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ABSTRACT: Let A be a singly-generated *y-algebra. It is shown that A is momorphic to H(t)

where t is a simply connected domain in C if and only if A has no topological divisors of

zero. It follows from this that there are exactly three *y-algebras (up to somorphism) which

are singly generated and have no topological divisors of zero.
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1. INTRODUCTION.

The algebra H(t2) of holomorphic functions on a domain [2C_.C with po=ntwise operations

and compact-open topology is an interesting example of an *y-algebra. This algebra has been

characterized in terms of some of the special properties it enjoys that are derived from the

fact that it consists of holomorphic functions. (See for example [1], [2], [3], [4] and [5] for

characterizations in terms of the local maximum modulus principle, the Cauchy estimate,

Montel’s theorem, the existence of derivations, and Taylor’s theorem.) In [6] a

characterization of the algebra of entire functions in terms of Liouville’s theorem is given.

Watson [5] shows that an *y-algebra A which has a Schauder basis that is generated by an

element z EA with open spectrum is algebraically and topologically isomorphic to H(f2) where 2

is an open disk in C. In this paper we study *y-algebras that are generated by a single

element z (without requiring that z generate a basis for A). Of course, this condition alone is

not enough to completely describe the algebra tt(f]) among *Y-algebras. We will show, however,

that this together with the condition that A has no topological divisors of zero, completely

characterizes H(2) for a simply connected domain . It follows from this that there are

exactly three singly generated aY-algebras (up to isomorphism) which have no topological

divisors of zero.

2. PRELIMINARIES.

An -algebra is a complete metrizable locally m-convex algebra. (All the algebras we

consider are assumed to be commutative algebras over .) The topology of such an algebra is

given .by an increasing sequence of seminorms {pn[nElx). Each Pn determines a Banach

algebra An which ts the completion of Alker(pn). If n<m then the natural homomorphism



66 D. WANG AND $. WATSON

from A/ker(pm) to A/ker(pn) induces a norm decreasing homomorphism ,’rnm: Am-An whose

range is a dense subalgebra of An. The Banach algebras An with maps rnm form an inverse

limlt system and li_m (An,Trnrn) is topologically and algebraically isomorpluc to A.

The maximal ideal space of A is the space .II,(A) consisting of.all non-zero continuous

multlplicative linear functionals on A endowed wth the Gelfand topology. This topology

the weak topology on .II,(A) generated by the Gelfand transforms J:.I,(A)-.IE defined by

:c(j)--f(Jc). The map "/: A- s a continuous homomorphsm onto the algebra . C C(.4I,(A)) of

Gelfand transforms. For each nElq the quotlent map rn from A onto A/ker(pn) induces a

homeomorphlsm 7rt of the maximal ideal space .I,(A n) of An onto a compact subset Mn of

.,,(A). For n<m we have Mn C_ Mm and .I,(A) [ Mn.

The spectrum of z E A is the set cr--c(z)---{f(z)Ifg.’11,(A)}. For each nIN the set

crn--Crn(z) f(z)lfgMn} and r=Ucrn. The element z A generates A if A is the smallest

closed subalgebra containing z and e (the identity of A). In this case the spectrum map

:.41,(A)-cr(z) defined by J’ f(z) is a continuous bi.iection [7].

An element z in a Banach algebra B is a topological dvlsor of zero if the multiplication

map Mz:A--zA is not an isomorphism (i.e. does not have a continuous nverse). In an

algebra A, z is called a topological divisor of zero if for each sequence {pn:nEl’,l) of

seminorms defining the topology of A there exists klxl such that ,’rk(z) is a topological

divisor of zero in the Banach algebra Ak [8, pp. 46-471.
3. CHARACTERIZING

Let f2 C C be a simply connected domain. The algebra H(f) of holomorphc functions on

2 is an @-algebra in the compact-open topology. It is well known that H(f/) has no (nonzero)

topological divisors of zero [9], and is singly-generated. We will show that these last two

properties of H(fZ) completely characterize it among @-algebras.

For the rest of this paper A will denote an @-algebra with identity e which is generated

by z, where z is not a scalar multiple of e, and which has no nonzero topological divisors of

zero.

LEMMA I. A is semisimple and so the Gelfand transform is a bljection.

PROOF: Suppose /gRad(A), /0. Then r(I/)={0} and by [8, Propositon 11.8] I/ is a topo-

logical divisor of zero.

LEMMA 2. The spectrum or(z) is a domain in C.

PROOF: If ,gcr(z) is a boundary point of or(z), then again by [8, Proposition 11.8],

is a topological divisor of zero. Thus or(z) is open.

If or(z) includes the two components U and Uz, then the characteristic functions h of U,
and h of U are analytic on or(z). By the functional calculus there exist z,cgA with

--h(2) and c---h(:). Clearly =0 so by Lamina :cc=0 and thus these elements are

nonzero (topological) divisors of zero.

LEMMA 3. The domain cr(z) is simply connected.

PROOF: Let :(A)-cr(:) be the spectrum map and for tcr(z) we use the notation

ft =-(t). For each ’EA define :(z)-.C by (t)=(o-(t))=J(J’t ).

We show that s analytic on c(z). Since A s generated by z there exlsts a sequence

of polynomials pn--=-pn(z) converging to z in A and so #(pn(z))-*J’(z), for every J’EJI(A).

For tEcr(z), Pn(t)=Pn[(ft(z)]--ft[Pn(Z)] converges to J’t(z)--- :’(J’t)=$(t), so each " is a

polntwise limit of polynomials on c(z). We now show that ths convergence is uniform on
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compact subsets of c(z) and so eacll ." Is analytic on this spectrum. Since A has no

topological divisors of zero, for each n2,:N there exists r i such that c n -ntcrm (see

Arens [9]) So without loss of generaltty, we may assume that for n ---1,2,.

cr --lntn+l,?-_ on+ and

Snce olMn is a homeomorphsm onto its image o(Mn)=crn, It follows that if K s a compact

subset of cr there exists nl’4 such that K intn,-cn. Thus o-(K):-(cn)=M and so

o-(K) s a compact subset of ..II,(A). Now Pn -r so by the continuty of the Gelfand map

5n-* in , i.e., the convergence Is uniform on compact subsets of II,(A). Thus for e7,0 and

sufficiently large n,

for ft2o-:(K), which is tile same as

Pn(f --2(ft) ":.

pn(t)--k(t)l <

for tK. Thus each : s tile lmit of polynomials, uniformly on compact subsets of a(z), and

hence s analytic there.

Let h GH(a(z)). We show that h s the lmlt of polynomials n H((z)), then t follows

that or(z) is smply connected. Using the functmnal calculus for -algebras we fnd x C=A such

that c(f)--h(-(f)), f.tt.(A). Therefore h=.’. Thin together with the preccding paragraph

completes the proof.

LEMMA 4. a(z) s homeomorphm wth ’II,(A).

PROOF: The map o s a continuous bjection. But ."i’,:,o-z= 2" s continuous for each

and so the continuity of o- follows from the fact that the topology of I,(A) Is the weak

topology generated by

Lemma 4 may also be derived from [7, Theorem 1.3]. Notme that Lemmas 3 and 4 imply

that .41,(A) m homeomorphc to the open unit disc. We now prove our man result.

THEOREM 1. An Y-algebra A is algebraically and topologically isomorphic to H(f/) for a

rumply connected domain f if and only f A m mngly-generated and has no nonzero topological

divmors of zero.

PROOF: That the -algebra H(f2) has these properties s dmcussed at the beginning of

this section.

Conversely, let ={Ix_A} and equip ., with the compact open topology. From the

proof of Lemma 3, =H(a(z)) algebraically and topologically. Also, , and are momorphc as

-algebras vm the map 6:.--./ by ff’--ff:oo-a. Since the Gelfand map ":A--.. is bjectve

by Lemma 1, it follows that the map 6 is a continuous bxjection of A onto = H(a(z)).

The open mapping theorem now ymlds the result.

The notion of topological divisor of zero we used above s that due to Mmhael [8, p. 47].

Our Theorem does not remain valid if that notmn is replaced by tile stronger definition of

Areas [10] (called strong topological divisor of zero by Mchael). In fact, the Y-algebra

CX of formal power series (wth the topology of pomtwise convergence in the coefficients)

is mngly generated and has no strong topological divisors of zero [11]. But this algebra is

not isomorphic to H(f/) for any domain f.

The Remann mapping theorem yields the followng corollary:

COROLLARY 1. There are (up to isomorphism) exactly three Y-algebras which are singly

generated and have no nonzero topological divisors of zero. Namely, I[, the algebra H(D)

where D s the open unit disk, and the algebra 8; of entire functmns.
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Brtel [6] (see also [12] and [13]) gave a characterization of the algebra of entire functions

as a sngly-generated Llouvlle algebra wthout topological dlvsors of zero. A Liouvillc

algebra Is an -algebra in which every element with bounded spectrum s a scalar multiple of

the dentty. We give another proof of Blrtel’s theorem based on our Theorem 1.

THEOREM 2. (Brtel) An -algebra A is topologically and algebraically momorphic to

the algebra ; of entire funchons if and only f A s a sngly-generated Llouvlle algebra wth

no nonzero topological dvlsors of zero.

PROOF: By Theorem 1, or(z) is simply connected and A s momorphic to H(cr(z)). If

cr(z)C then there s a one-to-one analytic function $ from or(z) onto D. Thus there exists

xA such that 5:--_. Clearly : is not a scalar multiple of e and or(2"):-: D, contradicting

the assumption that A s Louvlle.

A natural extension of the notion of a rumply connected domain to C" s that of a Runge

domain. If f2 is a Runge domain n tE" then H(f2) s n-generated and has no nonzero topological

dvsors of zero. We pose the question of whether a finitely-generated -algebra A wth no

nonzero topological diviners of zero m momorphic to H(f) for a Runge domain [2. In the case

that A has a finitely-generated Schauder basis in which the joint spectrum of the generators

s an open set n tE, it is shown in [14] that A s somorphic to H(f2) for a complete

logarithmically convex Reinhardt domain [2.
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