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ABSTRACT. The classical Kelvin principle concerns invariance of solutions of the

Laplace equation with respect to inversion in a sphere. By employing a hyperbolic-

polar coordinate system, the principle is extended to cover a class of singular

equations, which include the ultrahyperbolic equation.
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i. INTRODUCTION.

As is well known the classical Kelvin principle introduced in 1847 (Thomson [i])

concerns solutions of the Laplace equation. For solutions of some class of elliptic

differential equations and their iterated forths in n independent variables, n z 2

the extension of Kelvin principle is usually proved using rectangular coordinates

(Diaz and Martin [2], Germain and Bader [3], Huber [4], Weinstein [5] ). In 1960

a generalization of Kelvin principle was established by Weinstein [5] for the

equation

2 k un u ir. --- + 0, k. <
i=l x. x. x. l

1 1 1

using polar coordinates.

Following Weinstein method we shall give in this paper a new formulation of

Kelvin principle for solutions of the class of singular partial differential

equations
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where . (i i S n) and B. (i s m) are real parameters, r is the ],orentzia
1

metric defined by
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and P is a general linear operator of arbitrary order q in the variables Zl, z2,

Zp vanishing for u 0.

The domain of the operator L is the set of all real valued functions u(x,y,z)
of class C2(D)nCq(), where x (Xl,. x ), (Yl ,ym and z (Zl,...,z)n p
denote points in Rn, R

m
and Rp, respectively, and D x R is a regularity domain of

u in R
n+m

R
p

x

2. HYPERBOLIC-POLAR COORDINATE SYSTEM FOR EQUATION (i. i).

First let us consider the n+m-dimensional Laplace operator

n 2 m 2
u 3uAu 7 2 + 7. 2 (2.1)

i=l x. j=l
1 Xn+j

and introduce the polar coordinates

x
I

r cosolcoso2...cOSSm_iCOSSmCOSOm+1...cosSm+n_2cosom+n_ 1

x r cos8 cos8 ...cos8 cos8 cos8 ...cos8 sin0
2 1 2 m-i m m+l m+n-2 m+n-i

cos0 cos8 ...sin8x3
m cosOlcos82 .cOSSm_1 m m+l m+n-2

x r cos0 cos0 ...cos0 cose sin0
n 1 2 m-i m m+l

x r cosO cose ...cos0 sine
n+l i 2 m-i m

(2.2)

x r cos8 sine
n+m-i i 2

Xn+m r sin01
where 0 e. N n for l, n+m-2, 0 N 8 N 2 and

n+m-i

2
+ + x

2 )% (2.3)r [x
I n+m

Under this change of variables, the polar form of the Laplace operator is given by

n+m 2 2
u D u n+m-I uAu ---Z ---Z + + 2 (u) (2.4)

1
i=l Dx. Dr r Dr r

1

where the operator I depends only on the variables @I, n+m-i

Euclidean distance given by (2.3).

and r is the

Now in (2.1) and (2.2) let Xn+ iy4 and e icj for i m with

2 2

i /-i and let 8m+.] @.] for i n-l. Since (D/DXn+j) u (D/Dyj) u,

i sh ., the operator (2.1) reduces to the ultrahy-cos(iCj) ch Cj and sin(iOj
perbolic operator

2 2
u Du

[h= 7. ---T Z 2
i:l x. j:l

(2.5)

On the other hand, the polar coordinate system (2.2) takes the form
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xI
r chich2"’’ChCm-lChCmCSl’’’cSn-2CS@n-i

x
2

r chich2...Chm_iChmCOSl...cOSn_2Sin@n_l
x
3 r chich2...Ch#m_iChmCOS@l...sinn_2

x
n

r chich2.. "ChCm-lChmsinl
Yl r chich2...Chm_iShm

Y2 r chich#2...ShCm_1

(2.6)

Ym_l r chish2

Ym r sheI

where r is the Lorentzian distance given by (1.2). We refer to this as "polar-

hyperbolic transformation". In the polar-hyperbolic coordinate system, the operator

(2.5) assumes the form

2 2 2mn Du Du Du[]u Z ---,/- E 2 [ +
i=l Dx.I j=l yj Dr

n+m-i u 1
+ --z2(u)

r Dr r

(2.7)

where 2 depends only on the variables i’’’" ’m’l ’n-i and r is given in (1.2).

For example, the polar forms of Au for n 2, 3 are given by

1 1Au u + -u + --_Uo0
r r

Au= u + 2
Uou + (u + cos 0

rr r r r OO sin O

The corresponding forms for the hyperbolic equations are given by

1 1[ u + --U
rl r - U

r r

1

sin20 u

2 1 sh0 1[h Urr + --Urr rUee + --UchoO ch2o u
2 2 2 2where u + u u r x + Y --z and x r ch0cos, y r chOsinxx yy zz

z r sh0

3. A FUNDAMENTAL THEOREM AND MAIN RESULT.

In [5] using his main three recursion formulas, Weinstein gave the followir,

theorem which will be used to establish our main result.

THEOREM I. Let v v(r,l,...,n_l) satisfy the differential equation

2
D v k Dv 1
---2 +

2D r r Dr r
(v) (3.1)

where k is a real or complex number and is a linear, differential operator vanishing
l-kfor v 0 which is independent of the variable r. Then w satisfies the same
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equation (3.1) in the variables P’ i’’’’’ n-i where p i/r and

w(p,
1 n_l v(i/P,l n_l

Using Theorem 1 we can now establish an extension of Kelvin principle to ultrahy-
perbolic equations

THEOREM 2.

i. 1 ). Then

Let u u(xl,...,xn,yl,...,ym ’zl’’’’’zp) be a solution of the equation

-I Xl x Yl Ymw r u- , -, z
I

,z
r r r r P

(3.2)

is also a solution of the same equation (i.i), where

n m
I n + m 2 + Z u. + Z 8. (3.3)

i=l
i

j=l

and r is the Lorentzian distance defined by (1.2).

PROOF. Let us consider the polar-hyperbolic transformation (2.6) which can be

written in the following form

xi
r

yj r gj(,),

i l,...,n

1 m
(3.#)

where the notations fi(,), gj(,) or without subscripts f(,), g(,) denote

functions of i ’m’l"" "’n-i
We note that from (3.#) we have

+ 7. + 7. 6jkx. r x. i=l x i=l x]

Yk Yk Dr
m Yk

+ 7. 6jk
3yj Dr yj i=l i YJ

where 6jk is the Kronecker delta. From (1.2) we have

__r xj
(i < _< n) and __Dr YJ (i _< j <_ m)

x. Dr y. r
]

and we may express the partial derivatives 8i/8xj, 8i/Sx4j and 8i/8yj as a quotient

the denominator of which is the Jacobian of the transformation (2.6). It can be

shown that

(xI,.. ,Xn,Y1 Ym
3(r, 1 m,i Cn_l

n+m-I
hr ,)

n+m-2
The numerator of this quotient contains obviously only a factor r hence
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--Fji(,), =--G (,), H..(,)

On the other hand, since

x. m n-i DuDu Du Du
Fji( #

Dx. r Dr r i=l i=l D. 3x

we see that

Du Yj Du 1
m

+ z
Dyj r Dr r i=l D#i

ix

1 Du 1 Du + -- l(U), 1 < j < n
xj Dxj r Dr r

(3.5)

1 Du 1 Du +

_
2(u)’ 1 -< -< m

yj Dyj r Dr r

and 2 depend only on the ariables i "’m’@lwhere the operators i "’’’n-i
If we substitute the expressions (2.7) and (3.5) into (i.i), then our equation (i.i)

becomes
2 n m 1DuD u + n + m 1 + X e. + 7. 8j) + --- (u) 0

D r r
i:l I j=l r

(3.6)

n m
Since l-(n+m-i + Xi=lei + 7.j= 8 k by Theorem 1

i j

_k x
I

x Yl Y
w r u(- ,..,- ,- ,..,- ,Zl,..,z

r r r r P

satisfies the equation (i.i). Here we note that, since

2
n

2 m
Z (xi/r2) 7. (yj/r2) 2 1:-i=l j=l r

the substitution P i/r in the solution u means replacing the variables x_. and y_.

by xi/r
2
and yj/r2, respectively.

]

(i) We note that, since the r defined by (1.2) is not real for 7.n. 2
1=i X.l <

the solutions of (i.i) is valid only in the domain D x , where

n m
2 2D D x D {(x,y) x e D y D 7. x. > Z y

n m n m i=l
1

i-=- J

is a hyperconoidal domain in Rn+m. Here D
n

at the origins of R
n

and Rm, respectively,

u with respect to the variable z.

and D
m

and

are the spherical domains centered

Rp is the regularity domain of
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(ii) In equation (i.i) if we have addition instead of subtraction of the two

summations, then Theorem 2 remains valid, where

2
n

2
m

2
r Z x. + 7. yj

i=l
1

j=l

This includes Weinstein’s [5] and Altin’s [2] results.

(iii) In the special case Pu 7u where Y= const, the formula (3.2) gives the

result obtained in [2]

(iv) If we multiply both sides of the equation (i.i) by -I, we get the equation

2 j n 2
jm

( u u u u
-n(u) Z + Z (-----2 + + (u) 0

2j:l yj yj yj j:l x. x. x. r

where r zm 2 En 2 2

j=l Yj j=l x.] -r This shows that if U(Xl,..,Xn,Yl,..,Ym,Zl,..,zp)
is a solution of the equation (i.i), then by Theorem 2

-X Xl x y Ym
r U(

n i

Wl 1 -r -r -r -r zl Zp)

is also a solution of the same equation (i.i), where X is given by (3.3) It is clear

2 2
> 0 that is, r < 0that this solution is valid in a different domain where r

I
(v) It is clear that by a simple linear transformation, Theorem 2 also holds

for a more general equation of the form

2 e. m 2
n

a2( u 1 u 2( u
8.

u)Z i +
?

Z b.3 8 n + ’ 0 q
+

r
(u) 0

oreal parameters (a 0, b. 0), o (,..., andwhere bi,ei 8
ia

i
are

1 n

o o o
"(nl’’’’’m are fixed points in Dn and Dm, respectively Heren

where

-X i- n-n nl-n nm-nm
w r u(

2 2 2 2 ’Zl’’’’zP
alr anr blr bmr

o o
2 nz (i-i).2

m j-
r Z J)2

i=l a. j=l b.
]
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