B21 (cos cosa)](1 cos2y)}(2.35)

(cos + cosa)}gl(l (sln01)[ BI0 + "( E + l)Bll

-BIICOS01}/R(01) B < 01 < a, (2.36)

-I I/2 (cos cosa)]g2(01 =-cos cos0I) {[B20 + B21

+ B21cos01}/(cosO cosa)I/2 8 < e < a (2.37)

and putting the values of the functions gl,g 2 from equations (2.36) and (2.37) in the

relation g(0 I) gl(01) + g2(02), we get the required solution of equation (2.31). In

the above illustration, when 0, we readily obtain the solution of the equation,

-<0<a,

g(81)( q + loglZa siq(8 81) de (Blo + BllCOSO) + (B20 8 + B21 sinS), (2.38)

in the form
,-5.
,’2tcos B Bg(Ol) " "’Bl{ ’1 I0+ 11

(I___ 2

AI + l)cos co s01]

sin l{B20 + B21 [sin2 b + csOl ]}II(csol csa)ll2’ -a < 81 < a’ (2.39)

where

A 2[q + log(a sin a)], (2.40)
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which agrees with results derived by Shail [9] by applying tedious inversion formulas.

INTEGRAL EQUATION (1.2). We present here the method of solving equation (1.2) or its

equivalent form (1.4). Equation (1.4) can be rewritten in the form

ddo f + f g(O)loglXn (0 O1 )idOl f(O), l < Iol < , (2.41)

which on integration of the both raembers of this equat[on yields

-B a

(2.42)

where p’(0) f(0) and C in an unknown constant. Since the above inegral equation is

also of the form (I.I), with f(0)= C- 1/4P(0), q =-log2, and a i, therefore, its

solution g(0 I) can be derived as explained in Section 2.1. Lastly, the value of the

unknown constant C occuring in the even degree part gl(01) of this solution

g(0 I) gl(01)+ g2(01), can be obtained by putting this value of gl(01) in the

relation

S gl - a -B a
O,(O1)dO f + f g(O1)dO f + S I’(O1)dO

-a -a B
(2.43)

where we have used relation (1.5) and the edge condition (1.3)).

3. ELECTROSTATIC POTENTIAL PROBLEM.

We consider the electrostatic problem of two equal infinite co-axial perfectly

conducting strips charged in a free space so that the total charge per unit height on

the two strips is unity. In cylindrical polar co-ordinates (r,O,z), the two strips

are defined by r a, -, < 0 < -B, B < 0 < a, B O, a 7, < z < .
The electrostatic potential (r,O) of this boundary value problem is given by- a

26(r, O) -a f + f g(O1)log[r2 + a 2arcos(O 01)}1/2dO1, (3.1)

where g(0 I) is the unknown surface charge density per unit are defined by

r=a+g(01) - r=a-
(3.2)

Since the value of the potential assumes a constant value, say o’ on the two

strips, using this boundary condition in (3.1), we obtain the integral equation

-B a oS + S g(l)lOgl2a sin (0 o )lao < Iol < , (3.3)
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The solution of this equation is readily obtained from that of equation (2.31), by

setting q--O, BI0 =-o/a, BII 020 B21 0, in (2.36) and (2.37). Therefore, the

solution of equation (3.1) is given by

g(o,) g,(o,)=- ;[,o/(= ,2)]l,nO, l/R(0,), < Io, < ,, (3.4)

where A
2 log[a2(cos13 cosa)/2]. (3.5)

Finally, to evaluate the unknown constant in the above expression for the charge
o

density g(8 I) of the strips, it is given that the total charge per unit height on each

of the strip is unity and therefore g(8 I) must satisfy the condition

a f + g(0 I) d01 2 (3.6)

We substitute the value of g(B I) from (3.4) in the above equation, and get

A (3.7)
o 2’

and, therefore,

When 13 0, we obtain the corresponding limiting result [9] for the circular

strip r a, -a < 0 < a, < z <
,/2 cos 1

g(01) (3 9)
cosa)l/2,_ -a < 01 < (x.

a(cosO

4. HYDRODYNAMICAL PROBLEM.

We consider the problem of uniform flow of an inviscid homogeneous liquid in the

direction n icos + jsinT of velocity U, streaming past two fixed rigid strips r

a, - < 0 -, B < 0 < a, 0 13 < a 7. The secondary velocity potential function

4 (r,0) of this two-dimensional problem is given by [9]

-B a
a 3 2 2 1/2

,s(r, O) -- f + f I(0 {-rllog[r + r 2rrlcos(O 01)] }dO r =a (4.1)

where

I(01 Cs(a + 01 -Cs(a-, 01) 13 < 1011 < , (4.2)

and I(0 I) satisfies the edge condition

I(l) I(e=) 0. (4.3)
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Using the boundary condition

r=a r=a

where 91(r,0) -Ur cos(0 T) is the velocity potential function of the incident

uniform flow Un, we obtain from (4.1), the integral equation [9]

-B
f + f I(0llcosec

2
g(0 0lld01 8,aUcos (0 y), B < I01 < a, (4.5)

To solve this integral equation, we first integrate the left member by parts and

obtain by using the edge conditions (4.3)

f + f g(8l)cot (8 8I)d81 -4,aUcos (8 V), B < 181 < , (4.6)

where g(0) I’(0). The above integral equation is of the type (1.4), and therefore

can be solved by the method given in the Section 2.2. We first rewrite integral

equation (4.6) in the form (2.41) which on integration yields

f + f g( 81)l og s in (8 8l)ldS1 C 2.aUsin (8 ), B < 181 < a, (4.7)

where C is an unknown constant. Fortunately, the aboe integral equation is of the

type (2.31), with q log2, a I, BIO C, BII 2aUsinY, B20 0, B21 -2aUcosY.

Therefore, substituting these values of the constants in equations (2.36) and (2.37),

we obtain the required solution of the above integral equation in the form

g(01) g,(01) + g2(01) (4.8)

where

and 6 log{(cosI3 cosa)18}. (4.10)

The value of the unknown constant C occuring in the value of gl(81) given by equation

(4.9) is obtained by putting this value of gl(81) in the relation (2.43). This yields

the required value of the unknown constant C is given by

C -aU sin "( (cosS + cosa). (4.11)

We substitute this value of C in (4.9) to obtain the value of the function gl(81) as

g1(81) aU sinvls+/-n 811[(cos + cosa)-2 cos 81]IR(01), <181< (4.12)
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Using formulas (2.19) and (2.25), the expression for g2(01) is given by

where

A Ag2(01)= R(I [C- 2aU cos Y(B cos y + cos 2y)], 8 <I01 <

A = (cos8 cos=), B (cos8 + cos), cos 81 A cos y + B,

(4.13)

(4.14)

and the unknown constant C is evaluated by using the condition (1.3) which yields

where

AC 2aU cos Y [B J + J2 /Jo’
(cos ny) de

R(0 n 0, I, 2,

(4.15)

(4.16)

We substitute this value of C in (4.13) to obtain the following value of g2(Ol).

J1 A J2g2(01 2aUR(ol)COSY Sgn 8 I[B(]--- cos y) + (-- cos2y)]
o o

2aUcos Y [_2 + A A 2
(0) Sgn 01 -j--(BJ + J2 + B cosO cos 01] 8 < [01[ < a,

o
(4.17)

The results (4.8), (4.12) and (4.17) yield the required solution g(0 I) of the integral

equation (4.6). Slnce g(0) I’(0), 8 [011 < a, therefore

o f t(o o +f g(o) o ( Iol ( ( e)I’

where we have used the relation (4.8). Since the expression (4 12)
for gl(01 satisfies the relation f8 gl(01 d01 O therefore the expression (4.18)

for I(0) satisfies all the required edge conditions (.3) if f g2(01) d01 0.

We may remark here that there is no need of obtaining the solution I(0) of the

equation (4.5) for finding the expressions for the physical quantities of interest.

These expressions can be readily derived from the value of the function g(0 I) given by

relations (4.8) to (4.12). For instance, the kinetic energy per unit height (K.E.) of

the secondary fluid flow is given by

=_1
-8 a (rl, 01K.E. - aP + I(01)[- 8 8r dO

rlfa

Ua_P2 + ( )cos( o y)d o

-8
Ua__2_p ./" g(O )sin(O2 y)dO Uap {d cosy d2sinY} (4.19)

where we have used the boundary condition (4.4), the relation g(0) l’(O), the edge
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conditions (4.3), and p is the density of the ho,aogeneous liquid. The values of the

constants d and d
2

are given by the relations

dl g2 (O1)sinO IdOl, d2 = gl (O1)esOldO (4.20ab)

We substitute the values of the functions gl(01) and g2(01) from equations (4.12) and

(4.17) in (4.20) to obtain

d 2auUA cosT[BJ + J2]/J d -aU(cosg cosa)2sinT. (4 21ab)
o’ 2

Finally, relations (4.19) and (4.21) give rise to the required expression for Kinetic

energy and this is given by

K.E. pa2U2 A A +A A
A {[ + J2 + ] + (BJI J2 -] cos2},

o o
(4.22)

where the definite integrals J n=O,l,2 are defined by relation (4.16) and A and B
n

are defined in the relation (4.14).

We derive now some interesting lmltng results from the formula (4.2) for K.E.

Jt J2
When g O, J =, n 0,I,2 and

j j
o o

and therefore the formula (4.22)

yields the followlng corresponding limiting expression for the K.E.,o

infinite circular rigid strip r a, -a < 0 < a, < z < =:

in case of the

o ra2U2.sin2 [1 + cos - cos2Y], (4.23)

This seems to be a new result.

Similarly, when in formula (4.22) we let e 0, O, a =, such that

aa aI and a8 a2(a2 < al) we obtain the corresponding limiting expression for

the Kinetic Equation 02 in case of the two equal parallel co-planar infinite rigid

< z < and it is given bystrips x 0, a
2 < y < al,

where

2 2
pU al 2 2

0
2 2 [(l+c )-2E’/F’]cos "f,

_c
2 )I/2c a2/a < I, F’ F(, (I ), g’ E(, (I-c2) I/2 ),

(4.24)

(4.25)

and F(, c) and E(, c) are elliptic integrals of the first and the second kind [14].

We have also solved the two-dlmenslonal problems of scattering of a low-frequency

incident plane acoustic wave by the integral equation techniques presented here. This
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work will appear separately.
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