FURTHER RESULTS ON PRIMES IN SMALL INTERVALS

GEORGE GIORDANO

Department of Mathematics
Physics and Computer Science
Ryerson Polytechnical Institute Toronto, Ontario, Canada M5B 2K3

(Received August 27, 1987)

Abstract

In this paper we will deal with upper and lower bounds for $\pi(x+y)-\pi(x)$. In fact, given q with $0<q \leq 1$, for sufficiently large integers m, n such that $m \geq n \geq q m>2$ we show that $\pi(m+n)-\pi(m)<\ln (n) \pi(n) / \ln (m+1)$. Moreover, explicit bounds are obtained and a wider range is given under the assumption of the Riemann hypothesis. Let m, n be positive integers with $m>2657$. Let $1 \leq \theta<2$ and $m \geq n \geq m^{1 / \theta}$. If the Riemann hypothesis holds, then $\pi(m+n)-\pi(m)<n / \ln (m+1)+\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi$. (Here $\pi(x)=$ the number of primes $\leq x$.)

KEY WORDS AND PHRASES. Primes. Small intervals. $\pi(x+y) \leq \pi(x)+\pi(y)$.
1980 AMS Subject Classification Code. 10H15, 10 J 15.

1. INTRODUCTION.

There are several accounts dealing with the validity of the conjecture that for $x>1$ and $y>1$,

$$
\begin{equation*}
\pi(x+y) \leq \pi(x)+\pi(y) \tag{1.1}
\end{equation*}
$$

For example [1], [2], [3] deal with (1.1), whereas in [4] there is a discussion of the conjecture of the following form:

$$
\begin{equation*}
\pi(x+y)<\pi(x)+\pi(y)+c y / \ln ^{2}(y) . \tag{1.2}
\end{equation*}
$$

(Here we let $x \geq y \geq 1$ and $c>0$.) In fact, one of the two authors of [4] believes that (1.2) is truc, whereas the other one does not.

What is interesting to this author is a paper written by Hensley and Richards [5]; they proved that if the prime k -tuple conjecture is true then (1.1) is false. Furthermore, assuming that the k -tuple conjecture is true they have shown that $\exists \mathrm{Ic} \mid>0$ such that for sufficiently large y and infinitely many x we must have $\pi(x+y)-\pi(x)-\pi(y)>c y / \ln ^{2}(y)$.

By using sophisticated techniques H.L. Montgomery and R.C. Vaughan [6] proved that if $M>0$ and $N>1$ are integers then $\pi(M+N)-\pi(M) \leq 2 N / \ln (N)$. Now D.R. Heath-Brown and H. Iwaniec [7] show that if $\theta>11 / 20$ and $x \geq x(\theta)$ then $\pi(x)-\pi(x-y)>y /(212 \ln (x))$ in the range $x^{\theta} \leq y \leq x / 2$. The methods used in this paper are elementary and give a different range of validity. The proofs of this paper use the following definitions and results.

```
\(\pi(x)=\) the number of primes \(\leq x\)
\(\operatorname{Li}(x)=\int_{2}^{x} d v \ln (t) \quad\) for \(x \geq 2\)
\(L s(m)=\sum_{k=2}^{m} 1 / \ln (k) \quad\) for any integer \(m \geq 2\)
\(\pi(x)=\mathrm{Li}(x)+O\left(x e^{-a \sqrt{\ln (x)}}\right)\) for \(x \geq 2\), \(a>0\)
\(\operatorname{Li}(x)=x\left(1+\sum_{k=1}^{n-1}\left(k!/ \ln ^{k}(x)\right)\right) / \ln (x)+O\left(x / \ln ^{n+1}(x)\right)\) for \(x \geq 2\)
\(\pi(m)=L s(m)+O\left(m e^{-c \sqrt{\ln (m)}}\right)\) for integer \(m \geq 2, c>0\)
\(|\mathrm{Li}(\mathrm{m})-\mathrm{Ls}(\mathrm{m})|<\mathrm{C} \quad\) for some constant C
If the Riemann hypothesis holds, then (1.7) is true
\(|\pi(x)-\operatorname{Li}(x)|<\sqrt{x} \ln (x) / 8 \pi \quad\) for \(x \geq 2657\)
\(x(1+1 /(2 \ln (x))) / \ln (x)<\pi(x) \quad\) for \(59 \leq x\)
\(\pi(x)<x(1+3 /(2 \ln (x))) / \ln (x) \quad\) for \(1<x\)
If the Riemann hypothesis holds, then (1.7) is true
\[
\begin{array}{ll}
|\pi(x)-\operatorname{Li}(x)|<\sqrt{x} \ln (x) / 8 \pi & \text { for } x \geq 2657 \\
x(1+1 /(2 \ln (x))) / \ln (x)<\pi(x) & \text { for } 59 \leq x \\
\pi(x)<x(1+3 /(2 \ln (x))) / \ln (x) & \text { for } 1<x \tag{1.9}
\end{array}
\]
```

Now (1.3), (1.4) can be found in Ayoub [8], whereas (1.5), (1.6) are found in T. Estermann [9]. Furthermore, the paper written by L. Schoenfeld [10] gives us (1.7). Finally (1.8), (1.9) were proven by J.B. Rosser and L. Schoenfeld [11].

2. THEOREMS, COROLLARIES AND THEIR PROOFS.

THEOREM 1. If $0<d \leq 1$ and x, y are sufficiently large with $x \geq y \geq d x>2$, then $\pi(x+y)-\pi(x)-\ln (y) \pi(y) / \ln (x+y)<O\left(y / \ln ^{n+1}(y)\right)$ for any natural number $n \geq 2$.

PROOF. We have from (1.3) and (1.4) the following:

$$
\begin{equation*}
\pi(x)=x / \ln (x)+x / \ln ^{2}(x)+\cdots+(n-1)!x / \ln ^{n}(x)+O\left(x / \ln ^{n+1}(x)\right) \tag{2.1}
\end{equation*}
$$

Now it is obvious that

$$
\begin{gather*}
\pi(x+y)-\pi(x)=x / \ln (x+y)-x / \ln (x)+\sum_{k=1}^{n-1}\left[k!x / \ln ^{k+1}(x+y)-k!x / \ln ^{k+1}(x)\right] \\
+y\left[1+\sum_{k=1}^{n-1}\left(k!/ \ln ^{k}(x+y)\right)\right] / \ln (x+y)+0\left[(x+y) / \ln ^{n+1}(x+y)\right] \tag{2.2}
\end{gather*}
$$

Given that $\mathrm{x} \geq 2, \mathrm{y}>0$ then for $0 \leq \mathrm{k} \leq \mathrm{n}-1$ we have

$$
k!x / \ln ^{k+1}(x+y)<k!x / \ln ^{k+1}(x)
$$

Hence (2.2) is replaced by

$$
\begin{equation*}
\pi(x+y)-\pi(x)<y\left[1+\sum_{k=1}^{n-1}\left(k!/ \ln ^{k}(x+y)\right)\right] / \ln (x+y)+O[(x+y) / \ln n+1(x+y)] \tag{2.3}
\end{equation*}
$$

For $k \geq 1$, we observe that $\ln ^{k}(x+y) \geq \ln ^{k}(2 y)>\ln ^{k}(y)$. Replacing $\ln ^{k}(x+y)$, (2.3) now becomes

$$
\begin{equation*}
\pi(x+y)-\pi(x)<y\left[1+\sum_{k=1}^{n-1}\left(k!/ \ln ^{k}(y)\right)\right] / \ln (x+y)+O\left[(x+y) / \ln ^{n+1}(y)\right] \tag{2.4}
\end{equation*}
$$

Multiplying the first term on the right hand side of (2.4) by $\ln (y) / \ln (y)$ and using (2.1) we have replaced (2.4) by the following:

$$
\begin{equation*}
\pi(x+y)-\pi(x)-\ln (y) \pi(y) / \ln (x+y)<0\left[(x+y) / \ln ^{n+1}(y)\right] \tag{2.5}
\end{equation*}
$$

It is obvious \exists a constant $M>0$ such that for $x+y$ sufficiently large the left hand side of (2.5) is strictly less than

$$
\begin{equation*}
M(x+y) / \ln ^{n+1}(y) \tag{2.6}
\end{equation*}
$$

Since $x \geq y \geq d x>2$ for $0<d \leq 1$ then

$$
\begin{equation*}
M(x+y) / n^{n+1}(y)<M(y / d+y) / n^{n+1}(y)<M^{\prime}\left(y / l n^{n+1}(y)\right) \tag{2.7}
\end{equation*}
$$

Hence by using (2.7) we conclude that

$$
\pi(x+y)-\pi(x)-\ln (y) \pi(y) / \ln (x+y)<O\left(y / \ln ^{n+1}(y)\right)
$$

THEOREM 2. Let $0<q \leq 1$. If m, n are sufficiently large positive integers satisfying $m \geq n \geq q m>2$, then $\pi(m+n)-\pi(m)<n / n(m+1)+B n e^{-\boldsymbol{e} \sqrt{\ln (2 n)}}$ for $B, a>0$.

PROOF. By using (1.5) we see that

$$
\begin{equation*}
\pi(m+n)-\pi(m)=\sum_{k=m+1}^{m+n}(1 / \ln (k))+O\left[(m+n) e^{-a \sqrt{\ln (m+n)}}\right] \tag{2.8}
\end{equation*}
$$

It is obvious that we can replace (2.8) by

$$
\begin{equation*}
\pi(m+n)-\pi(m)-n / \ln (m+1)<O\left[(m+n) e^{-2 \sqrt{\ln (m+n)}}\right] \tag{2.9}
\end{equation*}
$$

Now \exists a constant $M>0$ such that for $m+n$ sufficiently large that the left hand side of (2.9) is strictly less than

$$
M(m+n) e^{-a \sqrt{\ln (m+n)}}
$$

Since $m \geq n \geq q m>2$ and $0<q \leq 1$ then

$$
M(m+n) e^{-a \sqrt{\ln (m+n)}}<M(n / q+n) e^{-a \sqrt{\ln (2 n)}}=B n e^{-\sqrt{\ln (2 n)}}
$$

Hence $\pi(m+n)-\pi(m)<n / \ln (m+1)+B n e^{-2 \sqrt{\ln (2 n)}}$.
COROLLARY 1. Let $0<q \leq 1$. If m, n are sufficiently large positive integers satisfying $m \geq n \geq q m>2$, then $\pi(m+n)-\pi(m)<\ln (n) \pi(n) / \ln (m+1)$.

PROOF. By using the result of Theorem 2 with a slight modification we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)<n \ln (n) /(\ln (n) \ln (m+1))+B n e^{-\sqrt{\ln (2 n)}} . \tag{2.10}
\end{equation*}
$$

We rearrange the terms in (2.1) so that one can give an upper bound to replace $n / \ln (n)$. With $M>0$, we now incorporate an upper bound of $n / \ln (n)$ into (2.10) to establish that

$$
\pi(m+n)-\pi(m)<\ln (n)\left[\pi(n)-\sum_{k=2}^{t-1}\left((k-1)!n / \ln ^{k}(n)\right)+M n / \ln ^{t}(n)\right] / \ln (m+1)+B n e^{-2 \sqrt{\ln (2 n)}}
$$

Hence for n sufficiently large we have

$$
\pi(m+n)-\pi(m)<\ln (n) \pi(n) / \ln (m+1)
$$

THEOREM 3. Let $0<q \leq 1$. If m, n are sufficiently large positive integers satisfying $m \geq n \geq q m>2$, then $\pi(m+n)-\pi(m)>n / \ln (m+n)-A n e^{-2 \sqrt{\ln (2 n)}}$ for $a>0$ and $A>0$. constant M we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)>\sum_{k=m+1}^{m+n}(1 / \ln (k))-M(m+n) e^{-2 \sqrt{\ln (m+n)}}-M m e^{-a \sqrt{\ln (m)}} \tag{2.11}
\end{equation*}
$$

With a slight modification in (2.11) and using another constant $\mathrm{M}^{\prime}>0$ we see that

$$
\begin{equation*}
\pi(m+n)-\pi(m)>n / \ln (m+n)-M^{\prime}(m+n) e^{-\varepsilon \sqrt{\ln (m+n)}} \tag{2.12}
\end{equation*}
$$

By rearranging the terms in (2.12) this will now become

$$
\begin{equation*}
M^{\prime}(m+n) \mathrm{e}^{-\mathrm{a} \sqrt{\ln (m+n)}}>n / \ln (m+n)+\pi(m)-\pi(m+n) \tag{2.13}
\end{equation*}
$$

Since $\mathrm{m} \geq \mathrm{n} \geq \mathrm{qm}>2$ and $0<\mathrm{q} \leq 1$ then

$$
M^{\prime}(m+n) e^{-a \sqrt{\ln (m+n)}}<M^{\prime}(n / q+n) e^{-a \sqrt{\ln (2 n)}}=A n e^{-\infty \sqrt{\ln (2 n)}}
$$

Hence $\pi(m+n)-\pi(m)>n / \ln (m+n)-$ Ane $e^{-\mathrm{a} \sqrt{\ln (2 n)}}$.
COROLLARY 2. Let $0<q \leq 1, \varepsilon>0$. If m, n are sufficiently large positive integers satisfying $m \geq n \geq q m>2$, then $\pi(m+n)-\pi(m)>\ln (n)\left(\pi(n)-(1+\varepsilon) n / n^{2}(n)\right) / \ln (m+n)$.

PROOF. By using the results of Theorem 3 with a slight modification we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)>n \ln (n) /(\ln (n) \ln (m+n))-A n e^{-\otimes \sqrt{\ln (2 n)}} \tag{2.14}
\end{equation*}
$$

Using an argument similar to that found in Corollary 1 , we rearrange the terms in (2.1) so that one can give a lower bound to replace $n / \ln (n)$. With $D>0$, we now incorporate a lower bound of $n / \ln (n)$ into (2.14) to establish the following

$$
\pi(m+n)-\pi(m)>\ln (n)\left[\pi(n)-\sum_{k=2}^{t-1}\left((k-1)!n / \ln ^{k}(n)\right)-D n / \ln ^{\prime}(n)\right] / \ln (m+n)-A n e^{-2 \sqrt{\ln (2 n)}}
$$

Hence for sufficiently large n

$$
\pi(m+n)-\pi(m)>\ln (n)\left(\pi(n)-(1+\varepsilon) n / \ln ^{2}(n)\right) / \ln (m+n)
$$

THEOREM 4. Let $1 \leq \theta<2$. Let m, n be positive integers with $m>2657$ and $m \geq n \geq m^{1 / \theta}$. If the Riemann hypothesis holds, then $\pi(m+n)-\pi(m)<n / \ln (m+1)+\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi$.

PROOF. By using the upper and lower bounds of (1.7) we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)<\operatorname{Li}(m+n)-\operatorname{Li}(m)+(\sqrt{m+n} \ln (m+n)+\sqrt{m} \ln (m)) / 8 \pi \tag{2.15}
\end{equation*}
$$

Noting that $\sqrt{m+n} \ln (m+n)>\sqrt{m} \ln (m)$ and using (1.6), then (2.15) will now become

$$
\begin{equation*}
\pi(m+n)-\pi(m)<\sum_{k=m+1}^{m+n}(1 / \ln (k))+\sqrt{m+n} \ln (m+n) / 4 \pi . \tag{2.16}
\end{equation*}
$$

It is obvious that we can replace (2.16) by

$$
\pi(m+n)-\pi(m)<n / \ln (m+1)+\sqrt{m+n} \ln (m+n) / 4 \pi
$$

Given that $\mathrm{m} \geq \mathrm{n} \geq \mathrm{m}^{1 / \theta}$ for $1 \leq \theta<2$ we may now conclude

$$
\pi(m+n)-\pi(m)<n / \ln (m+1)+\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi
$$

COROLLARY 3. Let $1 \leq \theta<2$. Let m, n be positive integers with $m>2657, n>59$, and $\mathrm{m} \geq \mathrm{n} \geq \mathrm{m}^{1 / \theta}$. If the Riemann hypothesis holds, then $\pi(m+n)-\pi(m)<\ln (n)\left[\pi(n)-n /\left(2 \ln ^{2}(n)\right)\right] / \ln (m+1)+\sqrt{n^{\theta}+n \ln \left(n^{\theta}+n\right) / 4 \pi}$.

PROOF. By using the result of Theorem 4 with a slight modification we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)<n \ln (n) /(\ln (m+1) \ln (n))+\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi \tag{2.17}
\end{equation*}
$$

By rearranging (1.8) and incorporating it into (2.17) we achieve the following:

$$
\pi(m+n)-\pi(m)<\ln (n)\left[\pi(n)-n /\left(2 \ln ^{2}(n)\right)\right] / \ln (m+1)+\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi
$$

THEOREM 5. Let $1 \leq \theta<2$. Let m, n be positive integers with $m>2657$ and $m \geq n \geq m^{1 / \theta}$. If the Riemann hypothesis holds then $\pi(m+n)-\pi(m)>n / \ln (m+n)-\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi$.

PROOF. By using the upper and lower bounds of (1.7) we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)>\operatorname{Li}(m+n)-L i(m)-(\sqrt{m+n} \ln (m+n)+\sqrt{m} \ln (m)) / 8 \pi . \tag{2.18}
\end{equation*}
$$

Noting that $\sqrt{m+n} \ln (m+n)>\sqrt{m} \ln (m)$ and using (1.6), then (2.18) will now become

$$
\begin{equation*}
\pi(m+n)-\pi(m)>\sum_{k=m+1}^{n+m}(1 / \ln (k))-\sqrt{m+n} \ln (m+n) / 4 \pi . \tag{2.19}
\end{equation*}
$$

It is obvious that we can replace (2.19) by

$$
\pi(m+n)-\pi(m)>n / \ln (m+n)-\sqrt{m+n} \ln (m+n) / 4 \pi
$$

Given that $\mathrm{m} \geq \mathrm{n} \geq \mathrm{m}^{1 / \theta}$ for $1 \leq \theta<2$ we may conclude that

$$
\pi(m+n)-\pi(m)>n / \ln (m+n)-\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi
$$

COROLLARY 4. Let $1 \leq \theta<2$. Let m, n be positive integers with $m>2657$ and $m \geq n \geq m^{1 / \theta}$. If the Riemann hypothesis holds, then

$$
\pi(m+n)-\pi(m)>\ln (n)\left(\pi(n)-3 n /\left(2 \ln ^{2}(n)\right)\right) / \ln (m+n)-\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi
$$

PROOF. By using the result of Theorem 5 with a slight modification we have

$$
\begin{equation*}
\pi(m+n)-\pi(m)>n \ln (n) /(\ln (m+n) \ln (n))-\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi . \tag{2.20}
\end{equation*}
$$

By rearranging (1.9) and incorporating into (2.20) we achieve the following

$$
\pi(m+n)-\pi(m)>\ln (n)\left(\pi(n)-3 n /\left(2 \ln ^{2}(n)\right)\right) / \ln (m+n)-\sqrt{n^{\theta}+n} \ln \left(n^{\theta}+n\right) / 4 \pi
$$

3. FINAL COMMENTS.

I feel that Theorem 1 and the Corollaries 1 and 3 are relevant to the disagreement between Erdbs and Richards in their paper [4] dealing about whether the following conjecture is true.

$$
\begin{equation*}
\pi(x+y)-\pi(x)-\pi(y)<c y / \ln ^{2}(y) \tag{3.1}
\end{equation*}
$$

Of course, Theorem 1 states that (3.1) is true provided that for $0<d \leq 1, x$ and y are sufficiently large and $x \geq y \geq d x>2$. Under similar restrictions, Corollary 1 also states that (3.1) is true. Moreover, if we assume the conditions that are given in the Corollary 3 then we can give explicit bounds for which (3.1) is correct.

As for the mysterious person who told P. Erdठs [12] that the "correct" conjecture should be $\pi(x+y) \leq \pi(x)+2 \pi(y / 2)$, I claim to have made some progress in this direction. From Rosser, Schoenfeld and Yohe [13] we have $\pi(2 x)-\pi(x)<\pi(x)$. If $m \geq n$ then $\ln (n) \pi(n) / \ln (m+1)<\pi(n)<2 \pi(n / 2)$. Hence with the restrictions found in the Corollary 1 we have $\pi(m+n) \leq \pi(m)+2 \pi(n / 2)$.

4. ACKNOWLEDGEMENTS.

「 am deeply indebted to Professor J. Repka for his suggestions which led to a better presentation of the manuscript.

REFERENCES

1. SCHINZEL, A., Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers", Acta Arith. 7 (1961), 1-8.
2. SCHINZEL, A. et SIERPINSKI, W., Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208.
3. SEGAL, S.L., On $\pi(x+y) \leq \pi(x)+\pi(y)$, Trans. Amer. Math. Soc. 104(3)(1962), 523-527.
4. ERDOS, P. and RICHARDS I., Density Functions for Prime and Relatively Prime Numbers, Monatshefte für Math. 83(1977), 99-112.
5. HENSLEY, D. and RICHARDS, I., Primes in intervals, Acta Arith. 25 (1974), 375-391.
6. MONTGOMERY, H.L. and VAUGHAN, R.C., The Large Sieve, Mathematika 20 (1973), 119134.
7. HEATH-BROWN, D.R. and IWANIEC, H., On the Difference Between Consecutive Primes, Invent. Math. 55 (1979), 49-69.
8. AYOUB, R., An Introduction to the Analytic Theory of Numbers, American Mathematical Society (1963), 37-134.
9. ESTERMANN, T., Introduction to Modern Prime Number Theory, Cambridge University Press (1961), 1-16.
10. SCHOENFELD, L., Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$. II, Math. Comp. 30(1976), 337-360.
11. ROSSER, J.B. and SCHOENFELD, L. Approximate Formulas for Some Functions of Prime Numbers, Illinois J. Math. 6(1962), 64-94.
12. ERDOS, P., Problems and Results in Number Theory, Recent Progress in Analytic Number Theory. Academic Press Volume 1 (1981), 1-13.
13. ROSSER, J.B., SCHOENFELD, L. and YOHE, J.M. Rigourous computations and zeros of the Riemann zeta function, Information Processing 68, Amsterdam, 1969.
