ON STABILITY AND BOUNDEDNESS OF SOLUTIONS OF A CERTAIN FOURTH-ORDER DELAY DIFFERENTIAL EQUATION

EMMANUEL O. OKORONKWO (Deceased)

Department of Mathematical Sciences
Loyola University
New Orleans, Louisiana 70118, U.S.A.
(Received February 12, 1987 and in revised form February 2, 1988)

Abstract

Using a Razumikhin - type theorem, we deduce sufficient conditions that guarantee the uniform asymptotic stability and boundedness of solutions of a scalar real fourth-order delay differential equation. The Lyapunov function constructed for an ordinary fourth-order differential equation is seen to work for the delay system.

KEY WORDS AND PHRASES. Stability, boundedness, uniform asymptotic stability. 1980 AMS SUBJECT CLASSIFICATION CODE. 34K.

1. INTRODUCTION.

The Razumikhin-type theorems give sufficient conditions that ensure the stability and boundedness of the solutions of a delay differenital equation in terms of the rate of change of a function along solutions. For the use of Lyapunov functionals to study stability and boundedness of solutions of delay differential equations of the first, second, third and the fourth orders refer to the papers of Chukwu [1], Sinha [2]; and to Driver [3], and [5]. On the other hand, using the Razumikhin approach, Hale [5], used Lyapunov functions to give sufficient conditions for stability and boundedness of a first-order and a second-order delay differential equations. Razumikhin in [6] utilized his theorems to determine stability regions of a second-order control system dscribed by a delay differential equation, and in another case in [6] investigated the stability problem of a third-order delay system of equations. Essentially, our main aim here is to use the Lyapunov function utilized by Ezeilo in [7] for ordinary differential equations to attempt to prescribe some sufficient conditions that guarantee the uniform asymptotic stability and the boundedness of the solutions of the fourth-order delay differential equation of the form

$$
\cdots \dot{x}(t)+f\left(\ddot{x}^{\bullet}(t)\right) \dot{x}(t)+\alpha_{2} \dot{x}(t)+\beta_{2} \ddot{x}(t-h)+g(\dot{x}(t-h))
$$

$$
\begin{equation*}
+\alpha_{4} x(t)+\beta_{4} x(t-h)=P(t) \tag{1.1}
\end{equation*}
$$

where $\alpha_{2}, \beta_{2}, \alpha_{4} \beta_{4}$ are constants and $h>0$ is a constant. The function f, g, p are completely continuous depending on the arguments displayed explicitly; f, g, p are assumed also to satisfy enough additional smoothness conditions to ensure the solution
of (1.1) through any initzaı aata is continuous in the initial data and in time. We shall consider stability of the trivial solutions of (l.1) for the case $p \equiv 0$. Corresponding results are deduced for a real fourth-order delay differential equation with constant coefficients. As a consequence, a generalized Routh-Hurwitz condition for a delay fourth order linear equation is deduced when the delay is sufficiently small.

2. PRELIMINARIES.

Dots such as are in equation (1.1) denote differentiation with respect to t. E^{n} is an n-dimensional linear vector space over the reals with norm for any $x \varepsilon E^{n}$ written $|x|$. For $h \geqslant 0, C=C\left([-h, 0], E^{n}\right)$ with the topology of uniform convergence. We designate the norm of an element ϕ by $||\phi||$ and defined by $||\phi||=\operatorname{Sup}_{-h<\theta<0}|\phi(\theta)|$.

If $\sigma \varepsilon E, a \geqslant 0$ and $x \varepsilon C\left([\sigma-h, \sigma+a], E^{n}\right)$ then for any $t \varepsilon[\sigma, \sigma+a]$ we let $x_{t} \varepsilon C$ be defined by $x_{t}(\theta)=x(t+\theta),-h \leqslant \theta \leqslant 0$. If D is a subset of $E \times E$, and $f: D \rightarrow E^{n}$ is given function, then

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x_{t}\right) \tag{2.1}
\end{equation*}
$$

is a retarded functional differential equation on D. Note that (1.1) is a special case of (2.1) and it also includes ordinary differential equations when $h=0$.

DEFINITION 2.1. A function x is said to be a solution of (2.1) on $(\sigma+h, \sigma+a)$ if there are $\sigma \in E$ and $a>0$ such that $\left.x \in C(\sigma-h, \sigma+a], E^{n}\right),\left(t, x_{t}\right) \varepsilon D$ and $x(t)$ satisfies (2.1) for $t \in[\sigma, \sigma+a]$. For given $\sigma \varepsilon E, \phi \varepsilon C$, we say $x(\sigma, \phi)$ is a solution of (2.1) with initial value ϕ at σ or simply through (σ, ϕ) if there is an a >0 such that $x(\sigma, \phi)$ is a solution of equation (2.1) on $[\sigma-h, \sigma+a)$ and $x_{\sigma}(\sigma, \phi)=\phi$.

DEFINITION 2.2. Suppose $f(t, 0)=0$ for all $t \varepsilon E$, then the solution $x=0$ of (2.1) is said to be uniformly stable if for any $\sigma \varepsilon E, \varepsilon>0$, there is $\delta=\delta(\varepsilon)>0$ such that $\| \phi| |<\delta$ implies $\left\|x_{t}(\sigma, \phi)\right\|<\varepsilon$ for $t \geqslant \sigma$. The solution $x=0$ of (2.1) is uniformly asymptotically stable if it is uniformly stable and there is a b >0 such that for every $\eta>0$, there is a $T(\eta)$ such that $\|\phi\| \leqslant b$ implies
$\left\|x_{t}(\sigma, \phi)\right\| \leqslant n$ for $t \geqslant \sigma+T(\eta)$ for every $\sigma \varepsilon E$.
DEFINITION 2.3. The solutions $x(\sigma, \phi)$ of (2.1) are uniformly bounded if for any $\alpha>0$ there is $a B=B(\alpha)>0$ such that for all $\sigma \varepsilon E, \phi \varepsilon C$ and $\|\phi\| \leqslant \alpha$, we have $\left\|x_{t}(\sigma, \phi)\right\| \leqslant B$ for all $t \geqslant \sigma$.

The following theorems (due to Razumikhin and Krasovskii [8]) for stability of solutions of (2.1) are reproduced from [5]. First if $V: E \times C \rightarrow E$ is continuous and $x(\sigma, \phi)$ is the solution of (2.1) through (σ, ϕ), then we define $V(t, \phi(0))=\bar{L}_{r \rightarrow 0} \operatorname{Lim}_{r}\left[V\left(t+r, x_{t+r}(t, \phi)-V(t, \phi(0)]\right.\right.$ where $x(t, \phi)$ is the solution of (2.1) through (t, ϕ).

PROPOSITION 2.1. (Razumikhin) Suppose $f: E \times C \rightarrow E^{n}$ takes $E \times$ (bounded sets of C) into bounded sets of E^{n} and consider (2.1). Suppose $u, v, w:[0, \infty) \rightarrow[0, \infty)$ are continuous nondecreasing functions, $u(s), v(s)$ positive for $s>0, u(0)=v(0)=0$. If there is a continuous function $V: E \times E^{n} \rightarrow E$ such that

$$
\begin{align*}
& u(|x|) \leqslant V(t, x) \leqslant v(|x|), t \varepsilon E, x \varepsilon E^{n}, \tag{2.2}\\
& \dot{V}(t, \phi(0)) \leqslant-w(|\phi(0)|) \tag{2.3}
\end{align*}
$$

if $V(t+\theta, \phi(\theta)) \leqslant V(t, \phi(0)), \theta \varepsilon[-h, 0]$, then the solution $x=0$ of (2.1) is uniformly stable.

PROPOSITION 2.2: (Krasovskii) Suppose all the conditions of proposition 2.1 are satisfied and in addition $w(s)>0$ if $s>0$. If there is a continuous nondecreasing function $J(s)>s$ for $s>0$ such that condition (2.3) is strengthened to

$$
\begin{equation*}
\nabla(t, \phi(0)) \leqslant-w(|\phi(0)|) \text { if } V(t+\theta, \phi(\theta))<J(V(t, \phi(0)) \theta \varepsilon[-h, 0], \tag{2.4}
\end{equation*}
$$

then the solution $x=0$ of (2.1) is uniformly asymptotically stable. If $u(s) \rightarrow \infty$ as $s \rightarrow \omega$, then the solution $x=0$ is also a global attractor for (2.1) so that every solution $x(\sigma, \phi)$ of (2.1) satisifes $x_{t}(\sigma, \phi) \rightarrow 0$ as $t \rightarrow \infty$ We shall investigate (1.1) for $p \equiv 0, p \neq 0$ respectively in the equivalent forms

$$
\begin{align*}
& \dot{x}(t)=y(t) \\
& \dot{y}(t)=z(t) \\
& \dot{z}(t)=w(t) \\
& \dot{w}(t)=-w(t) f(z(t))-a_{2} z(t)-g(y(t))-a_{4} x(t)+ \\
& \beta_{2} \int_{-h}^{0} w(t+\theta) d \theta+\beta_{4} \int_{-h}^{0} y(t+\theta) d \theta+\int_{-h}^{0} g^{\prime}(y(t+\theta)) z(t+\theta) d \theta \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{x}(t)=y(t) \\
& \dot{y}(t)=z(t) \\
& \dot{z}(t)=w(t) \\
& \dot{w}(t)=-w(t) f(z(t))-a_{2} z(t)-g(y(t))-a_{4} x(t)+ \\
& \beta_{2} \int_{-h}^{0} w(t+\theta) d \theta+\beta_{4} \int_{-h}^{0} y(t+\theta) d \theta+\int_{-h}^{0} g^{\prime}(y(t+\theta)) z(t+\theta) d \theta+p(t) \tag{2.6}
\end{align*}
$$

where $a_{2}=\alpha_{2}+\beta_{2}, a_{4}=\alpha_{4}+\beta_{4}$.
3. STATEMENT OF RESULT.

THEOREM 3.1. Assume that
(i) the constants

$$
a_{2}>0, a_{4}>0 \text { and } 0<a_{1}, a_{3}, c_{0}, M<\infty
$$

(ii) $f(\xi)>a_{1}>0$ for all ξ, and $g(\xi) /{ }_{\xi}>a_{3}>0$ for all $\xi \neq 0$.

$$
\begin{equation*}
\left[a_{1} a_{2}-g^{\prime}(\xi)\right] a_{3}-a_{1} a_{4} f(z(t)) \geqslant c_{0}>0 \text { for all } \xi, z(t) \tag{3.1}
\end{equation*}
$$

(iii) $g(0)=0 \quad\left|g^{\prime}(n)\right| \leqslant M$ for all η, and

$$
\begin{aligned}
& g^{\prime}(\xi)-g(\xi) / \xi_{\xi} \leqslant \lambda_{1} \text { for a11 } \xi \neq 0 \text { where } \lambda_{1} \text { is such that } \\
& \text { (iv) }\left[\frac{1}{z(t)} \int_{0}^{z(t)} f(\xi) d \xi\right]-f(z(t)) \leqslant \lambda_{2} \text { for all } z(t) \neq 0
\end{aligned}
$$

where

$$
\begin{equation*}
\lambda_{2}<\frac{2 c_{0}}{a_{1}^{2} a_{3}} \tag{3.3}
\end{equation*}
$$

Furthermore,
(v) if $q>1, \beta=\max \left[\beta_{2}, \beta_{4}, M\right], d=\max \left[1, d_{1}, d_{2}\right]$ where

$$
\begin{equation*}
d_{1}=\varepsilon+1 / a_{1} ; d_{2}=\varepsilon+a_{4} / a_{3} \tag{3.4}
\end{equation*}
$$

and where $\varepsilon>0$ is defined by

$$
\begin{equation*}
\varepsilon=\min \left[\frac{a_{3}}{4 a_{4} d_{0}}\left(\frac{2 a_{4} c_{0}}{a_{1} a_{3}^{2}}-\lambda_{1}\right), \frac{a_{1}}{4 d_{0}}\left(\frac{2^{c_{0}}}{a_{1}^{2} a_{3}}-\lambda_{2}\right), \frac{c_{0}}{2 a_{1} a_{3} d_{0}}\right] \tag{3.5}
\end{equation*}
$$

with $c_{0}, d_{0}=d_{0}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ positive constants, λ_{1}, λ_{2} nonnegative constants, and with ρ defined by

$$
\begin{equation*}
\rho=\min \left[\frac{1}{3} a_{3} \varepsilon, \frac{1}{3} a_{1} \varepsilon, \frac{c_{0}}{6 a_{1} a_{3}}\right] \text {, then the condition Bdqh }<\rho \tag{3.6}
\end{equation*}
$$

holds and the trivial solution of (2.6) is uniformly asymptotically stable. Observe that since $a_{1}>0, a_{2}>0, a_{3}>0, a_{4}>0, c_{0}>0, d_{0}>0$, by (3.2) and (3.3), ε is positive. Consider the special case of (1.1) namely

$$
\begin{equation*}
\cdots \dot{x}(t)+a_{1} \dot{x}^{\cdot}(t)+\alpha_{2}^{\dot{x}}(t)+\beta_{2}^{\dot{x}} \dot{x}(t-h)+a_{3} \dot{x}(t-h)+\alpha_{4} x(t)+\beta_{4} x(t-h)=0 \tag{3.7}
\end{equation*}
$$

where $a_{1}, \alpha_{2}, \beta_{2}, a_{3}, \alpha_{4}, \beta_{4}$ are constants. Then condition (iii) and (iv) are fulfilled trivially with $\lambda_{1}=\lambda_{2}=0$. Conditions (i) and (ii) reduce to
$a_{1}>0, a_{2}=\left(\alpha_{2}+\beta_{2}\right)>0, a_{3}>0, a_{4}=\left(\alpha_{4}+\beta_{4}\right)>0,\left(a_{1} a_{2}-a_{3}\right) a_{3}-a_{1} a_{4}^{2}>c_{0}>0$
If we use (3.4) we find that
$a_{2}-d_{1} g^{\prime}(\xi)-d_{2} f(z(t))=a_{2}-\frac{a_{3}}{a_{1}}-\frac{a_{1} a_{4}}{a_{3}}-\left(a_{1}+a_{3}\right) \varepsilon \geqslant \frac{c_{0}}{a_{1} a_{3}}-\left(a_{1}+a_{3}\right) \varepsilon_{0}$
We can therefore choose $d_{0}=\left(a_{1}+a_{3}\right)$ so that $\varepsilon=\frac{c_{0}}{2 a_{1} a_{3}\left(a_{1}+a_{3}\right)}$.
Hypothesis (v) now becomes

$$
\begin{aligned}
& \text { Bdqh }<\min \left[\frac{c_{0}}{6 a_{1}\left(a_{1}+a_{3}\right)}, \frac{c_{0}}{6 a_{3}\left(a_{1}+a_{3}\right)}\right] \\
& \text { where } \beta=\max \left[\beta_{2}, \beta_{4}, a_{3}\right], \\
& d=\max \left[1, d_{1}, d_{2}\right], \text { and } \\
& d_{1}=\varepsilon+\frac{1}{a_{1}}, d_{2}=\varepsilon+\frac{a_{4}}{a_{3}} .
\end{aligned}
$$

Therefore the sufficient conditions for all solution of (3.7) to be uniformly asymptotically stable are
(i) the Routh-Hurwitz Criteria

$$
\begin{aligned}
& a_{1}>0, a_{2}>0, a_{3}>0 \\
& a_{1} a_{2}-a_{3}>0, a_{4}>0 \\
& \left(a_{1} a_{2}-a_{3}\right) a_{3}-a_{1}^{2} a_{4}>c_{0}>0
\end{aligned}
$$

(ii) $q>1$

$$
\text { Bdqh }<\min \left[\frac{c_{0}}{6 a_{1}\left(a_{1}+a_{3}\right.}, \frac{c_{0}}{6 a_{3}\left(a_{1}+a_{3}\right)}\right] .
$$

Hence all roots of the equation

$$
\begin{equation*}
\lambda^{4}+a_{1} \lambda^{3}+\alpha_{2} \lambda^{2}+\beta_{2} e^{-\lambda h} \lambda^{2}+a_{3} \lambda e^{-\lambda h}+\alpha_{4}+\beta_{4} e^{-\lambda h}=0 \tag{3.8}
\end{equation*}
$$

will have negative real parts if conditions (i) and (ii) hold. If $p \neq 0$, we establish: Theorem 3.2. If the conditions in the hypotheses (i) - (v) of theorem 3.1 hold and if further

$$
\begin{equation*}
|p(t)| \leqslant m \tag{3.9}
\end{equation*}
$$

for some $m>0$ and for all $t \geqslant \sigma$, then the solutions of (2.6) are uniformly bounded.
4. THE FUNCTION $V=V(x(t), y(t), z(t), w(t))$

Define the Lyapunov function $V=V(x(t), y(t), z(t), w(t))$ by

$$
\begin{align*}
2 V= & a_{4} d_{2} x^{2}(t)+\left(a_{2} d_{2}-a_{4} d_{1}\right) y^{2}(t)+2 \int_{0}^{y(t)} g(\eta) d \eta+ \\
& +\left(a_{2} d_{1}-d_{2}\right) z^{2}(t)+2 d_{2} y(t) w(t)+2 \int_{0}^{z(t)} \xi f(\xi) d \xi+ \\
& +d_{1} w^{2}(t)+2 a_{4} x(t) y(t)+2 a_{4} d_{1} x(t) z(t)+2 z(t) w(t) \\
& +2 d_{2} y(t) \int_{0}^{z(t)} f(\xi) d \xi+2 d_{1} z(t) g(y(t)) . \tag{4.1}
\end{align*}
$$

where $d_{1}=\varepsilon+\frac{1}{a_{1}}$ and $d_{2}=\varepsilon+\frac{a_{4}}{a_{3}}$ with ε defined by (3.5). The proofs of Theorems 3.1 and 3.2 rest on ${ }^{1}$ the function V^{3} defined by (4.1) and which was utilized by Ezeilo in [7].

LEMMA 4.1. Given the hypotheses (i) - (iv) of Theorem 3.1, there are continuous nondecreasing functions $u, v:[0, \infty)+[0, \infty), u(s), v(s)$ positive for $s>0$ with $u(0)=v(0)=0$, such that $u(|x|) \leqslant V(x(t), y(t), z(t), w(t)) \leqslant v(|x|)$.

PROOF. Take

$$
\begin{equation*}
\varepsilon=\varepsilon_{1} \leqslant \min \left[\frac{a_{3}}{4 a_{4}{ }^{d_{0}}}\left(\frac{2 a_{4} c_{0}}{a_{1} a_{3}^{2}}-\lambda_{1}\right), \frac{a_{1}}{4 d_{0}}\left(\frac{2 c_{0}}{a^{2}{ }_{1} a_{3}}-\lambda_{2}\right)\right] . \tag{4.2}
\end{equation*}
$$

Then, by the analysis in [7], $V(0,0,0,0)=0$ and there exist constants $B_{i}>0(i=1,2,3,4)$ depending on $\varepsilon, a_{1}, a_{2}, a_{3}, a_{4}, \lambda_{1}, \lambda_{2}$ and c_{0} such that

$$
\begin{equation*}
V(x(t), y(t), z(t), w(t)) \geqslant B_{5}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \tag{4.3}
\end{equation*}
$$

for all $x(t), y(t), z(t), w(t)$ where $B_{5}=\min B_{i}(i=1,2,3,4)$ provided ε is fixed by (4.2).

Now take $B_{5}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right]$ to be $u(|x|)$. It now remains to produce a $\mathrm{v}(|\mathrm{x}|$). From relation (4.1)

$$
\begin{align*}
2 v & \leqslant a_{4} d_{2} x^{2}(t)+d_{1} w^{2}(t)+2 a_{4}|x(t) y(t)| \\
& +2 a_{4} d_{1}|x(t) z(t)|+2 d_{2}|y(t) w(t)|+2|z(t) w(t)| \\
& \left.\left.+\mid a_{2} d_{2}-a_{4} d_{1}\right)\left|y^{2}(t)+\right| a_{2} d_{1}-d_{2}\right) \mid z^{2}(t) \\
& +\int_{0}^{y(t)} g(n) d \eta+2 \int_{0}^{z(t)} \xi f(\xi) d \xi+2 d_{2} y(t) \int_{0}^{z(t)} f(\xi) d \xi \\
& +2 d_{1} z(t) g(y(t)) . \tag{4.4}
\end{align*}
$$

Now from (3.1) of hypotheses (ii) Theorem 3.1, $g^{\prime}(y(t))<a_{1} a_{2}$ so that $g(y(t))<a_{1} a_{2}|y(t)| ;$ and $f(z(t))<a_{2} a_{3} / a_{4}$. Therefore,

$$
\begin{aligned}
& 2 \int_{0}^{y(t)} g(\eta) d \eta \leqslant a_{1} a_{2} y^{2}(t), 2 \int_{0}^{z(t)} \xi f(\xi) d \xi \leqslant \frac{a_{2} a_{3}}{a_{4}} z^{2}(t), \\
& 2 d 2 y(t) \int_{0}^{z(t)} f(\xi) d \xi \leqslant 2 d_{2}|y(t)||z(t)| \frac{a_{2} a_{3}}{a_{4}} \text {, and } \\
& 2 d_{1} z(t) g(y(t))<2 d_{1} a_{1} a_{2}|z(t)||y(t)| .
\end{aligned}
$$

Substituting these estimates into (4.4) we have,

$$
\begin{aligned}
2 V & \leqslant a_{4} d_{2} x^{2}(t)+d_{1} w^{2}(t)+2 a_{4}|x(t) y(t)|+2 a_{4} d_{1}|x(t) z(t)| \\
& +2 d_{2}|y(t) w(t)|+2|z(t) w(t)|+\left|\left(a_{2} d_{2}-a_{4} d_{1}\right)\right| y^{2}(t)+ \\
& +\left|\left(a_{2} d_{1}-d_{2}\right)\right| z^{2}(t)+a_{1} a_{2} y^{2}(t)+\left(a_{2} a_{3} / a_{4}\right) z^{2}(t)+ \\
& +\left(2 a_{2} a_{3} d_{2} / a_{4}\right)|y(t) z(t)|+2 a_{1} a_{2} d_{1}|z(t) y(t)| .
\end{aligned}
$$

using the inequality

$$
\begin{align*}
2|a b| & \leqslant a^{2}+b^{2} \text {, we have } \\
2 V & \leqslant a_{4} d_{2} x^{2}(t)+d_{1} w^{2}(t)+a_{1} a_{2} y^{2}(t)+l y^{2}(t)+m z^{2}(t) \\
& +a_{4}\left(x^{2}(t)+y^{2}(t)\right)+a_{4} d_{1}\left(x^{2}(t)+z^{2}(t)\right)+d_{2}\left(y^{2}(t)+w^{2}(t)\right) \\
& +\left(z^{2}(t)+w^{2}(t)\right)+a_{1} a_{2} d_{1}\left(z^{2}(t)+y^{2}(t)\right)+a_{2} a_{3} / a_{4} z^{2}(t) \\
& +\frac{a_{2} a_{3} d_{2}}{a_{4}}\left(y^{2}(t)+w^{2}(t)\right) . \tag{4.5}
\end{align*}
$$

where

$$
\begin{aligned}
& \ell=\left|a_{2} d_{2}-a_{4} d_{1}\right| \text { and } m=\left|a_{2} d_{1}-d_{2}\right| . \text { On gathering terms, } \\
& V \leqslant B_{6} x^{2}(t)+B_{7} y^{2}(t)+B_{8} z^{2}(t)+B_{9} w^{2}(t), \text { where } \\
& B_{6}=\left(a_{4} d_{2}+a_{4}+a_{4} d_{1}\right), \\
& B_{7}=\left(a_{1} a_{2}+\ell+a_{4}+d_{2}+a_{1} a_{2} d_{1}+a_{2} a_{3} d_{2} / a_{4}\right) \\
& B_{8}=\left(m+a_{4} d_{1}+a+a_{1} a_{2} d_{1}+a_{2} a_{3} / a_{4}+a_{2} a_{3} d_{2} / a_{4}\right) \text { and } \\
& B_{9}=\left(1+d_{1}+d_{2}\right) .
\end{aligned}
$$

Let $B_{10}=\max B_{i}(i=6,7,8,9$. Then

$$
\begin{equation*}
V(x(t), y(t), z(t), w(t)) \leqslant B_{10}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \tag{4.6}
\end{equation*}
$$

Take $v(|x|)=B_{10}\left[x^{2}(t)+y^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] . \quad$ Clearly $u(0)=v(0)=0$,

$$
u(s)>0, v(s)>0 \text { for } s=x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)>0
$$

This proves lemma 4.1.
LEMMA 4.2. Subject to hypotheses (i) - (iv) of Theorem 3.1, there are continuous nondecreasing functions $\mathrm{J}(\mathrm{s})>\mathrm{s}$ for $\mathrm{s}>0$ and a function $w(s)$ with $w(s)>0, s \neq 0$ such that

$$
V(t, \phi(0))<-w(|\phi(0)|) \text { if } V(t+\theta, \phi(\theta))<J(V(t, \phi(0))), \theta \quad[-h, 0]
$$

PROOF OF LEMMA 4.2. The proof depends on hypotheses (v) and (vi) and on the three ineqalities arising from hypotheses (i) - (iv) of Theorem 3.l, namely:

$$
\begin{align*}
& d_{1}-1 / f(z(t) \geqslant \varepsilon, \tag{4.7}\\
& d_{2}-\frac{a_{4} y(t)}{g(y(t))} \geqslant \varepsilon, \tag{4.8}\\
& \text { for all } z(t) \neq 0, \quad y(t) \neq 0
\end{align*}
$$

and

$$
\begin{equation*}
a_{2}-d_{1} g^{\prime}(y(t))-d_{2} f\left(z(t) \geqslant \frac{c_{0}}{a_{1} a_{3}}-\varepsilon d_{0} \text { for all } y(t), z(t)\right. \tag{4.9}
\end{equation*}
$$

where d_{0} is a constant that depends only on $a_{1}, a_{2}, a_{3}, a_{4}$. Now, by (3.4), $d_{1}-1 / a_{1}=\varepsilon$ and since by hypothesis (ii) of Theorem 3.1, $f(z(t)) \geqslant a_{1}>0$, (4.7) follows. Also by (3.4), $d_{2}-{ }^{-} / a_{3}=\varepsilon$ and since by hypothesis (ii) again $y / g(y) \leqslant 1 / a_{3},(4.8)$ is immediate.
Using (3.4) we have

$$
\begin{aligned}
& a_{2}-d_{1} g^{\prime}(y(t))-d_{2} f(z(t))=a_{2}-\left(\varepsilon+1 / a_{1}\right) g^{\prime}(y(t))-\left(\varepsilon+\frac{a_{4}}{a_{3}}\right) f(z(t)) \\
= & \frac{1}{a_{1} a_{3}}\left[a_{1} a_{2}-g^{\prime}(y(t)) a_{3}-a_{1} a_{4} f(z(t))\right]-\varepsilon\left[g^{\prime}(y(t))+f(z(t))\right] .
\end{aligned}
$$

Therefore by (3.1), $a_{2}-d_{1} g^{\prime}(y(t))-d_{2} f(z(t)) \geqslant \frac{c_{0}}{a_{1} a_{3}}-\varepsilon\left[g^{\prime}(y(t))+f(z(t))\right]$.
Since $g^{\prime}(y(t))<a_{1} a_{2}$ and $f(z(t))<a_{2} a_{3} / a_{4}$ for all $y(t), z(t)$,

$$
a_{2}-d_{1} g^{\prime}(y(t))-d_{2} f(z(t)) \geqslant \frac{c_{0}}{a_{1} a_{2}}\left(a_{1} a_{3}+\frac{a_{2} a_{3}}{a_{4}} \varepsilon\right) \text { for all } y(t), z(t)
$$

and this establishes (4.9). Now define a function G of $y(t)$ by

$$
G(y(t))=\left\{\begin{array}{l}
\frac{g(y(t))}{y(t)}, \text { if } y(t) \neq 0 \tag{4.10}\\
g^{\prime}(0), \text { if } y(t)=0
\end{array}\right\}
$$

Also, let

$$
\begin{equation*}
F(z(t))=\int_{0}^{z(t)} f(\xi) d \xi \tag{4.11}
\end{equation*}
$$

Observe that the conditions $g(0)=0$ and $F(0)=0$ imply resepectively that

$$
\begin{align*}
& G(y(t))=g^{\prime}\left(\theta_{1} y(t)\right) \tag{4.12}\\
& F(z(t))=z(t) f\left(\theta_{2} z(t)\right)
\end{align*}
$$

where $0<\theta_{1} \leqslant 1(i=1,2)$.
Given any solution (x, y, z, w) of (2.5)

$$
\begin{aligned}
2 \hat{\theta}= & y(t)\left[2 a_{4} d_{2} x(t)+2 a_{4} y(t)+2 a_{4} d_{1} z(t)\right]+z(t)\left[2 a_{4} x(t)\right. \\
& +2 d_{2} w(t)+2 K y(t)+2 d_{1} z(t) g^{\prime}(y(t))+2 g(y(t)) \\
& \left.+2 d_{2} \int_{0}^{z(t)} f(\xi) d \xi\right]+w(t)\left[2 a_{4} d_{1} x(t)+2 w(t)+2 c z(t)\right. \\
& \left.\left.+2 d_{1} g(y(t))+2 z(t) f(z(t))+2 d_{2} y(t) f(z(t))\right)\right] \\
& +\left[2 w(t) d_{1}+2 d_{2} y(t)+2 z(t)\right]\left[-w(t) f(z(t))-a_{2} z(t)\right. \\
& \left.-g(y(t))-a_{4} x(t)\right]+\left[2 w(t) d_{1}+2 d_{2} y(t)+2 z(t)\right] \\
& \cdot\left[\beta_{2} \int_{-h}^{0} w(t+\theta) d \theta+\beta_{4} \int_{-h}^{0} y(t+\theta) d \theta+\int_{-h} g^{\prime}(y(t+\theta)) z(t+\theta) d \theta\right]
\end{aligned}
$$

where $K=\left(a_{2} d_{2}-a_{1} d_{1}\right)$ and $c=\left(a_{2} d_{1}-d_{2}\right)$. On simplication, the above relation reduces to

$$
\begin{aligned}
2 \theta & =2 a_{4} y^{2}(t)+2 d_{1} z^{2}(t) g^{\prime}(y(t))+2 d_{2} z(t) \int_{0}^{z(t)} f(\xi) d \xi \\
& \left.+2 w^{2}(t)-2 d_{1} w^{2}(t) f(z(t))-2 d_{2} y(t) g(y(t))-2 a_{3} z^{2}(t)\right) \\
& +\left[2 d_{1} w(t)+2 d_{2} y(t)+2 z(t)\right]\left\lceil\beta_{2} \int_{-h}^{0} w(t+\theta) d \theta\right. \\
& \left.\left.+B_{4} \int_{-h}^{0} y(t+\theta) d \theta+\int_{-h}^{0} g^{\prime}(t+\theta)\right) z(t+\theta) d \theta\right]
\end{aligned}
$$

and using (4.11)

$$
\begin{aligned}
v & =-\left[d_{2} y(t) g(y(t))-a_{4} y^{2}(t)\right]-\left[\left(a_{2}-d_{1} g^{\prime}(y(t)) z^{2}(t)\right.\right. \\
& \left.-d_{2} z(t) F(z(t))\right]-\left[d_{1} f(z(t))-1\right] w^{2}(t)+\left[d_{1} w(t)\right. \\
& \left.+d_{2} y(t)+z(t)\right]\left[\beta_{2} \int_{-h}^{0} w(t+\theta) d \theta+\beta_{4} \int_{-h}^{0} y(t+\theta) d \theta\right. \\
& \left.+\int_{-h}^{0} g^{\prime}(y(t+\theta)) z(t+\theta) d \theta\right] .
\end{aligned}
$$

Now, with G defined by (4.10)

$$
\left[d_{1} y(t) g(y(t))-a_{4} y^{2}(t)\right]=y^{2}(t) G(y(t))\left[d_{2}-\frac{a_{4}}{G(y(t))}\right]=T_{1} \quad \text { say. }
$$

Since $f(z(t)) \neq 0,\left[d_{1} f(z(t)-1] w^{2}(t)\right.$ can be rewritten as

$$
f(z(t))\left[d_{1}-1 / f(z(t))\right] w^{2}(t)=T_{3} \text {, say }
$$

Denoting $\left[\left(a_{2}-d_{1} g^{\prime}(y(t))\right) z^{2}(t)-d_{2} z(t)-d_{2} z(t) F(z(t))\right]$ by T_{2}, we have

$$
\begin{aligned}
\hat{\nabla}= & -T_{1}-T_{2}-T_{3}+\left[d_{1} w(t)+d_{2} y(t)+z(t)\right]\left[\beta_{2} \int_{-h}^{0} w(t+\theta) d \theta\right. \\
& \left.+\beta_{4} \int_{-h}^{0} y(t+\theta) d \theta+\int_{-h}^{0} g^{\prime}(y(t+\theta)) z(t+\theta) d \theta\right] \text { and using }
\end{aligned}
$$

hypothesis (iii) of Theorem 3.1, we obtain the inequality

$$
\begin{align*}
V & <-T_{1}-T_{2}-T_{3}+[d|w(t)|+|y(t)|+|z(t)|]\left[\beta_{2} \int_{-h}^{0}|w(t+\theta)| d \theta\right. \tag{4.13}\\
& \left.\left.+\beta_{4} \int_{-h}^{0}|z(t+\theta)| d \theta\right]+M \int_{-h}^{0}|z(t+\theta)| d \theta\right]
\end{align*}
$$

where $d=\max \left(1, d_{1}, d_{2}\right)$.
Choose $J(s)=q^{2} s$ for some $q>1$. Then

$$
\begin{equation*}
J(v)=q^{2} v, q>1 \tag{4.14}
\end{equation*}
$$

Also assume the following:

$$
|x(t+\theta)|<q A|x(t)|,|y(t+\theta)|<q A|y(t)|,|z(t+\theta)|<q A|z(t)|
$$

and

$$
\begin{equation*}
|w(t+\theta)|<q A|w(t)| \tag{4.15}
\end{equation*}
$$

for $q>1$, $\theta[-h, 0]$, where $A=\left(B_{5} / B_{10}\right)^{1 / 2}$.

Then the inequality (4.13) is strengthened to

$$
\begin{aligned}
\dot{\nabla} \leqslant & -T_{1}-T_{2}-T_{3}+\beta d q A[|w(t)|+|y(t)|+|z(t)|]\left[\int_{-h}^{0}|w(t)| d \theta\right. \\
& \left.+\int_{-h}^{0}|y(t)| d \theta+\int_{-h}^{0}|z(t)| d \theta\right] \\
& \leqslant-T_{1}-T_{2}-T_{3}+\text { Bdqh }(|w(t)|+|y(t)|+z(t) \mid)^{2}
\end{aligned}
$$

since $A \leqslant 1$ and $B=\max \left[\beta_{2}, \beta_{4}, M\right]$.
Noting that by relation (4.8) and hypothesis (ii) of Theorem 3.1, $T_{1} \geqslant a_{3} \varepsilon y^{2}(t)$, and also by hypothesis (ii) of the same Theorem $T_{3} \geqslant a_{1} \varepsilon w^{2}(t)$ then by (4.9) and (4.12)
provided that

$$
T_{2} \geqslant\left(\frac{c_{0}}{a_{1} a_{3}}-\varepsilon d_{0}\right) z^{2}(t) \geqslant 1 / 2\left(\frac{c_{0}}{a_{1} a_{2}}\right) z^{2}(t)
$$

$$
\begin{equation*}
\varepsilon=\varepsilon_{2} \leqslant 1 / 2\left(\frac{c_{0}}{a_{1} a_{3} d_{0}}\right) \tag{4.16}
\end{equation*}
$$

we have subject to (4.15)

$$
\begin{aligned}
\hat{0} \quad & \leqslant-a_{3} \varepsilon y^{2}(t)-a_{1} \varepsilon w^{2}(t)-1 / 2\left(\frac{c_{0}}{a_{1} a_{3}}\right) z^{2}(t) \\
& +\beta d h q(|y(t)|+|z(t)|+w(t) \mid)^{2} .
\end{aligned}
$$

Since $(|y(t)|+|z(t)|+|w(t)|)^{2} \leqslant 3\left[y^{2}(t)+z^{2}(t)+w^{2}(t)\right]$,

$$
v \quad-a_{3} \varepsilon y^{2}(t)-a_{1} \varepsilon w^{2}(t)-1 / 2\left(\frac{c_{0}}{a_{1} a_{3}}\right) z^{2}(t)
$$

+3 Bdhq $\left[y^{2}(t)+z^{2}(t)+w^{2}(t)\right]$.

On gathering terms and subject to (4.15),

$$
\begin{aligned}
v & =-\left(a_{3} \varepsilon-3 \beta d q h\right) y^{2}(t)-\left(\frac{c_{0}}{2 a_{1} a_{3}}-3 \beta d q h\right) z^{2}(t) \\
& -\left(a_{1} \varepsilon-3 \text { Bdqh }\right) w^{2}(t), \text { provided } \varepsilon_{2} \text { is fixed by (4.16). }
\end{aligned}
$$

Therefore for ε_{2} fixed by (4.16) and by condition (3.6) of Theorem 3.1 there are constants $B_{j}>0(j=11,12,13)$ such that subject to assumption (4.15)

$$
\begin{equation*}
V(t, \phi(0)) \leqslant-\left[B_{11} y^{2}(t)+B_{12} z^{2}(t)+B_{13^{w}}(t)\right], \tag{4.17}
\end{equation*}
$$

where $B_{11}=\left(a_{3} \varepsilon 3 \mathrm{Bdhq}\right), \mathrm{B}_{12}=\left(\frac{\mathrm{c}_{0}}{2 \mathrm{a}_{1} \mathrm{a}_{3}}-3 \mathrm{Bdhq}\right)$ and $\mathrm{B}_{13}=\left(\mathrm{a}_{1} \varepsilon-3 \mathrm{Bdhq}\right)$.
Taking $B_{14}=\min B_{j}(j=11,12,13)$, the inequality (4.17) is sharpened to
$V(t, \phi(0)) \leqslant B_{14}\left[y^{2}(t)+z^{2}(t)+w^{2}(t)\right]$ if assumption (4.15) holds. Using the
relations (4.1), (4.3) and (4.6) observe that

$$
\begin{align*}
& B_{5}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \leqslant V(t, \phi(0)) \leqslant B_{10}\left[x^{2}(t)\right. \tag{4.18}\\
& \left.+y^{2}(t)+z^{2}(t)+w^{2}(t)\right]
\end{align*}
$$

so that

$$
\begin{align*}
& B_{5}\left[x^{2}(t+\theta)+y^{2}(t+\theta)+z^{2}(t+\theta)+w^{2}(t+\theta)+w^{2}(t+\theta)\right] \leqslant v(t+\theta, \phi(\theta)) \tag{4.19}\\
& \leqslant B_{10}\left[x^{2}(t+\theta)+y^{2}(t+\theta)+z^{2}(t+\theta)+w^{2}(t+\theta)\right], \theta<[-h, 0]
\end{align*}
$$

Now if (4.15) holds, then

$$
\begin{aligned}
& x^{2}(t+\theta)<q^{2} A^{2} x^{2}(t) ; y^{2}(t+\theta)<q^{2} A^{2} y^{2}(t) \\
& z^{2}(t+\theta)<q^{2} A^{2} x^{2}(t) \text { and } w^{2}(t+\theta)<q^{2} A^{2} y^{2}(t),
\end{aligned}
$$

so that

$$
\begin{align*}
B_{5}\left[x^{2}(t+\theta)\right. & \left.+y^{2}(t+\theta)+z^{2}(t+\theta)+w^{2}(t+\theta)\right]<q^{2} B \quad\left[x^{2}(t)\right. \tag{4.20}\\
& \left.+y^{2}(t)+z^{2}(t)+w^{2}(t)\right]
\end{align*}
$$

If (4.20) holds then by (4.19)

$$
v(t+\theta(\theta))<B_{5} q^{2}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right]
$$

and by (4.18) since

$$
B_{5} q^{2}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \leqslant q^{2} v(t, \phi(0))
$$

we have

$$
\begin{aligned}
& V(t+\theta, \phi(\theta))<q^{2} V(t, \phi(0)) \text {, and by definition (4.14) } \\
& V(t+\theta, \phi(\theta))<q^{2} J(V(t, \phi(0))) \text {. Thus, for } \varepsilon_{2} \text { fixed by (4.16), } \\
& \text { taking } w(|\phi(0)|)=B_{14}\left[y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \text {, we have } \\
& V(t, \phi(0) \leqslant-W(|\phi(0)|) \text { if } \\
& V(t+\theta, \phi(\theta))<J(V(t, \phi(0))) \text { where } \theta \quad[-h, 0] \text {. }
\end{aligned}
$$

This proves the lemma.
5. PROOF OF THE MAIN THEOREMS.

LEMMA 5.1. Subject to the conditions of Theorem 3.2,

$$
v_{(2.6)} \leqslant-D<0
$$

provided

$$
y^{2}(t)+z^{2}(t)+w^{2}(t) \geqslant R>0, D=D\left(m, d, B_{0}\right)>0
$$

PROOF OF LEMMA 5.1. Again, set $V(t)=V(x(t), y(t), z(t), w(t))$. Then given any solution (x, y, z, w) of (2.6), by the methods of lemma (4.2), we obtain

$$
\begin{align*}
& \leqslant-B_{0}\left[\left(y^{2}(t)+z^{2}(t)+w^{2}(t)\right]+d(|y(t)|+|z(t)+|w(t)|)|p(t)|\right. \tag{5.1}\\
& \leqslant-B_{0}\left(y^{2}(t)+z^{2}(t)+w^{2}(t)\right)+m d(|y(t)|+|z(t)|+|w(t)|)
\end{align*}
$$

where

$$
B_{0}=\min B_{j} \quad j=11,12,13 .
$$

Letting $q(t)=\max (|y(t)|,|z(t)|,|w(t)|)$, the inequality is sharpened to

$$
\begin{equation*}
v=-B_{0}\left(y^{2}(t)+z^{2}(t)+w^{2}(t)\right)+3 m d q(t) \tag{5.2}
\end{equation*}
$$

If $q(t)=|y(t)|$, then at least

$$
\begin{aligned}
V & -B_{0}\left(y^{2}(t)+z^{2}(t)+w^{2}(t)+2 m d|y(t)|\right. \\
& \leqslant-B_{0} y^{2}(t)+3 m d|y(t)| \\
& \leqslant-\frac{1}{2} B_{0} y^{2}(t), \text { provided }|y(t)| \geqslant \frac{6 m d}{B_{0}}=D_{0} .
\end{aligned}
$$

So,

$$
v \leqslant-\frac{1}{2} \quad B_{0} D_{0}^{2}, \text { provided }|y(t)| \geqslant D_{0}=D_{0}\left(m, d, B_{0}\right)
$$

Similar conclusions are true for

$$
q(t)=|z(t)| \text { and } q(t)=|w(t)| .
$$

Hence

$$
\begin{equation*}
v \leqslant-D<0 \tag{5.3}
\end{equation*}
$$

provided

$$
\begin{aligned}
& y^{2}(t)+z^{2}(t)+w^{2}(t) \geqslant R, \text { for some } \\
& D==D\left(B_{0}, m, d\right)>0 \text { and some } R>0
\end{aligned}
$$

PROOF OF THEOREM 3.1. By lemma 4.1, for $\varepsilon=\varepsilon_{1}$ fixed by (4.2) there are:
(i) continuous nondecreasing functions

$$
\begin{aligned}
& u, v:[0, \infty)+[0, \infty) \text { given by } \\
& u(s)=B_{5}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \\
& v(s)=B_{10}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \text { with the required properties, }
\end{aligned}
$$

(ii) a continuous function $V: E x E^{4} \rightarrow E$ defined by (4.1) such that

$$
u(|x|) \leqslant V(t, x) \leqslant v(|x|), t \varepsilon E, x \varepsilon E^{n}
$$

By lemma 4.2, for $\varepsilon=\varepsilon_{2}$ fixed by (4.16) there are:
(iii) a function $w:[0, \infty) \rightarrow[0, \infty)$ continuous and nondecreasing such that

$$
w(s)=w(|\phi(0)|)>0 \text { if } s=|\phi(0)|>0, \text { and }
$$

(iv) a continuous nondecreasing function $\mathrm{J}(\mathrm{s})$ > such that

$$
\nabla(t, \phi(0)) \leqslant-w(|\phi(0)|) \text { if } V(t+\theta, \phi(\theta))<J(V(t, \phi(0)) \text {, for } \phi \varepsilon[-h, 0] \text {. }
$$

Then, from (i), (ii), (iii) and (iv) of this section, taking $\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$, Theorem 3.1 follows from proposition 2.2. of section 2.

Also, since $B_{5}\left[x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right] \rightarrow \infty$ as
$x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t) \rightarrow \infty$, the solution $x=0$ of (1.1) is a global attractor for (1.l) so that the solution (x, y, z, w) satisfies $x_{t}^{2}+y_{t}^{2}+z_{t}^{2}+w_{t}^{2} \rightarrow 0$ as $t \rightarrow \infty$.

PROOF OF THEOREM 3.2. Use is made of lemmas 4.1 , and 5.1 and Theorem 2.1 on p. 105 of [5]. Noting that $u(|x|)=B_{5}\left(x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)\right)$ and $|\underline{x}|=x^{2}(t)+y^{2}(t)+z^{2}(t)+w^{2}(t)$ clearly, $u(|x|) \longrightarrow \infty$ as $|x| \longrightarrow \infty$, and since by lemma 5.1 , for any solution of (2.6) there is some $D>0$ satisfying (5.3), the uniorm boundedness requirements of Theorem 2.1 of [5] are met and hence our uniform boundedness result follows.

ACKNOWLEDGEMENT. "Dr. Okoronkwo died suddenly and unexpectedly shortly after the submission of this, his last manuscript. His friends at Loyola University, New Orleans support this publication in memory of their colleague: cherished, lost, but never forgotten."

REFERENCES

1. CHUKWU, E.N., On the Boundedness and Existence of a Periodic Solution of Some Nonlinear Third Order Delay Differential Equation, Accademia Naitonale Dei Lincei Estratto Dai Rendiconti Della Classe Di Scienze Fisiche, Mathematisch E. Naturali Serie VIII, Vol. LXIV, FASC 5-Maggio, (1978), 440-447.
2. SINHA, A.S.C., On Stability of Solutions of Some Third and Fourth Order DelayDifferenital Equations, Information and Control 23(2), (1973), 165-172.
3. DRIVER, R.D., Ordinary and Delay Differential Equations, Applied Mathematical Sciences Series 20, Springer-Verlag, New York, Inc., 1977.
4. DRIVER, R.D., Existence and Stability of Solutions of a Delay-Differential System, Arch. Rat. Mech. Anal., 10(5), (1962), 401-426.
5. HALE, J.K., Theory of Functional Differential Equations, Applied Mathematical Sciences Series 3, Springer-Verlag, New York, Inc., 1977.
6. RAZUMIKHIN, B.S., The Application of Lyapunov's Method to Problems in the Stability of Systems with Delay. Automation and Remote Control 21, (1960), 515-520.
7. EZEILO, J.O.C., On Boundedness and the Stability of Solutions of Some Differential Equations of the Fourth Order, J. Math. Anal. Appl. 5(1), (1962), 136-146.
8. KRASOVSKII, N.N., On the Application of the Second Method of A.M. Lyapunov To Equations With Time Delays, [Russian] Prikl. Mat. i Mekh. 20, (1956), 315327.
