ON FACTORIZATIONS OF FINITE ABELIAN GROUPS WHICH ADMIT REPLACEMENT OF A Z-SET BY A SUBGROUP

EVELYN E. OBAID

Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192

(Received October 20, 1987)

ABSTRACT. A subset A of a finite additive abelian group G is a Z-set if for all $a \in A$, $na \in A$ for all $n \in Z$.

The purpose of this paper is to prove that for a special class of finite abelian groups, whenever the factorization $G = A \oplus B$, where A and B are Z-sets, arises from the series $G = K_1 \supset K_2 \supset \ldots \supset K_n \supset \langle 0 \rangle$ then there exist subgroups S and T such that the factorization $G = S \oplus T$ also arises from this series. This result is obtained through the introduction of two new concepts: a series admits replacement and the extendability of a subgroup. A generalization of a result of L. Fuchs is given which enables establishment of a necessary and sufficient condition for extendability. This condition is used to show that certain series for finite abelian p-groups admit replacement.

KEY WORDS AND PHRASES. Finite abelian group, factorization, Z-set. 1980 AMS SUBJECT CLASSIFICATION CODES. 20K01, 20K25.

1. INTRODUCTION.

Let G be a finite abelian additive group and let A and B be subsets of G. If every element $g \in G$ can be uniquely represented in the form g = a + b, where $a \in A$, $b \in B$, then we write $G = A \oplus B$ and call this a factorization of G. A subset A is said to be a Z-set if for all $a \in A$, $na \in A$ for all $n \in Z$.

A.D. Sands [1] gave a method which yields all factorizations of a finite abelian good group. His method corrects one given previously by G. Hajos [2].

Our main purpose is to prove that for a special class of finite abelian groups, whenever the factorization $G = A \oplus B$, where A and B are Z-sets, arises from the series $G = K_1 \supset K_2 \supset \ldots \supset K_n \supset K_n \supset K_n \supset \langle 0 \rangle$ (see [3]), then there exist subgroups S and T such that factorization $G = S \oplus T$ also arises from this series.

In order to achieve this result we introduce two new concepts: a series admits replacement and the extendability of a subgroup. We prove a generalization of a result of L. Fuchs [4] which enables us to derive a necessary and sufficient condition for extendability. This condition is used to show that certain series for finite abelian p-groups admit replacement.

2. PRELIMINARIES.

We shall use the term "Z-factorization" when referring to a factorization of the form $G = A \oplus B$, where A and B are Z-sets.

Our first two lemmas can be readily verified.

LEMMA 1. Let G = S \oplus A, where S is a subgroup of G and A is a Z-set. If H and K are subgroups of G with H = H_S \oplus H_A, K = K_S \oplus K_A, where H_S, K_S are subgroups of S, and H_A, K_A are Z-sets such that H_A \subseteq A, K_A \subseteq A, then H∩K = (H_S ∩ K_S) \oplus (H_A ∩ K_A).

LEMMA 2. Let G = A \oplus B be a Z-factorization of G. If H is a subgroup of G such that A \subseteq H then H = A \oplus (H \cap B).

LEMMA 3. Let $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset (2.1)$ $G^{(n+1)} = \langle 0 \rangle$ be a series for G with $S^{(0)} \supset S^{(1)} \supset \ldots \supset S^{(n)} \supset \langle 0 \rangle$ subgroups of G and $A = A^{(0)} \supset A^{(1)} \supset \ldots \supset A^{(n)} \supset \{0\}$ Z-sets. There exists a refinement of (2.1) which is a composition series for G and the subgroups in this refinement have the same properties as (2.1), i.e. any subgroup, H, in the refinement has the form $H = H_S \oplus H_A$, where H_S is a subgroup of S and H_A is a Z-set, $H_A \subseteq A$, and $H \subset K$ implies $H_S \subseteq K_S$ and $H_A \subseteq K_A$. Furthermore, if $H \subset K$ are successive groups in the refinement then either $H_S = K_S$ or $H_A = K_A$.

PROOF. It suffices to show that if there exists $\hat{G} \subset G$ with $G^{(i)} \supset \hat{G} \supset G^{(i+1)}$ then $\hat{G} = \hat{S} \oplus \hat{A}$ with $S^{(i)} \supseteq \hat{S} \supseteq S^{(i+1)}$, $A^{(i)} \supseteq \hat{A} \supseteq A^{(+1)}$, \hat{A} a Z-set, and either $\hat{S} = S^{(i)}$ or $\hat{A} = A^{(i)}$, $0 \le i \le n$.

Consider $G^{(i)} = S^{(i)} \oplus A^{(i)} \supset G^{(i+1)} = S^{(i+1)} \oplus A^{(i+1)}, 0 \le i \le n.$

Case 1. Suppose that $A^{(i)} = A^{(i+1)}$. Then for any \hat{G} such that $G^{(i)} \supset \hat{G} \supset G^{(i+1)}$ we have $\hat{G} = A^{(i)} \oplus (\hat{G} \cap S^{(i)})$ by Lemma 2. Clearly $S^{(i)} \supset \hat{G} \cap S^{(i)} \supset S^{(i+1)}$. In this case we have $\hat{A} = A^{(i)}$.

Case 2. Suppose that $A^{(i)} \neq A^{(i+1)}$. We can insert the subgroup $G = \tilde{G}^{(i+1)} + S^{(i)} = S^{(i)} \oplus A^{(i+1)}$ without altering the structure of the series, i.e. we have $G^{(i)} = S^{(i)} \oplus A^{(i)} \supset \tilde{G} = S^{(i)} \oplus A^{(i+1)} \supset G^{(i+1)} = S^{(i+1)} \oplus A^{(i+1)}$.

Let \hat{G} be such that $G^{(i)} \supset \hat{G} \supset G^{(i+1)}$. If $\hat{G} = \tilde{G}$ we are done. If $\tilde{G} \supset \hat{G} \supset G^{(i+1)}$ then by Case 1 \hat{G} has the required form. Finally, if $G^{(i)} \supset \hat{G} \supset \tilde{G}$ then by Lemma 2, $\hat{G} = S^{(i)} \oplus (\hat{G} \cap A^{(i)})$. Clearly $A^{(i)} \supset \hat{G} \cap A^{(i)} \supset A^{(i+1)}$. In this case we have $\hat{S} = S^{(i)}$. This completes the proof.

THEOREM 1. [5] If $G = B^{(1)} \oplus \ldots \oplus B^{(k)}$, where each $B^{(i)}$ is a Z-set, $1 \le i \le k$, and if $G = N^{(1)} \oplus \ldots \oplus N^{(r)}$, where each $N^{(j)}$ is a subgroup of G, $1 \le j \le r$, such that $(|N^{(i)}|, |N^{(j)}|) = 1$ for $i \ne j$, then

(a)
$$B^{(i)} = (N^{(1)} \cap B^{(i)}) \oplus \dots \oplus (N^{(r)} \cap B^{(i)}), 1 \le i \le k,$$

and

(b) $N^{(j)} = (N^{(j)} \cap B^{(1)} \oplus \dots \oplus (N^{(j)} \cap B^{(k)}), 1 \le j \le r.$

The following lemma is a direct consequence of the Second Isomorphism Theorem. LEMMA 4. Let U, U₁, and K be subgroups of G with U₁ \subseteq U. Then [U \cap K: U₁ \cap K] \leq [U: U₁].

Let S be a subgroup of G. We will say that S is homogeneous if S is a direct sum of cyclic groups of the same order.

Theorem 2, which is a generalization of the following result of L. Fuchs [4], p.79), can be readily verified.

(Fuchs) Let S be a pure homogeneous subgroup of G of exponent p^k and let H be a subgroup of G satisfying $p^k G \subseteq H$ and $S \cap H = \langle 0 \rangle$. If M is a subgroup of G maximal with respect to the properties $H \subseteq M$ and $M \cap S = \langle 0 \rangle$ then $G = S \oplus M$.

THEOREM 2. Let $S = \bigoplus_{i=1}^{n} S_i$ be a pure subgroup of G with S_i , $1 \le i \le n$, homogeneous of exponent p^{k_i} , $k_1 > k_2 \dots > k_n$, and let $U \subseteq G$. There exists a subgroup, T, of G with $U \subseteq T$ and $G = S \oplus T$ if and only if $[p^{k_j}G + \bigoplus_{i>j} S_i + U] \cap S_j = \langle 0 \rangle$, $1 \le j \le n$.

3. REDUCTION TO THE CAUSE OF P-GROUPS.

Consider the series

$$G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset \langle 0 \rangle$$
(3.1)

where $S = S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(n)} \supseteq <0>$ are subgroups of G and $A=A^{(0)} \supseteq A^{(1)} \supseteq ... \supseteq A^{(n)}$ $\supseteq \{0\}$ are Z-sets. We say the series (3 1) admits replacements if there exist subgroups, $T^{(i)}$, such that $T=T^{(0)} \supseteq T^{(1)} \supseteq ... \supseteq T^{(n)} \supseteq <0>$ and $G^{(i)}=S^{(i)} \oplus T^{(i)}$, $0 \le i \le n$. Let us note that by Proposition 1 [3] there exist subgroups $T^{(i)}$ such that $G^{(i)} = S^{(i)} \oplus T^{(i)}$, $0 \le i \le n$. However it is not necessarily the case that $T^{(0)} \supseteq$ $T^{(1)} \supseteq ... \supseteq T^{(n)}$. This problem will be treated in the next section.

A group C admits replacement if every series for G of the form (3.1) admits replacements. The following theorem enables us to restrict our investigations in this area to the case of p-groups.

THEOREM 3. Let G = \bigoplus_{p} G_p, where the G_p are the primary components of G. G admits replacement if and only if for each p, G_p admits replacement.

PROOF. Suppose G admits replacement. Let $H = G_p$ for some p and let $H = H^{(0)} = S^{(0)} \oplus A^{(0)} \supset H^{(1)} = S^{(1)} \oplus A^{(1)} \supset ... \supset H^{(m)} = S^{(m)} \oplus A^{(m)} \supset <0>$ be a series for H with $S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(m)} \supset <0>$ subgroups of H and $A^{(0)} \supseteq A^{(1)} \supseteq ... \supseteq A^{(m)} \supset \{0\}$ Z-sets. Define $K = \bigoplus_{p' \neq p} G_{p'}$ so that $G = H \oplus K = (S^{(0)} \oplus K)$ $\oplus A^{(0)}$. Then $G = G^{(0)} = (S^{(0)} \oplus K) \oplus A^{(0)} \supset H^{(0)} = S^{(0)} \oplus A^{(0)} \supset H^{(1)} = S^{(1)} \oplus A^{(1)}$ $\supseteq H^{(m)} = S^{(m)} \oplus A^{(m)} \supseteq <0>$ is a series for G which by hypothesis admits replacements. Consequently the series $H = H^{(0)} \supset H^{(1)} \supset ... \supset H^{(m)} \supset <0>$ admits replacements. Conversely, suppose G_{D} admits replacement for each p. Let

$$G = G^{(0)} = S^{(0)} \oplus A^{(0)} \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset ... \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0>$$
be a series for G with $S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(n)} \supseteq <0>$ subgroups of G and $A^{(0)} \supseteq A^{(1)}$
 $\supseteq ... \supseteq A^{(n)} \supseteq \{0\}$ Z-sets. For each p define $G_p^{(1)}$ to be the p-primary component of
 $G^{(1)}, 0 \le i \le n$, so that $G_p^{(1)} = G_p \cap G^{(1)}$ and $G^{(1)} = \bigoplus_p G_p^{(1)}$. By Theorem 1 we have that
 $G_p^{(1)} = (S^{(1)} \cap G_p^{(1)}) \oplus (A^{(1)} \cap G_p^{(1)}), 0 \le i \le n.$
Define $S_p^{(1)} = S^{(1)} \cap G_p^{(1)}, A_p^{(1)} = A^{(1)} \cap G_p^{(1)}, 0 \le i \le n.$ Clearly
 $S_p^{(0)} \supseteq S_p^{(1)} \supseteq ... \supseteq S_p^{(n)} \supseteq <0>$ and $A_p^{(0)} \supseteq A_p^{(1)} \supseteq ... \supseteq A_p^{(n)} \supseteq \{0\}$. Thus for each p,
 $G_p = G_p^{(0)} = S_p^{(0)} \oplus A_p^{(0)} \supset G_p^{(1)} = S_p^{(1)} \oplus A_p^{(1)} \supset ... \supset G_p^{(n)} = S_p^{(n)} \oplus A_p^{(n)} \supset <0>$
is a series for G_p which by assumption admits replacements. Thus for each p
there exist subgroups $T_p^{(1)}$ such that

(i)
$$T_p = T_p^{(0)} \supseteq T_p^{(1)} \supseteq \cdots \supseteq T_p^{(n)} \supset \langle 0 \rangle$$

and

(ii)
$$G_p^{(i)} = S_p^{(i)} \oplus T_p^{(i)}, 0 \le i \le n.$$

Define $T^{(i)} = \sum_{p} T^{(i)}_{p}$, $0 \le i \le n$. Note that this sum is direct. From (i) we have that $T = T^{(0)} \supset T^{(1)} \supset \ldots \supset T^{(n)} \supset \langle 0 \rangle$ and (ii) implies that $G^{(i)} = \bigoplus_{p} G^{(i)}_{p} = \bigoplus_{p} (S^{(i)}_{p} \oplus T^{(i)}_{p}) = (\bigoplus_{p} S^{(i)}_{p}) \oplus (\bigoplus_{p} T^{(i)}_{p}) = S^{(i)} \oplus T^{(i)}_{p}$,

 $0 \leq i \leq n$. This completes the proof.

4. EXTENDABILITY

Let $G = S \oplus A \supset G' = S' \oplus A' = S' \oplus T'$, where $S' \subseteq S$ are subgroups of F, $A' \subseteq A$ are Z-sets, and T' is a subgroup of G'. We say T' is extendable to G if there exists T, a subgroup of G, such that $T' \subseteq T$ and $G = S \oplus T$.

The following theorem provides a necessary and sufficient condition for extendability of a subgroup T' when G is a p-group.

THEOREM 4. Let G be a finite abelian p-group of exponent p^k and let G' be a subgroup of G. Suppose G = S \oplus A, G' = S' \oplus A' = S' \oplus T' with S' \subseteq S, subgroups of G, A' \subseteq A, Z-sets, and T' a subgroup of G'. T' is extendable to G if and only if there exist subgroups, T_i, such that T' \supseteq T₁ \supseteq T₂ \supseteq ... \supseteq T_{k-1} \supseteq <0> and G' \cap $p^{i}G$ = S' \cap $p^{i}S$) \oplus T_i, 1 \leq i \leq k-1.

PROOF. By Lemma 1 we have that
$$G' \cap p^{i}G = (S' \cap p^{i}S) \oplus (A' \cap p^{i}A), 1 \leq i \leq k-1$$
.

Assume there exists subgroups, T_i ; with $T' \supseteq T_1 \supseteq \ldots \supseteq T_{k-1} \supseteq <0>$ and

 $G' \cap p^i G = (S' \cap p^i S) \oplus T_i, 1 \le i \le k-1$. Let $S = \bigoplus_{i=1}^k S_i$, where each S_i is homogeneous of exponent p^i , $1 \le i \le k$. By Theorem 2, to prove the existence of a subgroup, T, of G with $T \supseteq T'$ and $G = S \oplus T$ we must verify

$$(p^{k_{G}} + \Theta S_{i} + T') \cap S_{k} = (\Theta S_{i} + T') \cap S_{k} = \langle 0 \rangle$$

$$(4.1)$$

and

$${\binom{j_{G}}{p} + \Theta S_{i} + T'} \cap S_{j} = \langle 0 \rangle, 1 \leq j \leq k-1$$
 (4.2)
 $i < j$

Suppose

$$s_{j} = p^{j}g + \sum_{i < j} s_{i} + t' = \sum_{i > j} p^{j}s_{i} + p^{j}a + \sum_{i < j} s_{i} + t',$$

where $s_i \in S_i$, $1 \leq i \leq k$, $a \in A$, $t' \in T'$. Since $T' \subseteq G' = S' \oplus A'$

we have

$$t' = s' + a', s' \in S', a' \in A'$$
 (4.3)

Thus $s_j = \sum_{i>j} p^j s_i + \sum_{i< j} s_i + s' + p^j a + a'$. Therefore

$$\mathbf{p}^{\mathbf{j}}\mathbf{a} = -\mathbf{a}' \in \mathbf{p}^{\mathbf{j}}\mathbf{A} \cap \mathbf{A}' \subseteq \mathbf{G}' \cap \mathbf{p}^{\mathbf{j}}\mathbf{G}$$

$$(4.4)$$

$$s_{j} = \sum_{i>j} p^{j}s_{i} + \sum_{i>j} s_{i} + s'$$
(4.5)

Since $p^{j}A \cap A'$ is clearly a Z-set we have from (4.4) that $a' \in p^{j}A \cap A'$. By hypothesis, $G' \cap p^{j}G = (S' \cap p^{j}S) \oplus T_{j}$ with $T_{j} \subseteq T'$. Therefore (4.4) implies that $a' = \sum_{i>j} p^{j}\tilde{s}_{i} + t_{j}$, where $\sum_{i>j} p^{j}\tilde{s}_{i} \in S' \cap p^{j}S = S' \cap \bigoplus_{i>j} p^{j}S_{i}$ and $t_{j} \in T_{j} \subseteq T'$. But then (4.3) becomes $t' = s' + \sum_{i>j} p^{j}\tilde{s}_{i} + t_{j}$, where $s' + \sum_{i>j} p^{j}\tilde{s}_{i} \in S'$ and $t_{j} \in S'$ and $t_{j} \in T'$. Consequently $s' + \sum_{i>j} p^j \tilde{s}_i = 0$ by the definition of $s' \oplus T'$, and we have $s' = -\sum_{i>j} p^j \tilde{s}_i$.

Substituting this expression for s' into (4.5) we obtain

$$s_j = \Sigma p^j s_i + \Sigma s_i - \Sigma p^j \tilde{s}_i$$
 so that $s_j = 0$. Hence (4.2) is true
 $i > j$ $i > j$ $i > j$ $i > j$

Conversely, suppose there exists a subgroup $T \supseteq T'$ such that $G = S \oplus T$. By Lemma 1, $G' \cap p^i G = (S' \cap p^i S) \oplus (T' \cap P^i T)$, $1 \le i \le k-1$. Clearly $T' \supseteq T' \cap pT \supseteq T' \cap p^2 T \supseteq \ldots \supseteq T' \cap p^{k-1}T$. Thus we can complete the proof by choosing $T_i = T' \cap p^i T$, $1 \le i \le k-1$.

Let us note that if $G = S \oplus A$, where S is a subgroup of G and A is a Z-set, is an elementary abelian p-group, and G' is a subgroup of G such that $G' = S' \oplus A'$ = S' \oplus T', where S' \subseteq S, T' \subseteq G', and A' is a Z-set contained in A, then T' is always extendable to G.

LEMMA 5. Let $G = S \oplus A \supseteq G' = S' \oplus A$ be a series for G with $S' \subseteq S$ subgroups of G and A a Z-set. If T is a subgroup of G' such that $G' = S' \oplus T$ then $G = S \oplus T$.

PROOF. Let \tilde{S} be a set of coset representatives for S modulo S'. Then G = S \oplus A = \tilde{S} \oplus S' \oplus A = \tilde{S} \oplus S' \oplus T = S \oplus T.

5. SOME GROUPS WHICH ADMIT REPLACEMENT.

We noted in Section 4 that given the series

$$G = G^{(0)} = S^{(0)} \oplus A^{(0)} \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset \langle 0 \rangle$$
(5.1)
where $S = S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(n)} \supseteq \langle 0 \rangle$ are subgroups and $A = A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)}$
 $\supseteq \{0\}$ are Z-sets, one can always find subgroups $T^{(1)}$ such that $G^{(1)} = S^{(1)} \oplus T^{(1)}$,
 $0 \le i \le n$, although it need not be the case that $T = T^{(0)} \supseteq T^{(1)} \supseteq \ldots \supseteq T^{(n)} \supseteq \langle 0 \rangle$.
However, by applying the extendability criterion of Theorem 4, we can ensure that for
each i, $0 \le i \le n$, our choice of the subgroup $T^{(i)}$ will be extendable to each $G^{(\alpha)}$,
 $\alpha \le i$, and consequently we will have $T = T^{(0)} \supseteq T^{(1)} \supseteq \ldots \supseteq T^{(n)}$.

We will briefly illustrate how successive applications of Theorem 4 when G is a finite abelian p-group of exponent p^3 results in Figure 1 since this lattice-type structure clarifies the proof of the major theorem in this section. By Lemma 3 we may assume that (5.1) is a composition series for G.

We introduce the following notation to simplify the discussion:

$$G_{j,\ell}^{(i)} = G^{(i)} \cap p^{j}G^{(\ell)},$$

$$S_{j,\ell}^{(i)} = S^{(i)} \cap p^{j}S^{(\ell)},$$

$$A_{j,\ell}^{(i)} = A^{(i)} \cap p^{j}A^{(\ell)},$$

Consider a subgroup $T^{(n)}$ such that in the series (5.1) we have $G^{(n)} = S^{(n)} \oplus T^{(n)}$. By Theorem 4, $T^{(n)}$ will be extendable to $G^{(i)}$, $0 \le i \le n-1$, if an only if there exist subgroups $T_{j,1}^{(n)}$ such that $T^{(n)} \supseteq T_{1,i}^{(n)} \supseteq T_{2,i}^{(n)}$ with $G_{j,i}^{(n)} = S_{j,i}^{(n)}$, $0 \le i \le n-1$, j = 1,2.

We have the following array for the containments of the subgroups
$$G_{j,i}^{(n)}$$
, $0 \le i \le n$, $j=1,2$

$$G_{1,n}^{(n)} = pG^{(n)} \supseteq G_{1,n-1}^{(n)} \supseteq G_{1,n-2}^{(n)} \supseteq \cdots \supseteq G_{1,1}^{(n)} \supseteq G_{1,0}^{(n)} \supseteq G^{(n)}_{1,0} \supseteq G^{(n)}_{1,0} \supseteq G^{(n)}_{2,n} = p^2G^{(n)} \supseteq G_{2,n-1}^{(n)} \supseteq G_{2,n-2}^{(n)} \subseteq \cdots \subseteq G_{2,1}^{(n)} \supseteq G_{2,0}^{(n)}$$

Thus if we can find subgroups $T_{j,i}^{(n)}$, $0 \le i \le n$, j = 1,2, $T^{(n)}$, such that

$$\begin{array}{c} T_{1,n}^{(n)} \subseteq T_{1,n-1}^{(n)} \subseteq T_{1,n-2}^{(n)} \subseteq \dots \subseteq T_{1,1}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T^{(n)} \\ U1 & U1 & U1 & U1 & U1 \\ T_{2,n}^{(n)} \subseteq T_{2,n-1}^{(n)} \subseteq T_{2,n-2}^{(n)} \subseteq \dots \subseteq T_{2,1}^{(n)} \subseteq T_{2,0}^{(n)} \end{array}$$

and $G_{1,i}^{(n)} = S_{1,i}^{(n)} \oplus T_{1,i}^{(n)}$, $0 \le i \le n, j = 1, 2, G^{(n)} = S^{(n)} \oplus T^{(n)}$, we would have $T^{(n)}$ extendable to $G^{(i)}$, $0 \le i \le n-1$. Later it will become apparent that we need $T_{1,i}^{(n)}$ extendable to $G_{1,i}^{(n-1)}$, $0 \le i \le n-1$. We will show how this can be incorporated in our discussion on $T^{(n)}$. Using Lemma 4 with $U = G^{(n-1)}$, $U_1 = G^{(n)}$, $K = pG^{(i)}$, $0 \le i \le n-1$, we have $\left[G_{1,i}^{(n-1)}: G_{1,i}^{(n)}\right] \le p$. Thus $pG_{1,i}^{(n-1)} \le G_{1,i}^{(n)}$ so that $G_{1,i}^{(n)} \cap pG_{1,i}^{(n-1)} = pG_{1,i}^{(n-1)}$, $0 \le i \le n-1$. Note that $G_{1,i}^{(n-1)}$ has exponent at most p^2 . By Theorem 4, $T_{1,i}^{(n)}$ is extendable to $G_{1,i}^{(n-1)}$, $0 \le i \le n-1$, if and only if there exists a subgroup $T_{1,i}^{(n-1)}$ such that $T_{1,i}^{(n)} \ge T_{1,i,i}^{(n-1)}$ and $pG_{1,i}^{(n-1)} = pS_{1,i}^{(n-1)} \oplus T_{1,i,i}^{(n-1)}$, $0 \le i \le n-1$. Since $pG_{1,i}^{(n-1)} = p(G^{(n-1)} \cap pG^{(i)})$ $\subseteq pC^{(n-1)} \cap p^2C^{(i)} \subseteq G^{(n)} \cap p^2G^{(i)} = G_{2,i}^{(n)}$, $0 \le i \le n-1$, we have the following array for the subgroups $G^{(n)}$, $G_{1,n-2}^{(n)} \subseteq \dots \subseteq G_{1,i}^{(n)} \subseteq G_{1,0}^{(n)} \subseteq G_{1,n-1}^{(n)} \in G_{1,n-2}^{(n)} \subseteq \dots \subseteq G_{2,0}^{(n)}$ $UI \qquad UI \qquad UI \qquad UI \qquad UI \qquad UI \qquad UI$ $pG_{1,n-1}^{(n-1)} \subseteq pG_{1,n-2}^{(n-1)} \subseteq \dots \subseteq pG_{2,1}^{(n-1)} \in pG_{1,0}^{(n-1)}$

Thus if we can find subgroups $T_{j,i}^{(n)}$, $T_{1,1,i}^{(n-1)}$, $0 \le i \le n$, $0 \le i' \le n-1$, j = 1,2, $T^{(n)}$ such that

I such that

$$T_{1,n}^{(n)} \subseteq T_{1,n-1}^{(n)} \subseteq T_{1,n-2}^{(n)} \subseteq \cdots \subseteq T_{1,1}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T_{2,n-1}^{(n)} \subseteq T_{2,n-2}^{(n)} \subseteq \cdots \subseteq T_{2,1}^{(n)} \subseteq T_{2,0}^{(n)}$$

$$U_{1} \qquad U_{1} \qquad U_{1} \qquad U_{1} \qquad U_{1}$$

$$T_{1,1,n-1}^{(n-1)} \subseteq T_{1,1,n-2}^{(n-1)} \subseteq T_{1,1,1}^{(n-1)} \subseteq T_{1,1,0}^{(n-1)}$$

with $G_{j,i}^{(n)} = S_{j,i}^{(n)} \oplus T_{j,i}^{(n)}$, $pG_{1,i'}^{(n-1)} = pS_{1,i'}^{(n-1)} \oplus T_{1,1,i'}^{(n-1)}$, $0 \le i \le n$, $0 \le i' \le n-1$, $j = 1, 2 \ G^{(n)} = S^{(n)} \oplus T^{(n)}$, we would have $T_{1,i}^{(n)}$ extendable to $G_{1,i}^{(n-1)}$, $0 \le i \le n-1$, and $T^{(n)}$ extendable to $G^{(i)}$, $0 \le i \le n-1$. In particular, we would know there exists a subgroup $T^{(n-1)}$ with $T^{(n-1)} \ge T^{(n)}$ and $G^{(n-1)} = S^{(n-1)} \oplus T^{(n-1)}$. However, we must ensure that our choice for $T^{(n-1)}$ is extendable to $G^{(i)}$, $0 \le i \le n-2$. Appyling the previous argument to $T^{(n-1)}$ and then to $T^{(i)}$, $0 \le i \le n-3$, we obtain Figure 1. We remark that lattice-type structures similar to Figure 1 can be obtained for finite abelian p-groups of exponent p^k , where k is any non-negative integer. Such structures become rather complicated when the exponent of the group exceeds p^3 .

The following definitions will facilitate references to Figure 1.

DEFINITION 1. The row for $G^{(i)}$, $0 \le i \le n$, is the series

$$G^{(i)} \supseteq G_{1,0}^{(i)} \supseteq G_{1,1}^{(i)} \supseteq \cdots \supseteq G_{1,i}^{(i)}$$

DEFINITION 2. The row for $G_{2,0}^{(i)}$, $0 \le i \le n$, is the series $G_{2,0}^{(i)} \ge G_{2,1}^{(i)} \ge G_{2,2}^{(i)} \ge \dots \ge G_{2,i}^{(i)}$.

DEFINITION 3. The row for $pG_{1,0}^{(i)}$, $0 \le i \le n-1$, is the series $pG_{1,0}^{(i)} \ge pG_{1,1}^{(i)} \ge pG_{1,2}^{(i)} \ge \dots \ge pG_{1,i}^{(i)}$.

DEFINITION 4. The sub-figure for $G^{(i)}$, $0 \le i \le n$, consists of the rows for $G^{(\ell)}$, $G^{(\ell)}_{2,0}$, and $pG^{(\ell)}_{1,0}$, $i \le \ell \le n$, $i-1 \le \ell' \le n-1$.

DEFINITION 5. We say the sub-figure for $G^{(i)} = S^{(i)} \oplus A^{(i)}$, $0 \le i \le n$, is complete if

(i) for every subgroup H in the sub-figure for $G^{(i)}$, $H = S_H \oplus A_H$, S_H a subgroup of $S^{(i)}$, A_H a Z-set, $A_H \subseteq A^{(i)}$, there exists a subgroup T_H such that $H = S_H \oplus T_H$,

(ii) for all sub-groups H, K in the sub-figure for $G^{(i)}$ with $H \subseteq K$ we have $T_{H} \subseteq T_{K}$.

Let us note that, by the construction of Figure 1, if the sub-figure for $G^{(i)}$, $1 \le i \le n$, is complete then $T^{(i)}$ is extendable to $G^{(i-1)}$ and $T^{(i)}_{1,\ell}$ is extendable to $G^{(i-1)}_{1,\ell}$, $0 \le \ell \le i$.

DEFINITION 6. The row for $G^{(i)}$, $1 \le i \le n$, is complete if there exist subgroups $T^{(i)}$, $T^{(i)}_{1,\ell}$, $0 \le \ell \le i$, such that

(i)
$$T^{(i)} \supseteq T_{1,0}^{(i)} \supseteq T_{1,1}^{(i)} \supseteq \cdots \supseteq T_{1,i}^{(i)} \supseteq <0>$$
,
(ii) $G^{(i)} = S^{(i)} \oplus T^{(i)}$, $G_{1,\ell}^{(i)} = S_{1,\ell}^{(i)} \oplus T_{1,\ell}^{(i)}$, $0 \le \ell \le i$,
(iii) $T^{(i)}$ is extendable to $G^{(i-1)}$ and $T_{1,\ell}^{(i)}$ is extendable to $G_{1,\ell}^{(i-1)}$, $0 \le \ell \le i$.

We will say that the sub-figure (row) for $G^{(i)}$ can be completed if we can prove the existance of the subgroups $T_{H}(T^{(i)}, T_{1,\ell}^{(i)})$ discussed in the definition for "The subfigure (row) for $G^{(i)}$ is complete."

PROPOSITION 1. Let G be a finite abelian p-group and let

$$\begin{aligned} G &= G^{(0)} = S \ e \ A \supset G^{(1)} = S^{(1)} \ e \ A^{(1)} \supset \dots \supset G^{(n)} = S^{(n)} \ e \ A^{(n)} \supset \langle 0 \rangle \ be a \ composition \\ \text{series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq \dots \supseteq S^{(n)} \supseteq \langle 0 \rangle \ \text{subgroups of G and} \\ A &= A^{(0)} \supseteq A^{(1)} \supseteq \dots \supseteq A^{(n)} \supseteq \langle 0 \rangle \ \text{Z-sets. The following statements are true for} \\ 0 &\leq i \leq n-1, \ 0 \leq i^{i} \leq n; \\ (a) \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right] \leq p \\ (b) \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right] \leq p, \ 0 \leq i \leq i+1 \\ (c) \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right] \leq p, \ 0 \leq i \leq i+1 \\ (d) \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right] \leq p, \ 0 \leq i^{i} \leq i^{i}. \\ (e) \left[G^{(i+1)}_{1,i} : G^{(i+1)}_{1,i+1} \right] \leq p, \ 0 \leq i^{i} \leq i^{i}. \\ (f) \left[G^{(i)}_{2,i} : G^{(i+1)}_{2,i} \right] \leq \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right], \ 0 \leq i^{i} \leq i. \\ (f) \left[G^{(i)}_{2,i} : G^{(i+1)}_{2,i} \right] \leq \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right], \ 0 \leq i^{i} \leq i. \\ (f) \left[G^{(i+1)}_{2,i} : G^{(i+1)}_{2,i} \right] \leq \left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i} \right], \ 0 \leq i \leq i+1 \\ \\ \text{PROOF. Let $G^{(i)} = \frac{e}{k=1}} \leq k_k > \text{ Since } \left[G^{(i)} : G^{(i+1)} \right] = p \text{ we have} \\ G^{(i+1)} = \langle g_1 > \Phi < g_2 > \Phi \ \dots \ \Phi < pg_j > \Phi \ \dots \ \Phi < g_k > \text{ for some } j, \ 1 \leq j \leq r. \\ \\ \text{Then $G^{(i)}_{1,i} = pG^{(i)} = \frac{e}{k=1}} \leq pg_k > \text{ and $G^{(i+1)}_{1,i+1} = pG^{(i+1)} = \langle pg_1 > \Phi < pg_2 > \Phi \ \dots \oplus \langle p^2g_j \oplus \dots \oplus \langle pg_k > k \\ \\ \text{If $0(g_j) = p$, then $G^{(i)}_{1,i} = G^{(i+1)}_{1,i+1} \ . \text{ If $0(g_j) > p$, then $\left[G^{(i)}_{1,i} : G^{(i+1)}_{1,i+1} \right] = p$. \\ \end{aligned}$$

This proves (a).

Each of properties (b) through (f) can be deduced from Lemma 4 by choosing U, U_1 , and K appropriately as follows:

(b)
$$U = G^{(i)}, U_1 = G^{(i+1)}, K = G^{(\ell)}_{1,\ell}, 0 \le \ell \le i+1.$$

(c) $U = G^{(i)}_{1,\ell'}, U_1 = G^{(i+1)}_{1,\ell'}, K = G^{(\ell'+1)}_{1,\ell'+1}, 0 \le \ell' \le i$

(d)
$$U = G_{1,\ell'}^{(\ell')}$$
, $U_1 = G_{1,\ell'+1}^{(\ell'+1)}$, $K = G^{(i')}$, $0 \le \ell \le i'$.
(e) $U = G_{1,\ell'}^{(i)}$, $U_1 = G_{1,\ell'+1}^{(i)}$, $K = G^{(i+1)}$, $0 \le \ell' \le i$.
(f) $U = G_{1,\ell}^{(i)}$, $U_1 = G_{1,\ell'}^{(i+1)}$, $K = G_{2,\ell'}^{(\ell)}$, $0 \le \ell \le i+1$.

Observe that $\begin{bmatrix} G^{(i)} : & G^{(i+1)} \end{bmatrix} = p$ implies that $pG^{(i)} \subseteq G^{(i+1)}$ and $p^2G^{(i)} \subseteq pG^{(i+1)} \subseteq G^{(i+2)}$. Thus $\begin{bmatrix} G^{(i)}_{1,i} : & G^{(i+1)}_{1,i} \end{bmatrix} = 1$, $0 \le i \le n-1$, $\begin{bmatrix} G^{(i)}_{2,i} : & G^{(i+1)}_{2,i} \end{bmatrix} = 1$, $0 \le i \le n-1$, and $\begin{bmatrix} G^{(i+1)}_{2,i} : & G^{(i+2)}_{2,i} \end{bmatrix} = 1$, $0 \le i \le n-2$.

PROPOSITION 2. Let G be a finite abelian p-group and let $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset \langle 0 \rangle$ be a composition series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(n)} \supset \langle 0 \rangle$ subgroups of G and $A = A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)} \supseteq \{0\}$ Z-sets. The following statements are true for $0 \le i \le n-1, 0 \le l \le i, 0 \le l' \le i-1.$

(a) If
$$\begin{bmatrix} G_{1,\ell}^{(i)} : G_{1,\ell+1}^{(i+1)} \end{bmatrix} = 1$$
 and $\begin{bmatrix} G_{1,\ell}^{(i)} : G_{1,\ell}^{(i+1)} \end{bmatrix} = p$, then $\begin{bmatrix} G_{2,\ell}^{(i)} : G_{2,\ell}^{(i+1)} \end{bmatrix} = 1$.
(b) If $\begin{bmatrix} G_{1,\ell+1}^{(i)} : G_{1,\ell+1}^{(i+1)} \end{bmatrix} = \begin{bmatrix} G_{1,\ell+1}^{(i-1)} : G_{1,\ell+1}^{(i)} \end{bmatrix} = 1$ and $\begin{bmatrix} G_{1,\ell+1}^{(i)} : G_{1,\ell+1}^{(i+1)} \end{bmatrix} = p$, then $\begin{bmatrix} G_{1,\ell+1}^{(i-1)} : G_{1,\ell+1}^{(i)} \end{bmatrix} = 1$.

PROOF. We have $G_{2,\ell}^{(i)} \subseteq G_{1,\ell+1}^{(i)} = G_{1,\ell+1}^{(i)} \subseteq G^{(i+1)}$. Therefore $G_{2,\ell}^{(i)} = G_{2,\ell}^{(i)} \cap G^{(i+1)}$ = $G_{2,\ell}^{(i+1)}$. Hence (a) is true. $\begin{bmatrix} G_{1,\ell+1}^{(i)} : G_{1,\ell+1}^{(i+1)} \end{bmatrix} = 1$ and $\begin{bmatrix} G_{1,\ell}^{(i)} : G_{1,\ell+1}^{(i+1)} \end{bmatrix} = 1$

imply that $\begin{bmatrix} G_{1,\ell}^{(i)} : G_{1,\ell'+1}^{(i)} \end{bmatrix} = p$ and $\begin{bmatrix} G_{1,\ell'}^{(i+1)} : G_{1,\ell'+1}^{(i+1)} \end{bmatrix} = 1$. By (d) and (e) of Proposition 1 we have that $\begin{bmatrix} G_{1,\ell'}^{(i-1)} : G_{1,\ell'+1}^{(i+1)} \end{bmatrix} = p$. Consequently $\begin{bmatrix} G_{1,\ell'}^{(i-1)} : G_{1,\ell'}^{(i)} \end{bmatrix} = 1$.

We can eliminate from consideration several combinations of indices in Figure 1 since by Proposition 2 it is impossible for them to occur.

LEMMA 6. Let W, X, Y and Z be subgroups with the following properties:

- (i) $W \subseteq X$, $Y \subseteq X$, $Z = W \cap Y$
- (ii) [W:Z] = [X:Y] = p
- (iii) $X = S_X \oplus A_X$, $W = S_W \oplus A_W = S_W \oplus T_W$, $Y = S_X \oplus A_Y = S_X \oplus T_Y$, where S_W , S_X , T_W , T_Y are subgroups with $S_W \subset S_X$ and A_W , A_Y , A_X are Z-sets with $A_W \subseteq A_X$, $A_Y \subseteq A_X$.

(iv)
$$Z = S_W \oplus T_Z$$
 with $T_Z \subseteq T_W$ and $T_Z \subseteq T_Y$.

Then $X = S_X \oplus T_X$, where $T_X = T_W + T_Y$.

PROOF. By Lemma 1 we have $Z = W \cap Y = (S_W \cap S_X) \oplus (A_W \cap A_Y) = S_W \oplus (A_W \cap A_Y)$. The following diagram illustrates the relations between the subgroups W, X, Y, and Z.

$$W = S_{W} \oplus A_{W} = S_{W} \oplus T_{W}$$

$$X = S_{X} \oplus A_{X}$$

$$Y = S_{X} \oplus A_{Y} = S_{X} \oplus T_{Y}$$

$$Z = W \cap Y = S_{W} \oplus (A_{W} \cap A_{Y}) = S_{W} \oplus T_{Z}$$

We will first show that X = W + Y. We have $Y \subseteq W+Y \subseteq X$ and [W:Y] = p. Since [W:Z] = p we must have $X = W+Y = S_X + (T_W + T_Y)$.

We will complete the proof by showing that $S_{X}^{}$ \cap $(T_{W}^{}$ + $T_{Y}^{})$ = <0>. Let

$$\mathbf{s}_{\mathbf{X}} = \mathbf{t}_{\mathbf{W}} + \mathbf{t}_{\mathbf{Y}}, \, \mathbf{s}_{\mathbf{X}} \in \mathbf{S}_{\mathbf{X}}, \, \mathbf{t}_{\mathbf{W}} \in \mathbf{T}_{\mathbf{W}}, \, \mathbf{t}_{\mathbf{Y}} \in \mathbf{T}_{\mathbf{Y}}$$
(5.2)

We can write $t_W = s_W + a_W$, $t_Y = s_X' + a_Y$, $s_W \in S_W$, $s_X' \in S_X$, $a_W \in A_W$, $a_Y \in A_Y$. Thus (5.2) becomes $s_X = s_W + a_W + s_X' + a_Y$ and we have $s_X - s_X' = s_W$ and $-a_W = a_Y \in A_W \cap A_Y \subseteq Z$. Consequently we can write $a_W = s_W' + t_Z$, $s_W' \in S_W$, $t_Z \in T_Z$. But then $t_W = s_W + s_W' + t_Z$. Since $T_Z \subseteq T_W$ and $T_W \cap S_W = \langle 0 \rangle$ we must have $s_W + s_W' = 0$. Similarly, $t_Y = s_X' - s_W' - t_Z$ so that $s_X' - s_W' = 0$. Hence $s_X = s_W + s_W' - s_W' - s_X' = 0$.

THEOREM 5. Let G be a finite abelian p-group of exponent p^k , k \ge 1, and let

$$G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset \langle 0 \rangle$$
(5.3)

be a series for G with S = $S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(n)} \supseteq <0>$ subgroups of G and A = $A^{(0)} \supseteq A^{(1)} \supseteq ... \supseteq A^{(n)} \supseteq \{0\}$ Z-sets. If $p^2A = \{0\}$ then the series (5.3) admits replacements.

PROOF. By Lemma 3 we can assume that (5.3) is a composition series for G. Note that for $0 \le i \le n$, $0 \le l \le i$, $j \ge 2$, $h \ge 1$,

$$A_{j,\ell}^{(i)} = A^{(i)} \cap p^{j}A^{(\ell)} \subseteq p^{2}A = \{0\},\$$

and

$$p^{h}A_{1,\ell}^{(i)} \subseteq p^{h+1}A^{(\ell)} \subseteq p^{2}A = \{0\}.$$

Thus we have $G_{j,\ell}^{(i)} = S_{j,\ell}^{(i)}$ and $p^h G_{1,\ell}^{(i)} = p^h S_{1,\ell}^{(i)}$, $0 \le i \le n$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$. Consequently we must have $T_{j,\ell}^{(i)} = T_{h,1,\ell}^{(i)} = \langle 0 \rangle$, $0 \le i \le n$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$.

We use a "backward induction" on i to show that the sub-figure for each $G^{(i)}$, $0 \le i \le n$, can be completed.

For i = n, $|G^{(n)}| = p$ implies that $G^{(n)}$ is cyclic of forder p. Thus the subfigure for $G^{(n)}$ is trivially complete.

Now assume the sub-figure for $G^{(i+1)}$ is complete. In view of the preceeding comments on the subgroups $T_{j,\ell}^{(i)}$, $T_{h,l,\ell}^{(i)}$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$, if we can complete the row for $G^{(i)}$ in such a way that $T_{1,\ell}^{(i+1)} \subseteq T_{1,\ell}^{(i)}, 0 \leq \ell \leq i, T^{(i+1)} \subseteq T^{(i)},$ then the sub-figure for $G^{(i)}$ will be complete as well. By Lemma 3 we must consider two cases, (1) $A^{(i)} = A^{(i+1)}$, and (2) $S^{(i)} = S^{(i+1)}$.

Case (1). By hypothesis, the sub-figure for $G^{(i+1)}$ is complete so that there exist subgroups $T^{(i+1)} \supseteq T^{(i+1)}_{1,0} \supseteq T^{(i+1)}_{1,1} \supseteq \dots \supseteq T^{(i+1)}_{1,i+1}$ such that

$$G^{(i+1)} = S^{(i+1)} \oplus T^{(i+1)}, G^{(i+1)}_{1,\ell} = S^{(i+1)}_{1,\ell} \oplus T^{(i+1)}_{1,\ell}, 0 \le \ell \le i+1, \text{ and } T^{(i+1)} \text{ is}$$

extendable to $G^{(i)}, T^{(i+1)}_{1,\ell}$ is extendable to $G^{(i)}_{1,\ell}, 0 \le \ell \le i$. Setting $H = G^{(i)}, K = pG^{(\ell)}, 0 \le \ell \le i$, in Lemma 1, we conclude that $A^{(i)}_{1,\ell} = A^{(i+1)}_{1,\ell}, 0 \le \ell \le i$. Applying
Lemma 5 with $G = G^{(i)}_{1,\ell}, G' = G^{(i+1)}_{1,\ell}, T = T^{(i+1)}_{1,\ell}, 0 \le \ell \le i$, we have
 $G^{(i)}_{1,\ell} = S^{(i)}_{1,\ell} \oplus T^{(i+1)}_{1,\ell}, 0 \le \ell \le i$. Again applying Lemma 5, this time with $G = G^{(i)}, G' = G^{(i+1)}, T = T^{(i+1)}, we$ have $G^{(i)} = S^{(i)} \oplus T^{(i+1)}$. Thus we can complete the sub-
figure for $G^{(i)}$ by choosing $T^{(i)}_{1,\ell} = T^{(i+1)}_{1,\ell}, 0 \le \ell \le i, T^{(i)} = T^{(i+1)}.$

Case (2). We have $\begin{bmatrix} G_{1,\ell}^{(i)} : & G_{1,\ell}^{(i+1)} \end{bmatrix} \le p, \ 0 \le \ell \le i$, by (b) of Proposition 1.

If $\begin{bmatrix} G_{1,\ell}^{(i)} : & G_{1,\ell}^{(i+1)} \end{bmatrix} = 1$, $0 \le \ell \le i$, we can complete the sub-figure for $G^{(i)}$ by choosing $T_{1,\ell}^{(i)} = T_{1,\ell}^{(i+1)}$, $0 \le \ell \le i$, and extending $T^{(i+1)}$ to $G^{(i)}$. $(T^{(i+1)}$ is extendable to $G^{(i)}$ by the hypothesis that the sub-figure for $G^{(i+1)}$ is complete).

Now suppose there exists ℓ_0 such that

$$\begin{bmatrix} G_{1,\ell}^{(i)} : G_{1,\ell}^{(i+1)} \end{bmatrix} = \begin{cases} 1 \text{ for } \ell_0 < \ell \leq i \\ p \text{ for } 0 \leq \ell \leq \ell_0 \end{cases}$$

This situation is illustrated in Figure 2, where, for simplicity, we have omitted the subgroups $G_{j,\ell}^{(r)}$ and $G_{h,1,\ell}^{(r)}$ since $T_{j,\ell}^{(r)} = T_{h,1,\ell}^{(r)} = \langle 0 \rangle$, $0 \leq \ell \leq n, 1 \leq h \leq k-2$,

 $2 \le j \le k-1$, r = i+1, i, i-1. The numbers 1 and p in Figure 2 represent indices.

We can choose $T_{1,\ell}^{(i)} = T_{1,\ell}^{(i+1)}$ for $\ell_0 < \ell \leq i$. As remarked previously, the hypothesis that the sub-figure for $G^{(i+1)}$ is complete implies that $T_{1,\ell_0}^{(i+1)}$ can be extended to $G_{1,\ell_0}^{(i)}$. This extension is indicated in Figure 2 by a single arrow

Setting X = $G_{1,\ell}^{(i)}$, Y = $G_{1,\ell}^{(i+1)}$, W = $G_{1,\ell+1}^{(i)}$, 0 $\leq \ell \leq \ell_0$ -1, we have

 $Z = W \cap Y = G_{1,\ell+1}^{(i+1)}, 0 \leq \ell \leq \ell_0$ -1, so that W,X,Y,Z satisfy the conditions of Lemma 6.

Thus we can apply Lemma 6 to obtain $G_{1,\ell}^{(i)} = S_{1,\ell}^{(i+1)} \oplus T_{1,\ell}^{(i)}$, where $T_{1,\ell}^{(i)} = T_{1,\ell+1}^{(i)} + T_{1,\ell}^{(i+1)}$, $0 \le \ell \le \ell_0$ -1. We can again apply Lemma 6, taking $X = G^{(i)}$, $W = G_{1,0}^{(i)}$, $Y = G^{(i+1)}$, $Z = W \cap Y = G_{1,0}^{(i+1)}$, to obtain $G^{(i)} = S^{(i+1)} \oplus T^{(i)}$, where $T^{(i)} = T_{1,0}^{(i)} + T^{(i+1)}$. These sums are indicated in Figure 2 by double arrows. Clearly, $T^{(i)} \supseteq T_{1,0}^{(i)} \supseteq \cdots \supseteq T_{1,\ell}^{(i)}$ and $T_{1,\ell}^{(i+1)} \subset T_{1,\ell}^{(i)}$, $0 \le \ell \le i$. Thus the sub-figure for $G^{(i)}$ is complete.

COROLLARY 1. If G is a finite abelian p-group of exponent less than or equal to p^2 then G admits replacement.

PROOF. Let $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset ... \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0>$ (5.4) be a series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(n)} \supseteq <0>$ subgroups of G and $A = A^{(0)} \supseteq A^{(1)} \supseteq ... \supseteq A^{(n)} \supseteq \{0\}$ Z-sets. We have $p^2A = \{0\}$ since by hypothesis $p^2G = <0>$. By Theorem 5 the series (5.4) admits replacements. Hence G admits replacement.

6. RELATION TO A VARIATION OF A METHOD OF A.D. SANDS.

Our terminology will be the same as in [3] when referring to factorizations which are obtained by the variation of Sands' method.

The following Proposition can be readily verified.

PROPOSITION 3. Let $G = K_1 \supset K_2 \supset \ldots \supset K_n \supset \langle 0 \rangle$ be a series for G with coset representatives H_i , $1 \leq i \leq n$, $K_n = H_n$. If $H_i \oplus H_{i+2} \oplus \ldots$ is a subgroup (Z-set) then $H_{i+2} \oplus H_{i+4} \oplus \ldots$ is also a subgroup (Z-set).

THEOREM 6. Let G be a finite abelian group which admits replacement and let

$$G = K_1 \supset K_2 \supset \ldots \supset K_n \supset \langle 0 \rangle$$
(6.1)

be a series for G. If $G = A \oplus B$ is a Z-factorization of G arising from (6.1) then there exist subgroups S, T such that the factorization $G = S \oplus T$ arises from the series (6.1).

PROOF. We will assume that n is odd since the proof for n even is similar. We will proceed by induction on the order of the group G.

If |G|=p, then $G = G \oplus \langle 0 \rangle$ is the only Z-factorization of G. Thus in any series from which this factorization arises we must have $G = K_1 = S$, $T = K_1 = \langle 0 \rangle$, $i \ge 2$.

Assume the theorem is true for groups of order less than G. Let $G = A \oplus B$ be a Z-factorization of G arising from (6.1). By Lemma 5 of [3] we may assume

$$A = H_1 \oplus H_3 \oplus H_5 \oplus \ldots \oplus H_n,$$

$$B = H_2 \oplus H_4 \oplus H_6 \oplus \ldots \oplus H_{n-1},$$

where $0 \in H_i$, $1 \leq i \leq n$.

We have the $H_3 + H_5 + \ldots + H_n$ is a Z-set by Proposition 3. Thus

$$K_2 = (H_3 \oplus H_5 \oplus \ldots \oplus H_n) \oplus (H_2 \oplus H_4 \oplus \ldots \oplus H_{n-1})$$

is a Z-factorization of K_2 arising from the series

$$K_2 \supset K_3 \supset \ldots \supset K_n \supset \langle 0 \rangle \tag{6.2}$$

 $|K_2| < |G|$ implies, by the induction hypothesis, that there exist subgroups, S', T' such that the factorization $K_2 = S' \oplus T'$ arises from the series (6.2). Thus, by Lemma 5 [3] there exist transversals H_i' , $2 \le i \le n$, such that

$$S' = H'_2 \oplus H'_4 \oplus \ldots \oplus H'_{n-1},$$
$$T' = H'_3 \oplus H'_5 \oplus \ldots \oplus H'_n,$$

where $0 \in H'_i$, $2 \leq i \leq n$.

Note that $K_n = H_n = H_n'$ and

 $K_{i} = H_{i}^{!} \oplus K_{i+1} = H_{i} \oplus K_{i+1}, 2 \le i \le n-1$ (6.3)

since both H_i and H'_i are coset representatives for K_i modulo K_{i+1} , $2 \le i \le n$. Using (6.3) successively, starting with i = n-1, we see that we can choose H_1 , H_3 , H_5 , ..., H_n , H'_2 , H'_4 , H'_6 , ..., H'_{n-1} as coset representatives for the series (6.1) to obtain the factorization

$$G = (H_1 \oplus H_3 \oplus \ldots \oplus H_n) \oplus (H'_2 \oplus H'_4 \oplus \ldots \oplus H'_{n-1}) = A \oplus S'$$
(6.4)

By Proposition 3, $H_i \oplus H_{i+2} \oplus \ldots \oplus H_n$ is a Z-set, $i = 1,3,\ldots n$, and $H'_i \oplus H'_{i+2} \oplus \ldots \oplus H'_{n-1}$ is a subgroup, $i = 2,4,\ldots, n-1$. Set

$$S^{(i)} = H_{i}' \oplus H_{i+2}' \oplus \dots \oplus H_{n-1}', i = 2, 4, \dots, n-3$$

$$S^{(n-1)} = H_{n-1}'$$

$$A^{(i)} = H_{i} \oplus H_{i+2} \oplus \dots \oplus H_{n}, i = 1, 3, \dots, n-2$$

$$A^{(n)} = H_{n} = K_{n}.$$

Then the series (6.1) can be written as

$$G=K_1=S^{(2)} \oplus A^{(1)} \supset K_2=S^{(2)} \oplus A^{(3)} \supset K_3=S^{(4)} \oplus A^{(3)} \supset \ldots \supset K_{n-1}=S^{(n-1)} \oplus A^{(n)} \supset K_n=A^{(n)} \supset \langle 0 \rangle$$

where $S^{(2)} = S'$ and $A^{(1)} = A$. In general,

$$K_{i} = \begin{cases} S^{(i)} \oplus A^{(i+1)} \text{ for } i \text{ even, } 2 \leq i \leq n-1 \\ \\ S^{(i+1)} \oplus A^{(i)} \text{ for } i \text{ odd, } 1 \leq i \leq n-2, \quad K_{n} = A^{(n)} = H_{n} \end{cases}$$

By hypothesis G admits replacement. Thus there exist subgroups $T^{(1)} \supseteq T^{(2)} \supseteq \ldots \supseteq T^{(n)}$ such that

$$K_{i} = \begin{cases} S^{(i)} \oplus T^{(i)} \text{ for } i \text{ even, } 2 \leq i \leq n-1, \\ \\ S^{(i+1)} \oplus T^{(i)} \text{ for } i \text{ odd, } 1 \leq i \leq n-2, \\ \\ K_{n} = T^{(n)} = H_{n} = A^{(n)} \end{cases}$$

Define $H''_n = T^{(n)} = A^{(n)}$. We have

$$K_{n-1} = S^{(n-1)} \oplus T^{(n-1)} = S^{(n-1)} \oplus A^{(n)} = S^{(n-1)} \oplus T^{(n)}$$

so that $|T^{(n-1)}| = |T^{(n)}|$. But $T^{(n)} \subseteq T^{(n-1)}$. Therefore $T^{(n-1)} = T^{(n)}$.

Next,

$$K_{n-2} = S^{(n-1)} \oplus T^{(n-2)}, T^{(n-1)} \subseteq T^{(n-2)}.$$

If we choose H_{n-2}'' a set of coset representatives for $T^{(n-2)}$ modulo $T^{(n-1)}$ we have $T^{(n-2)} = H_{n-2}'' \oplus T^{(n-1)} = H_{n-2}'' \oplus T^{(n)} = H_{n-2}'' + H_{n}''$, and $K_{n-2} = S^{(n-1)} \oplus H_{n-2}'' \oplus T^{(n)}$

= $H_{n-2}^{"} \oplus K_{n-1}^{"}$. Thus $H_{n-2}^{"}$ is also a set of coset representatives for $K_{n-2}^{"}$ modulo $K_{n-1}^{"}$. $K_{n-3}^{"} = S^{(n-3)} \oplus T^{(n-3)} = S^{(n-3)} \oplus A^{(n-2)}$ and

 $K_{n-2} = S^{(n-1)} \oplus T^{(n-2)} = S^{(n-1)} \oplus A^{(n-2)} \text{ imply that } |T^{(n-3)}| = |A^{(n-2)}| = |T^{(n-2)}|.$ But $T^{(n-2)} \subset T^{(n-3)}$. Hence we have that $T^{(n-2)} = T^{(n-3)}$ and $K_{n-3} = S^{(n-3)} \oplus T^{(n-2)} = (H'_{n-3} \oplus H'_{n-1}) \oplus T^{(n-2)} = H'_{n-3} \oplus K_{n-2}.$ (i) (i)

In general, given $T^{(i)}$ for i odd we have $T^{(i-1)} = T^{(i)}$ and $T^{(i-2)} = H''_{i-2} \oplus T^{(i)}$ so that the factorizations of K_i , $1 \le i \le n$, are as follows: $K_i = T^{(n)} = H''_{i-1} = H_{i-2}$

$$K_n = T' = H_n' = H_n$$

 $K_{n-1} = S^{(n-1)} \oplus T^{(n)} = H'_{n-1} \oplus H''_n$
 $K_{n-2} = S^{(n-1)} \oplus T^{(n-2)} = H'_{n-1} \oplus H''_{n-2} \oplus T^{(n)} = H'_{n-1} \oplus (H''_{n-2} \oplus H''_n)$

$$K_{n-3} = S^{(n-3)} \oplus T^{(n-2)} = (H'_{n-3} \oplus H'_{n-1}) \oplus (H''_{n-2} \oplus H''_{n})$$

$$K_{n-4} = S^{(n-3)} \oplus T^{(n-4)} = S^{(n-3)} \oplus H''_{n-4} \oplus T^{(n-2)} = (H'_{n-3} \oplus H'_{n-1}) + (H''_{n-4} \oplus H''_{n-2} \oplus H''_{n})$$

$$\vdots$$

$$K_{3} = S^{(4)} \oplus T^{(3)} = S^{(4)} \oplus H'_{3} \oplus T^{(5)} = (H'_{4} \oplus H'_{6} \oplus \dots \oplus H'_{n-1}) + (H''_{3} \oplus H''_{5} \oplus \dots \oplus H''_{n})$$

$$K_{2} = S^{(2)} \oplus T^{(3)} = (H'_{2} \oplus H'_{4} \oplus \dots \oplus H'_{n-1}) + (H''_{3} \oplus H''_{5} \oplus \dots \oplus H''_{n})$$

$$K_{1} = S^{(2)} \oplus T^{(1)} = S^{(2)} \oplus H''_{1} \oplus T^{(3)} = (H'_{2} \oplus H'_{4} \oplus \dots \oplus H'_{n-1}) \oplus (H''_{1} \oplus H''_{3} \oplus \dots \oplus H''_{n})$$
We can complete the proof by defining $S = S^{(2)} = H' \oplus H' \oplus H' \oplus H' \oplus H' \oplus H'$

We can complete the proof by defining $S = S^{(2)} = H_2' \oplus H_4' \oplus H_6' \oplus \ldots \oplus H_{n-1}'$ and $T = T^{(1)} = H_1'' \oplus H_3'' \oplus H_5'' \oplus \ldots \oplus H_n''$ to obtain the factorization $G = S \oplus T$, $S \subseteq G$, $T \subseteq G$, which arises from the series (6.1).

REFERENCES

- SANDS, A.D., On the factorization of finite abelian groups I, <u>Acta. Math. Acad.</u> <u>Sci. Hung.</u> 8(1957), 65-86.
- HAJOS, G, Sur la factorisation des groupes abeliens, <u>Casopis Pest. Math. Fys.</u> <u>74</u>(1950), 157-162.
- OBAID, E.E., On a variation of Sands' method, <u>Internat. J. Math. & Math. Sci.</u> <u>9(3)</u>(1986), 597-604.
- 4. FUCHS, L., Abelian Groups, Pergamon Press, 1960.
- 5. OKUDA, C., The factorization of Abelian groups, doctoral dissertation, the Pennsylvania State University, University Park, PA, 1975.