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ABSTRACT. In this note two theorems have been established. The first one deals with

the summabillty (J,pn) of a Fourier series while the second on concerns with the

summabillty of the first derived Fourier series. These results include, as a special

case, certain results of Nanda [I].
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INTRODUCTION.

Let {Pn be a sequence of non-negatlve numbers such that
o Pn diverges and let

the radius of convergence of power series

pCz) pnx (1.1)

be I. Given any series I a with the sequence of partial sums {s we write
n n

n
Ps(X) E PnSnx (1.2)

and

PS (x)J (x)= (I 3)

If the series in (1.2) is convergent in [0,I) and

lira J (x) s,
s

x+l

we say that the series E a or the sequence {s is summable (J,pn) to s, where s
n n

is a finite number. ([2], [3], p.80).

For Pn=l, n with Po=0, and Ak,n k > -I we get summablllty A, summabllity (L) and

A
k

method of summability respectively.



i00 S.M. MAZHAR

Suppose f is a periodic function with period 2 and integrable in the sense of

Lebesgue over (-,). Let

f(x) ~- + Z (a
n

cos nx + b sin nx) E An(X).n
(1.4)

Then the first derived series of (1.4) is

r. n(b cos nx- a sin nx) z n B (x).
n n n

(1.5)

We write

@(t) = {f(x
0

+ t) + f(x
0

t) 2s}

*(t) = {f(X
0

+ t) f(X
0

t)}

g(t) (t)
2sin t/2 s

x
n
sin n tM(t)

o
Z Pn

(t) f *(u.):u du

and

g(u)
du.(t)

u

2. MAIN RESULTS.

In this note we propose to establish the following theorems on

(J,pn) summabillty of (1.4) and (1.5).

THEOREM I. Let {pn be a positive sequence such that

Pk(a) n Pn 0(I), r. 0(pv and

(b) E A2(n p. xn)l 0(l-x), 0 < x < I.
nO

If #(t) o(p(l-t)), t +0. then the Fourier series (1.4) is summable (J,pn) to s.

THEOREM 2. Let {pn satisfy the hypothesis (a) of Theorem I. If

(c) oZ n)A (n Pn xn)l O(l-x), 0 < x <

and G(t) o(p(l-t)), as t+ 0+, then the first derived series (1.5) is summable

(J,pn) to s.

It may be remarked that for Pn ’ n ) I, Po 0 our theorems include two known

theorems of Nanda [I] on L-summabillty of Fourier series and its derived series. For

an earlier result on (J,pn) summabillty of (1.4) under more stringent conditions see
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Khan [4]. Very recently in 1985 Prem Chandra, Mohapatra and Sahney [5] have

established a similar theorem on (J,pn) summabillty with another set of conditions.

0(I) p’(x) 0(x) as x I- Also it is easy toIt may be observed that n Pn
see that n Pn < (n+l) Pn+l’ n 0,1,2,... and p’(x) 0( imply that n Pn 0(I).

pn . Now using the well known resultFor if {n is not bounded then llm n Pn
that

n+

0 n
In n

inc n
n n x/l 7. x

o n

where radius of convergence of each power series is and a > 0 with

8n that7. , we find for e I, n Pno n n

n
lim (l-x) n Pn x . This means llm (I x)p’(x) which contradicts the

ypothesis that (l-x)p’(x) 0(I) as /-I- Thus conditions (2.1) and (2.4) of [5]

imply that n Pn 0(I).

3. PROOF OF THEOREM i.

Let s (xO) denote the n-th partial sum of (1.4) at x xO. Then
n

2 sin nt
s __(xO) s - _f0 (t) at + o(i)
n t

so that

2 n n
nE--0 Pn xn(sn(X0)- s) f0 n=E0 Pn x sin nt dt + o(p(x))

2 @’(t)M(t) dt + o(p(x)):f0
2 (t) E n pn

n/0 x cos nt dt + o(p(x))
o

2 l-x )... + o(p(x))=(f0 +f-x.
I + 12 + o(p(x)), say. (3.1)

Now

2 l-x (t) n x
n

Ii =- f0 n=E0 Pn cos nt dt

l-x
ok f0 o(p(l-t)) at]

f -x



102 S.M. MAZHAR

Khan [4]. Very recently in 1985 Prem Chandra, Mohapatra and Sahney [5] have

established a similar theorem on (J,pn) summabillty with another set of conditions.

0(I) p’(x) 0(T_x) as x I- Also it is easy toIt may be observed that n Pn
see that n Pn < (n+l) Pn+l’ n 0,1,2,... and p’(x) 0(.x) imply that n Pn 0(I).

For if In pn is not bounded then llm n Pn " Now using the well known result
n+

that

nr. nx
oIn in

n x+l I ax
o n

where radius of convergence of each power series is and a > 0 with

Z a , we find for a I, 6
n

n Pn that
o n n

lim (l-x) n Pn x . This means lim (I x)p’(x) which contradicts the
x/l- x+l-

hypothesis that (l-x)p’(x) 0(I) as x I- Thus conditions (2.1) and (2.4) of [5]

imply that n Pn 0(I).

3. PROOF OF THEOREM I.

Let s (x0) denote the n-th partial sum of (1.4) at x x0. Then
n

2 sin _nt
dt + o(1)sn(x0) s fO (t)

t

so that

2 (t) nnZo Pn xn(sn(X0)-s) - f0 t nZO Pn x sin nt at + o(p(x))

-2_ f’n’ @’(t)M(t) dt + o(p(x))x 0

=--2 fo (t) Z n pnx cos nt dt + o(p(x))
o

=2 f-x/ fx-x)’" / o(pCx))

I + 12 + o(p(x)), say. (3.)

Now

2 1-x n
II = fo (t) nZO n pnx cos nt dt

o( -x

o( l"x k
l-x fO nffiEO Pk (l-t) at

(3.2)
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o(1) Pk _xk+l Pk k

k-zO kY (’ o()k.Z0 k+--T Z0 x

x
v Pk v

o(p(x)o(I) Z0 k,Zv o(I) 0 px

Thus

Again

I o(p(x)).

2 k
12 = fl-x *(t) k.0 k Pk x cos kt

! " z xk) Fk(t7 l-x (t) k.Z0 (k Pk

where
k k k sln(v)t

Fk(t) v-0 D(t) Z0 Dv(t) -Z0 2 sin t/2

Under the hypothesis of Theorem

(1 x)
12 0(I) fl-x p(1-t) -J, dt

t

I (l-x) dto(p(x)) -l--x
t
2

o(p(x)

(3.3)

(3.4)

Thus in view of (3.1), (3.3) and (3.4)

Z x
n

o Pn (Sn(X0) s) o(p(x)) as x I-

This proves Theorem 1.

4. PROOF OF THEOREM 2. As shown in ([6], p. 54) we can assume that s 0.

Let Tn(X0) denote the n-th partial sum of (1.5) at x x0. Then

g(t) sin nt 2n0 sin t/2’ dt--_f0 cos (n + ) t g(t) dtTn(X0)

2 f g(t) sin nt 2n w= 0 t
dt + o(I) --- f0 cos (n +-) t g(t) dt

T + o(1) + T say
n,1 n, 2

so that

n n x
nZ Tn(X0) Pn x Z Tnl Pn x + o(p(x)) + Tn2 PnO O

L + o(p(x)) + L
2 say. (4.1)
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As shown in the proof of Theorem in view of (4.5), L o(p(x)).

Let x cos(n + t. ThenH() z p )

L2 _2 Eo n pn x /0 cos(n + )t g(t) dt

2 f n- 0 g(t) nZ0 n Pn x cos(n +-) t dt

2 2 G’- fo g(t) H(t) dt - fo t (t)H(t) dt

d_2, {JiG(t) li(t)]
0 0 G(t) - (tH(t))}dt

_2 f G(t) R(t) + tH’(t)} dt
0

2 l-x + say.fo +w /I-x L21 L22

(4.2)

Now since n Pn 0(I)

o(p(l-t)
dtL21 -x -l-:x

+ f-x o(p(l-t)) t E n dt
o

o(p(x) + o( J,- dt o(p(x)
1-x

(4.3)

as shown in (3.2).

In view of the hypothesis of Theorem 2.

2 a d
L22 fl-x o(p(1-t) [- (t H(t))l dt (4.4)

Since n Pn 0(I), we have by using Abel’s transformation

d nd
d- t H(t) g n Pn x t cos(n +-) t

Z a(n p xn) d t (sin (n+l)t)
o n - 2 sin t/2

E A2(n x
n d t

o Pn - { (cos t/2 cos(n + 3/2)t)}.
4 sln2 t/2

Thus



SUMMABILITY OF FOURIER SERIES 105

t2 t2

t2

where C is a positive constant not necessarily the same at each occurrence, and in

view of the fact that
o nlA3(n Pn xn) O(l-x) (4.5)

implies that )82(n Pn xn)) O(l"X)
0

Hence from (4.4)

(l-x)
o(1) l-x p(1-t) dt o(p(x)) as shown in (3.3). (4.6)

t2

Thus from (4.1) (4.3) and (4.6) the proof of Theorem 2 follows.
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