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ABSTRACT. Solutions are given to some singular integral equations which arise in two-
dimensional Dirichlet and Newmann boundary value problems of two equal infinite co-
axial circular strips in various branches of potential theory. For illustration,
these solutions are applied to solve some boundary value problems in electrostatics,

hydrodynamics, and expressions for the physical quantities of interest are derived.
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1. INTRODUCTION.

Recently many authors [1-5] have presented solutions of various two dimensional
boundary value problems of two infinite strips, by integral equation techniques [6-
8]. Shail [9] has given the solution of the Fredholm singular integral equation of
the first kind with logarithmic kernal{q + log2|a sin%(e - GI)I}, -a < 91,6 < a,
where a and q are known constants. This type of singular integral equation governs
the solutions of various two-dimensional Dirichlet boundary value problems involving
an infinite circular strip in electrostatics, hydrodynamics, and low-frequency
acoustic scattering. The solution to this singular integral equation is derived in a
closed form from those of some well known integral equations of Carlemann type [10,
11, 12].

We present here solutions of Fredholm singular integral equations of the first

kind of the type

- a
1
_£ + £ g(8)) {a + log|2a siny(8 - 0,)[}a0, = £(8), B < [e) <a, .1
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where the known function f(8) is of class Cl, for the values of 0 satisfying the
inequality 0 < B < '9‘ < anm, and a q are known coustants. The singular integral
equations of the type (l.1) govern solutions of various two-dimensional Dirichlet
boundary value problems of two equal infinite co-axial circular strips in potential
theory. 1In the corresponding Newmann boundary value problems, the governing integral

equations are of the type

_B a
[+1 1(8, )cosec’ 5 (0 - 8,)d8, = £(8), B < [6] < «, (1.2
-a

where the unkown density function satisfies the edge condtions

I(x B) = I(+ a) = 0. (1.3)

Integrating by parts and using edge conditions (1.3), (1.2) becomes

-B a

1 1
Bl +{3 g(8 )cot (8 - 0,)d0, = >£(8), B < [o] <a (1.4
where g(8) = 1'(8). (1.5)

We present here a simple technique of solving integral equations of the types
(1.1) and (1.2). For 1illustration, this technique 1is applied to solve an
electrostatic Dirichlet boundary value problem and a hydrodynamic Newmann boundary

value problem of two equal infinite co-axial circular strips.

We have also solved the two-dimensional problems of scattering of a low—frequency
incident plane acoustic wave by two equal infinite co—axial soft and rigid circular

strips by the integral equation technique. This work will appear separately.

The plan of this paper is as follows. In section 2, we first present a simple
technique of solving integral equations of the type (l.1) without reducing it to some
well known integral equations of the Carleman type [10, 11, 12]. This is achieved by
reducing the solution of (l.1) to that of two Fredholm singular integral equations of
the first kind with kernels (i) (Const.) + logIZ(cosx - cosy)l, 0 < x,y < m, and
(1i) (cosy - cosx)-l, 0 < x,y <™. The unknown and known functions are both even
degree functions in each of these two integral equations. The first of these two
equations readily yields the Fourier expansion of the unknown even degree funtion over
the interval 0 < y < m, when the well known expansion of the the kernel [1,7] and the
Fourier expansion of the known even degree function over the interval 0 < x < w are
made in it. Similarly, we obtain the series expansion of the unknown even degree
function of the second integral equation in terms of Chebychev polynomials Tn(cosy) of
the first kind when we use the series expansion of its known even degree function in
terms of Chebychev polynomials Un(cosx) of the second kind. The solution of this
second integral equation contains an unknown constant which is evaluated by making its

solution to satisfy an appropriate inner edge condition. Then we 1illustrate this
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technique to solve the integral equation (l.1), when the known function £(8) in it is
of a particular form, for our subsequent analysis. Lastly, we explain how equation
(1.2) can be transformed to the form of integral equation (l.1) and is therefore
solvable by the above technique.

In Section 2 we apply the integral equation technique given in Section 1 to solve
the two-dimensional electrostatic Dirichlet boundary value problem of two equal
infinite co—axial perfectly conducting circular strips in a free space, when the total
charge per unit height of the two strips is unity. Section 3 is devoted to the study
of the two-dimensional hydrodynamic Newmann boundary value problem of uniform flow of
an inviscid homogeneous liquid streaming past two equal infinite co-axial fixed rigid
circular strips. The expression for the kinetic energy per unit height of the

secondary fluid flow is derived.

2. SOLUTIONS OF INTEGRAL EQUATIONS.

We present here a simple technique to derive solutions of equations (l.1) and
(1.2).

INTEGRAL EQUATION (l.1): To solve equation (l.1) we first substitute in it [11]
£(8) = fl(e) + fz(e); g(8) = 31(9) + gz(e). (2.1)
where the subscripts 1 and 2 represent the even degree and the odd degree parts of the

corresponding functions respectively. These substitutions readily decouple the

integral equation (l.1) into the following two integral equations

a
| 8,(6){2q + log|2a’(cosd - cos8 )|}d8, = £ (8), B < 6 < a, (2.2)
B8
a sin%(e - 91)
| g,(8)log |——————| a6 = £.(8), B< O <a, (2.3)
8 21 si 1(9 +0.) 1 2
) 1
for the determination of gl(e) and gz(e). We first solve equation (2.2). The
substitutions
cos 91 =-% {(cosB - cosa)cosy + (cosB + cosa)l, (2.4)
cos O =-% {(c0sB - cosa)cosx + (cosB + cosa)l, (2.5)

reduce the equation (2.2) to a simple form
n
/ Gl(y){ A+ log 2|cosx - cosy'} dy = Fl(x), 0<x<m, (2.6)
0

where Gl(y) = [%(cosﬂ - cosa)gl(ﬂl)sinh]/sine1 - [gl(el)R(el)]/sine (2.7)

1°?

R(6) = [cosB - cosf)(cosb - cosa)]l/z, (2.8)



754 C. SAMPATH AND D.L. JAIN

Fl(x) = fl(e), A= 2q + log[az(cosB - cosa)/2], (2.9)
and in (2.7) we have used the relations
y cosB - cosO1 1/2 y cose1 ~ cosa 1/2
sin 2° (cosB - cosa ) » CO8 5 = YC0sB - cosa ) ’ (2.10

readily derivable from the substitution (2.4). Lastly, the well known formula [7]
log 2|cosy — cos x| = —2 z ggggzzggggz’ 0<x,y< (2.11)
n=1

and the Fourier expansion of the known even degree function Fl(x)
1 @
F(x) =% a +I acosnx 0<x<Km, (2.12)
1 2 n 4
2 T
where a == f F (cosnx dx, n > O, (2.13)
n w 0 1

readily yield the solution Gl(y) of the equation (2.6). This is given by

<«
Gl(y) = bo + nil bncosny, (2.14)

where bo = ao/(ZHA), bn = —(nan)/u, n>1l, (2.15)

and the known coefficients a,n > 0, are defined by the relations (2.13). Finally,
substituting the above value of Gl(y) in the relation (2.7), we obtain the required
solution of the equation (2.2)

@

g(8)) = [b + I b cosny] [sin® I/R(8;), B <6 <a, (2.16)
n=1

Now we take up the solution of the equation (2.3). We first differentiate both sides

of equation (2.3) with respect to 6 and obtain

a gz(el)sine1

22 17 1 et )
8 cos®, - cosh de1 f2(9)’ B <8 <a, (2.17)

where the integral in the left hand member is to be inerpreted as a Cauchy principal
value. When we make the substitutions (2.4) and (2.5) in the above equations, we get

TG

o cosy - cosx dy = Fz(x). 0< x<m, (2.18)
where G,(y) - 8,(0)) siny = [2g,(® )R(® )]/[cosB -~ cosal, (2.19)

F,(x) = £(8), (2.20)

and Fz(x) is a known even degree function of x. Next, when we substitute
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x = cos—l(X), y = cos—l(Y), (2.21)
in (2.18), we obtain

1 G2(cos_lY) dy

272070

Fz(cos-lx), -1 <X< 1. (2.22)
-1 Q1

The above integral equation can be readily solved when we substitute it in the

expansion of the known function F, in terms of the Chebychev polynomials Un(X) of the

2
second kind

F2(cos_IX) =T cu(, -1<x<1, (2.23)
nn
n=1
and use the well known formula
1 Tn(Y)dY 0 , n=20,

- (2.24)
1a-da -0 b o, e,

where Tn(Y) is the nth degree Chebychev polynomial of the first kind. Thus the
solution of the equation (2.22) is given by

1 ©
Gz(y) = ATo(cosy) + o nil cn_lTn(cosy), 0<y<m, (2.25)

where A is an arbitrary constant and the constant coefficients < are defined by the

expansion (2.23) of the known function F2. These values are

m
[ sinx sin(n + 1)x F2(x)dx, n > 0. (2.26)
0

0
]
ERIN

Lastly, relations (2.19) and (2.25) lead to the required solution of the equation

(2.3)
1%
w

Eoe <a,  (2.27)

gz(el) =‘%(cosB -~ cosa)[A + cosny]/R(el), B <6

1

where relation (2.4) gives the value of cosy in terms of cos 6 The value of the

X
constant A in (2.27) is readily obtained by using the edge condition satisfied by the
density function gz(el) at the inner edge 91'8. This edge condition is

gz(el) = 0([cosB - coselll/z), as 91 + B8+ 0 (2.28)

The value of gz(el) given by (2.27) satisfies this edge condition if in (2.25),
GZ(Y) + 0, as y * 0+, and hence

T e .. (2.29)

Therefore,

gz(el) = %%(coss - cosa) [ z c

1 - cosny)]/R(el), B <O <a. (2.30)
n=1

n-1
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2 cosB - cos®

Since, sin %y or ( ) is a common factor of all the terms occuring in the

cosB - cosa
infinite series in the right member of the above equation, therefore, the above

expression for g (0 ) satisfies the required edge condition (2.28). Finally,
21

relations (2.1), (2.16) and (2.30) yield the required solution g(8 ) of equation

1
(1.1). We illustrate the above results by solving the integral equation,a < IO' < B,

+ Bl cosf] + [3206 + B,.sinf8],(2.31)

B0 1

-8B a
I + £ g(el){q + log'Za sinil-(e - el)l}clel = 21

-a
where all B's are known constants. Its solution is also very useful in solving
various boundary value problems presented in our subsequent analysis. Comparing

equation (2.31) with (1.1), we have, in this case,

fl(e) =B, B“cose, f2(9) = 8209 + B, sind, (2.32)

Fi(x) = “‘10 +';'Bﬂ (cosB + cosa)] + % Bﬂ(cosB - cosa)cosx, i = 1,2, (2.33)

G (y) = L{ L [B +'I-B (cosB + cosa)] - 1 B, . (cosB - cosa) cosy} (2.34)
17 =5 E o T2 2 “11 o

Gz(y) = %{[Bzo + —;—Bu(cosﬁ + cosa)](l - cosy) + %[le(cosﬁ - cosa)](l - cos2y)}(2.35)

1 1 1,1
gl(ﬂl) = ;(sinel){ B0 % —2-( £+ DB, (cosB + cosa)}

- B”cosel}/R(el), B<O <a (2.36)
g,(8.) = :l-(cosB - cos® )I/Z{IB +-1-B (cosB - cosa)]
21 n 1 20 2721
+ B,.,cos0 }/(cosb, - cost'x)l/2 B<CH, <a (2.37)
21 1 1 ’ 1 ’

and putting the values of the functions 8,8, from equations (2.36) and (2.37) in the
relation g(el) = gl(el) + gZ(eZ)’ we get the required solution of equation (2.31). In
the above illustration, when B * 0, we readily obtain the solution of the equation,

- <8 <a,

a
1
-({ g(8)){q + log|2a simy(8 - 8,) do = (B, + B cosd) + (B, 0 + B, siné), (2.38)

21

in the form
(8.) =L v2lcos 16 { LB, + B [(+ 1)cos® 2a - cosd, ]}
g%y =% 21887107 C11E) 2 1

+ BZI[sin2 LY cosell}]/(cose1 ~ cosa)

1/2
2 ’

{8

1
sin -2—9 20

) -a < (-)l < a, (2.39)

where

A, = 2[q + log(a sin 15«)1, (2.40)
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which agrees with results derived by Shail [9] by applying tedious inversion formulas.
INTEGRAL EQUATION (1.2). We present here the method of solving equation (1.2) or its

equivalent form (l.4). Equation (l.4) can be rewritten in the form
a P00 1 1
—d§“_£ + £ g(08))log|sin 5(0 - 8,)[d0, = - 2£(6), B < [8] < a, (2.41)
which on integration of the both members of this equation yields
-8 a 1 L
[+ | g(8))log|sin (8 - 8 )[a0, = ¢ - 2p(8), =< [6] < a, (2.42)
—a 8 1 1 1
where p'(8) = f£(6) and C in an unknown coanstant. Since the above inegral equation is
also of the form (l.1), with £(8) = C - %p(e), q = -log2, and a = 1, therefore, its
solution g(el) can be derived as explained in Section 2.1. Lastly, the value of the

unknown constant C occuring in the even degree part gl(el) of this solution

g(Ol) = gl(el) + gz(el), can be obtained by putting this value of gl(el) in the

relation
a 1 -8 a 1 -B a
[ g@pae =5 [ +[g®)as, =5 [ +[ 1'(8)d8 =0, (2.43)
B -a B -a B

where we have used relation (l.5) and the edge coandition (1.3)).

3. ELECTROSTATIC POTENTIAL PROBLEM.

We consider the electrostatic problem of two equal infinite co-axial perfectly
conducting strips charged in a free space so that the total charge per unit height on
the two strips is unity. 1In cylindrical polar co-ordinates (r,0,z), the two strips
are defined by r = a, -a, < 6 < -8B, B8 <6< a, B>0, as<n, -=Lz >,

The electrostatic potential ¢(r,0) of this boundary value problem is given by
-8 a

H(r, ) =-a [ + [ g(el)log{r2 + a2 - 2arcos(6 - 91)}1/2d91, (3.1)
-a B

where g(el) is the unknown surface charge density per unit are defined by

88)) = - 5= (3%, 01 | 5 <o | <a, (3.2)

Since the value of the potential ¢ assumes a constant value, say ¢o, on the two
strips, using this boundary condition in (3.1), we obtain the integral equation
_B ¢o

a
1
_£ + {3 g(0))1og|2a siny (8 - 6)[d0, =—2, B < |o] <, (3.3)
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The solution of this equation is readily obtained from that of equation (2.31), by

setting q = O, BIO = —Qola, Bll = 320 = BZl = 0, in (2.36) and (2.37). Therefore, the
solution of equation (3.1) is given by
1
g(9)) = g (8)) = - o /(a 8,)]|sin0 |/R(O), B8 < [0 | <, (3.4)
where A, = log[az(cosB - cosa)/2]. (3.5)

2

Finally, to evaluate the unknown counstant ¢o in the above expression for the charge
density g(GI) of the strips, it is given that the total charge per unit height on each
of the strip is unity and therefore g(el) must satisfy the condition

-B a
a [ + | g(8)) do, =2 (3.6)
- ﬂ

We substitute the value of g(el) from (3.4) in the above equation, and get

¢ =-a 3.7
and, therefore,

8(8)) =+ |snmd, |/R(8)), B < |8, < a, (3.8)

When B * 0, we obtain the corresponding 1limiting result [9] for the circular

stripr =a, ~-a {0 <a, =®»z >

/2 cos %el
77 e <8 <a. (3.9)

g(8,) =
na(cose1 - cosa)

4. HYDRODYNAMICAL PROBLEM.

We consider the problem of uniform flow of an inviscid homogeneous liquid in the
direction ; = QCOSY + EsinY of velocity U, streaming past two fixed rigid strips r =
a, -a <6 -8,B<C0O6<Ca, 0<B<ac<mn, The secondary velocity potential function

¢s(r,9) of this two-dimensional problem is given by [9]

a

-B
) 2 2 1/2
¢s(r’ 0) = “%; -£ + £ 1(8)) f§;Iiog[r +r - 2rrlcos(9 - 8] /

}del, r,=a (4.1)

where
1) =¢(a+,8) -0 (a-, 0, B[] <a, (4.2)

and 1(91) satisfies the edge condition

I(xB) = I(xa) = O. (4.3)
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Using the boundary condition

£ 99,
S = - [—1t
Gel = by ' .0
r=a r=a
where ¢i(r,9) = -Ur cos(® - Y) is the velocity potential function of the incident
uniform flow Un, we obtain from (4.1), the integral equation [9]
® o« 21
[+ I(el)cosec 5(8 - 6,)d8, = 8malcos ® -1v), 8K ‘el < a, (4.5)
-Q B
To solve this integral equation, we first integrate the left member by parts and
obtain by using the edge conditions (4.3)
-8 a 1
[+ g(8)cot (8 - 8 )d6 = -4maUcos (8 - ¥), B < le] < a, (4.6)
-4 B
where g(6) = I'(8). The above integral equation is of the type (l.4), and therefore
can be solved by the method given in the Section 2.2. We first rewrite integral
equation (4.6) in the form (2.41) which on integration yields

_B a
[+ | g®)iog|sin zl(e - 8,)|d8 = C - 2malsin (8 - v), 8 < [6] <&, (4.7)
-Q B

where C is an unknown constant. Fortunately, the aboe integral equation is of the
type (2.31), with q = log2, a = 1, BlO =C, Bll 320 =0, 321
Therefore, substituting these values of the constants in equations (2.36) and (2.37),

= 2naUsiny, = -2malcosY.
we obtain the required solution of the above integral equation in the form

g(8)) = g.(0) +g,(8)), (4.8)
where
g,(8)) = 3|sind [ (}c + maUsinv[(cosh + cosa)(G + 1) - 2cos8 1}/R(8)), B<|8]< a, (4.9)
and § = log{(cosB ~ cosa)/8}. (4.10)
The value of the unknown constant C occuring in the value of gl(el) given by equation
(4.9) is obtained by putting this value of gl(el) in the relation (2.43). This yields
the required value of the unknown constant C is given by

C = -mal sin Y (cosB + cosa). (4.11)

We substitute this value of C in (4.9) to obtain the value of the function gl(Sl) as

gl(el) = aU sinYlsin GII[(cosB + cosa) -2 cos GIJ/R(GI), B <‘6'<a (4.12)
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Using formulas (2.19) and (2.25), the expression for gz(el) is given by

A A
82(91) iRg:j-[C 2al cos Y(B cos y + 5 cos 2y)], B <|6| < a (4.13)
where A =-% (cosB - cosa), B = % (cosB + cosa), cos 01 = A cos y+ B, (4.14)

and the unknown counstant C is evaluated by using the condition (1.3) which yields

C=2aUcos Yy [BJ +35 3,0 /3, (4.15)
a (cos ny) del
where I =f —REy =0, 1,2, (4.16)
8 1

We substitute this value of C in (4.13) to obtain the following value of gz(el).

J J
2al cosY 1 _ A "2
g,(8)) R Sgn 0, [B(3= - cos y) + 5 (3— cos2Y)]
1 o o
2
- 2aUcos Y A A A _ 2
T(el—)— Sgn el [2—~ +J—o (BJl + '7-.’2) + B COSel cos 61], B < ’el' < a, (4o17)

The results (4.8), (4.12) and (4.17) yield the required solution g(el) of the integral
equation (4.6). Since g(8) = 1'(68), B |el| < a, therefore

Je] [

6|
I(8)= Sgn © fB g (8) a6 + fB g,(8)) a8, B < l8] < a, (4.18)
where we have used the relag}on (4.8). Since the expression (4.12)
for gl(el) satisfies the relation f gl(el) d61 =0, therefor%xthe expression (4.18)
for I1(6) satisfies all the required é%ge conditions (4.3) if [ g2(el) del = 0.

B8

We may remark here that there is no need of obtaining the solution I(8) of the
equation (4.5) for finding the expressions for the physical quantities of interest.
These expressions can be readily derived from the value of the function g(ﬁl) given by
relations (4.8) to (4.12). For instance, the kinetic energy per unit height (K.E.) of
the secondary fluid flow is given by

-8 a 3 (r., 6.)
1 s 1 1
K.E. = -5 ap {u + é 1(91)(-—-—————31,1 ]: 49
1=
-3 a
= - H%ﬂ [+] I(Ol)cos(el- Y)del
- B

sinY}, (4.19)

-8
Uap
=7 ] #0stn®; - a8, = vap {4)cosy - g,

where we have used the boundary condition (4.4), the relation g(6) = I'(8), the edge
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conditions (4.3), and p is the density of the homogeneous liquid. The values of the

constants d. and d, are given by the relations

1 2
a u
d = {3 8,(3))sind d0 , d, =BI g, (8, )cosd db, (4.20ab)

We substitute the values of the functions gl(el) and gz(el) from equations (4.12) and
(4.17) in (4.20) to obtain

- A =-X - 2
d1 = 2anUA cosY[BJl + 2 J2]/Jo’ d2 4aU(cosB cosa) “siny. (4.21ab)

Finally, relations (4.19) and (4.21) give rise to the required expression for Kinetic
energy and this is given by

2

K.E. = palU’nA {[J—1+ A
(o]

A A L A A p

) JZ) + 2] + [Jo (BJl +3 J2) 2] cos2Y}, (4.22)
where the definite integrals Jn’ n=0,1,2 are defined by relation (4.16) and A and B
are defined in the relation (4.14).

We derive now some interesting limiting results from the formula (4.2) for K.E.

N
When B > O, Jn -+ ®, n=20,1,2 and 3: ,‘3;

+ 1 and therefore the formula (4.22)

yields the following corresponding limiting expression for the K.E.,c1 in case of the

infinite circular rigid stripr = a, -a < 0 (. a, - ® { z { =

o = razuznsinz-% [1+ cos2 % cos2Y], (4.23)
This seems to be a new result.
Similarly, when in formula (4.22) we let « » 0O, B > 0, a + ®, such that

aa > a; and aB > az(a2 < al), we obtain the corresponding limiting expression for

the Kinetic Equation 9, in case of the two equal parallel co-planar infinite rigid

strips x = 0, a, < 'y' < apn, - © ¢z < and it is given by

DUZazﬂ
g =

2 2

[(14e?)-2E"/F" Jeosy, (4.24)
where L 1
¢ =ay/a <1, B =B, (-2, B = 6, (=) 72, 4.25)

and F(%, c) and E(%, c) are elliptic integrals of the first and the second kind [14].

We have also solved the two-dimensional problems of scattering of a low-frequency

incident plane acoustic wave by the integral equation techniques presented here. This
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work will appear separately.

ACKNOWLEDGMENT. This research work was supported by a grant from the University
Grants Commission, New Delhi (India).

1.

8.

9.

10.

11.

12.
13.

14.

REFERENCES

GOEL, G.C. and JAIN, D.L. A note on electrostatic problem involving two
strips, J. Pure Appl. Math. 7(1976), 751-756.

GOEL, G.C. and JAIN, D.L. Electrostatic problems of two co-planar parallel
strips, Indian J. Pure Appl. Math. 7(1976), 809-816.

JAIN, D.L. and KANWAL, R.P. Acoustic diffraction of a plane wave by two co-

planar parallel perfectly soft or rigid strips,Can. J. Phys. 50(1972), 929-
939.

JAIN, D.L. and KANWAL, R.P. Diffraction of elastic waves by two co—planar and
parallel rigid strips, Int. J. Engg. Sci. 10(1972), 925-937.

KANWAL R.P. and SACHDEVA, B.K. Approximate solutions of certain integral
equations for the diffraction of two strips, ZAMP, 24(1973), 111-119.

GAUTESEN, A.K. and OLMSTEAD, W.E. On the solution of the integral equation for
the potential of two strips, SIAM J. Math. Anal., 2(1971), 293-306.

MILLAR, R.F. A note on diffraction by an infinite slit, Can. J. Phys.,
38(1960),38-47.

SRIVASTAVA, K.N. and LOWENGRUB, M. Finite Hilbert transform techniue for triple

integral equations with trignometric kernels. Proc. R. Soc. Ednib. 39(1970),
309-321.

SHAIL, R. A class of singular integral equation with some applications, Int. J.
Math. Educ. Technol., 15(1984), 359-374.

CARLEMAN, T. Uber die Abelsche Integralgleichung mit konstanten

Integrationsgrezen, Math. Z., 15(1911), 11-120.
COOKE, J.C. The solution of some integral equations and their connection with
dual integral equations and series, _Glasgow Math. J., 11(1970) 9-20.
WILLIAMS, W.E. A note on integral equations, Glasgow Math. J., 13(1972), 119-121.
LAL, BANSI and JAIN, D.L. Uniform streaming past a fixed semi-circular
infinite strip, J. Math. Phy. Sci. 17(1978), 365-376.
DUTTA, M., and DEBNATH, L. Elements of the Theory of Elliptic and Associated
Functions with Applications, World Press, Calcutta (1965).




