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ABSTRACT. Using a Razumikhin type theorem, we deduce sufficient conditions that

guarantee the uniform asymptotic stability and boundedness of solutions of a scalar

real fourth-order delay differential equation. The Lyapunov function constructed for

an ordinary fourth-order differential equation is seen to work for the delay system.
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I. INTRODUCTION.

The Razumikhin-type theorems give sufficient conditions that ensure the stability

and boundedness of the solutions of a delay differenital equation in terms of the rate

of change of a function along solutions. For the use of Lyapunov functionals to study

stability and boundedness of solutions of delay differential equations of the first,

second, third and the fourth orders refer to the papers of Chukwu [I], Sinha [2]; and

to Driver [3], and [5]. On the other hand, using the Razumikhin approach, Hale [5],

used Lyapunov functions to give sufficient conditions for stability and boundedness of

a first-order and a second-order delay differential equations. Razumikhin in [6]

utilized his theorems to determine stability regions of a second-order control system

dscribed by a delay differential equation, and in another case in [6] investigated the

stability problem of a third-order delay system of equations. Essentially, our main

aim here is to use the Lyapunov function utilized by Ezeilo in [7] for ordinary

differential equations to attempt to prescribe some sufficient conditions that

guarantee the uniform asymptotic stability and the boundedness of the solutions of the

fourth-order delay differential equation of the form

"’t) + f(’(t))’(t) + 2"(t) + 82"(t-h) + g( (t-h))

+ 4 x(t) + 84 x(t-h) P(t) (1.1)

where p, 82 4 84 are constants and h > 0 is a constant. The function f, g, p are
completely continuous depending on the arguments displayed explicitly; f, g, p are
assumed also to satisfy enough additional smoothness conditions to ensure the solution
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of (I.I) thoug any inatlax oata is continuous in the initial data and in time. We

shall consider stability of the trivial solutions of (I.I) for the case p 0.

Corresponding results are deduced for a real fourth-order delay differential equation

with constant coefficients. As a consequence, a generalized Routh-Hurwitz condition

for a delay fourth order linear equation is deduced when the delay is sufficiently

small.

2. PRELIMINARIES.

Dots such as are in equation (I.I) denote differentiation with respect to t.

En is an n-dimensional linear vector space over the reals with norm for any x e En

written Ixl. For h 0, C C ([-h,0], mn) with the topology of uniform convergence.

We designate the norm of an element by If II and defined by II II Sup I(8) I"
-h 840

If o e E, a ) 0 and x e C([ h,o + a], En) then for any t e [, + a] we let

xte C be defined by xt(8) x(t+8), -h 4 8 (0. If D is a subset of E E, and

f: D En is given function, then

(t) f(t,xt) (2.1)

is a retarded functional differential equation on D. Note that (I.i) is a special

case of (2.1) and it also includes ordinary differential equations when h 0.

DEFINITION 2.1. A function x is said to be a solution of (2.1) on [o + h,o + a) if

there are o E and a > 0 such that x e C( h,o + a], En), (t,xt) e D and x(t)

satisfies (2.1) for t [o,o + a]. For given o e E, e C, we say x(o,) is a solution

of (2.1) with initial value # at oor simply through (o,) if there is an a > 0 such

that x(o,) is a solution of equation (2.1) on [-h o+a) and x (o,) .
DEFINITION 2.2. Suppose f(t,O) 0 for all t e E, then the solution x 0 of

(2. I) is said to be uniformly stable if for any o E, > 0, there is (g) > 0

II II < llx <, )ll < x 0

uniformly asymptotically stable if it is uniformly stable and there is a b > 0 such

O, a II
llxt(o,)l; for t ) o + T()for every o e E.

DEFINITION 2.3. The solutions x(o,) of (2.1) are uniformly bounded if for

any > 0 there is a B B(e) > 0 such that for all e E, e C and II #II % we

The following theorems (due to Razumikhin and Krasovskii [8]) for stability of

solutions of (2.1) are reproduced from [5]. First if V: E x C + E is continuous

and x(,) is the solution of (2.1) through (o,), then we define

(t ) V(t (0)] where x(t ) is the solution ofV(t, (0)) Limr 0+
[V(t+r, xt+r

(2.1) through (t,).

E
n

PROPOSITION 2.1. (Razumikhin) Suppose f: E C takes E x (bounded sets of C)

into bounded sets of En and consider (2.1). Suppose u, v, w: [0, =) + [0,) are

continuous nondecreasing functions, u(s), v(s) positive for s > 0, u(0) v(0) O.

EnIf there is a continuous function V: E x E such that
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u( x V(t x) v( x ), t E E, x E (2.2)

(t, (0)) -w( (0)I), (2.3)

if V(t+8,(e)) V(t,(0)), e E [-h,0], then the solution x --0 of (2.1) is uniformly

stable.

PROPOSITION 2.2: (Krasovskii) Suppose all the conditions of proposition 2.1 are

satisfied and in addition w(s) > 0 if s > 0. If there is a continuous nondecreasing

function J(s) > s for s > 0 such that condition (2.3) is strengthened to

(t, (0)) -w([ (0) I) if V(t+8, (8)) < J(V(t, (0)) 8 E [-h,0], (2.4)

then the solution x 0 of (2.1) is uniformly asymptotically stable. If u(s) as

s *-, then the solution x 0 is also a global attractor for (2.1) so that every

solution x(o,#) of (2.1) satisifes xt(o, ) 0 as t We shall investigate (I.I)

for p E 0, p 0 respectively in the equivalent forms

and

(t) y(t)

#(t)

(t) w(t)

(t) -w(t)f(z(t))-a2z(t)-g(y(t))-a4x(t) +

0 0 0

82 w(t+8)de + 84 y(t+8)d8 + g’(y(t+8))z(t+8)de
-h -h -h

(t) y(t)

#(t) z(t)

(t) w(t)

(t) -w(t)f(z(t))-a2z(t)-g(y(t))-a4x(t) +

0 0 0

82 w(t+)d+84 y(t+)d + g’(y(t+))z(t+e)d + p(t) (2.6)
-h -h -h

where a
2 2 + 82’ a4 4 + 84"

3. STATEMENT OF RESULT.

THEOREM 3.1. Assume that

(i) the constants

a
2 > 0, a

4 > 0 and 0 < al, a3, Co, M

(ii) f() a > 0 for all , and g()/ a
3 > 0 for all 0.

[ala2-g’()]a3-ala4f(z(t)) c o > 0 for all , z(t).

(2.5)

(3.1)
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(iii)g(0) 0 ]g’(n) M for all n, and

where

g’ ()-g()/ ( I for all # 0 where I is such that

z(t)
(iv) [-7

0
f()d] -f(z(t)) for all z(t) # 0

2c

2
ala3

Furthermore,

(3.3)

(v) if q > I, 8--max [82,84,M], d--max [l,dl,d2] where

d e + I/al; d
2

+ a4/a3 (3.4)

and where > 0 is defined by

r
a3 2a4c 0 a 2c0 c0 ]e rain L4a4d0 I)’ 4-0 2 2 )’ 2aia3d0ala 3

a a 3

(3.5)

wltn Co, do d0(al,a2,a3,a4) positive constants, %1’ nonnegative constants, and

with p defined by

Co
p rain [ a3e -3- al’ 6ala]’ then the condition Bdqh < p. (3.6)

holds and the trivial solution of (2.6) is uniformly asymptotically stable. Observe

that since a > 0, a 2 > 0, a
3 > 0, a

4 > 0, c O > 0, dO > 0, by (3.2) and (3.3), is

positive. Consider the special case of (I.I) namely

"’’(t)+a’(t)+j2 (t)+B (t-h)+a3{(t-h)+4x(t)+84x(t-h): 0 (3.7)

where al,2,82,a3,4,84 are constants. Then condition (iii) and (iv) are fulfilled

trivially with %1 %2 0. Conditions (i) and (ii) reduce to
2

a > 0, a
2 (2 + 82) > 0, a

3 > 0, a4 (?4 + 84) > 0, (ala2-a3)a3-ala4 > c o > 0.

If we use (3.4) we find that

a
3 ala4 co

a2 dlg,( d2f(z(t) a2 al a3
(a + a3) e ) ala3" (a + a3) .

co
We can therefore choose do (a + a3) so that e

2ala3(al + a3)
Hypothesis (v) now becomes

co co
Bdqh < rain [6a l(a + a3 ), 6a3(al + a3 )]
where 8 max [82 84 a 3],
d max [l,d l,d2], and

a4
dl e +I d2 e +__

a a3
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Therefore the sufficient conditions for all solution of (3.7) to be uniformly

asymptotically stable are

(i) the Routh-Hurwitz Criteria

a > 0, a
2 > 0, a

3 > 0

ala 2
a
3 > 0, a

4 > 0

2
(ala 2

a 3) a
3

a a4 c o > 0

(ii) q >
co co

8dqh < rain [.6al(al + a3 6a3(al
Hence all roots of the equation

+ a 3)

# + aI%3 + 2%2 + 82e-hhx2 + a3Ae
Ah + 4 + B4 e 0 (3.8)

will have negative real parts if conditions (i) and (ii) hold. If p 0, we establish:

Theorem 3.2. If the conditions in the hypotheses (i) (v) of theorem 3.1 hold and if

urther

IP(t)[ m (3.9)

for some m > 0 and for all t , then the solutions of (2.6) are uniformly bounded.

4. THE FUNCTION V V(x(t), y(t), z(t), w(t))

Define the Lyapunov function V V(x(t), y(t), z(t), w(t)) by

y(t)
2V a4 d2 x2(t) + (a2d2 a4dl)y2(t) + 2 g(n)d +

0
z(t)

+ (a2d -d2)z2(t) + 2d
2
y(t)w(t) + 2 f()d +

0

+ dlW2(t) + 2a4x(t)y(t) + 2a4d x(t)z(t) + 2z(t)w(t)

z(t)
+ 2d2 y(t) f()d + 2dlZ(t)g(y(t)). (4.1)

0
a4

where d e + I___ and d
2

e + a-- with e defined by (3.5). The proofs of Theorems 3.1
a

and 3.2 rest on the function V defined by (4.1) and which was utilized by Ezeilo in

[7].

LEMMA 4.1. Given the hypotheses (i) (iv) of Theorem 3.1, there are continuous

nondecreasing functions u,v:[O,)+[0,), u(s), v(s) positive for s > 0 with

u(0)=v(0)--0, such that u([x[) V(x(t), y(t), z(t), w(t)) ( v( [x[ ).

PROOF. Take

a3 2a4c 0 a 2c 0
E rain [4a0 (

2 kl)’ 2 2 )]"

ala 3
a la3

Then, by the analysis in [7], V(0,0,0,0) 0 and there exist constants

B. > 0 (i 1,2,3,4) depending on e,al,a 2, a3,a4, I’ and c0
such that

1

(4.2)
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V(x(t),y(t),z(t),w(t)) B
5

[x2(t)+y2(t)+z2(t)+w2(t)] (4.3)

for all x(t), y(t), z(t), w(t) where B

(4.2).
5 min B. (i 1,2,3,4) provided is fixed by

I

Now take B
5

[x2(t) + y2(t) + z2(t) + w2(t)] to be

produce a v(Ixl). From relation (4.1)

It now remains to

2V a
4 d

2
x2(t) + dlW2(t) + 2a41x(t)y(t)

+ la2d2 a4d )I y2(t) + la2dl 2
-d2)l, z (t)

y(t) z(t) z(t)
+ g()d + 2 f()d + 2d2Y(t) f()d

0 0 0

+ 2d z(t)g(y(t)). (4.4)

Now from (3.1) of hypotheses (ii) Theorem 3.1, g’(y(t)) < ala 2
so

g(y(t)) < ala 2 ly(t)l; and f(z(t)) < a2a3/a4. Therefore,

y(t) z(t) a2a32 g()d ala 2
y2(t), 2 f()d z2(t),

0 0 a4
z(t) a2a32d2 y(t) f()d 2d ly(t)l Iz(t) and
0 2 a4

Substituting these estimates into (4.4) we have,

that

2(

22
a
2

y2(t) + (a2a3 / a4) z (t) ++ l(a2dl -d2) z (t) + a

using the inequality

2
b
221ab a + we have

2 lW2(t) 2y2 22V a4d 2 x (t) + d + ala (t) + y2(t) + mz (t)

2
(x

2 2 2
w
2+ a4(x2(t) + y (t)) + a4d (t) + z (t)) + d2(Y (t) + (t))

+ (z2(t) + w2(t)) + ala2d
a2a3d2 2 2+- (y (t) + w (t)).

a
4

z
2(z2(t) + y2(t)) + a2a3/a4 (t)

(4.5)
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where

[a2d 2 a4d II and m a2dl d21. On gathering terms,

V B6x2(t) + B
7

y2(t) + B
8

z2(t) + B
9

w2(t), where

B
6 (a4d2 + a

4
+ a4d I),

B
7 (ala2 + + a

4
+ d

2
+ ala2d + a2a3d2/a4)

B
8

(m + a4d + a + ala2d + a2a3/a4 + a2a3d2/a4) and

B
9

(I + d + d2).

Let BIO max B. (i 6,7,8,9. Then
1

V(x(t), y(t), z(t), w(t)) BIO [x2(t) + yZ(t) + z2(t) + w2(t)] (4.6)

2( 2Take v(Ixl) BI0 [x2(t) + y2(t) + y2(t) + z t) + w (t)]. Clearly u(0) --v(0) --0,

2 2 2(t 2u(s) > 0, v(s) > 0 for s x (t) + y (t) + z + w (t) > 0

This proves lemma 4.1.

LEMMA 4.2. Subject to hypotheses (i) (iv) of Theorem 3.1, there are continuous

nondecreasing functions J(s) > s for s > 0 and a function w(s) with w(s) > 0, s 0

such that

v(t,(0)) -w (l(0)J) if v(t+O,(O)) < J(V(t,(0))), o [-h,0].

PROOF OF LEMMA 4.2. The proof depends on hypotheses (v) and (vi) and on the three

ineqalities arising from hypotheses (i) (iv) of Theorem 3.1, namely:

d llf(zCt) (4.7)

a4Y(t)
d
2 E, (4 8)g(y(t))

and

for all z(t) O, y(t) 0

coa
2 -dlg’(y(t)) -d2f(z(t) - E do for all y(t), z(t) (4.9)

ala3

where do is a constant that depends only on a I, a2, a3, a4. Now, by (3.4),
d I/a E and since by hypothesis (ii) of Theorem 3.1, f(z(t)) a > 0, (4.7)

follows. Also by (3.4), d2 -4/a3 E and since by hypothesis (ii) again

y/g(y) I/ a
3 (4.8) is immediate.

Using (3.4) we have

a
4a

2 dlg’(y(t)) dzf(Z(t)) a
2 (+I/al)g’(y(t)) ( + 3)f(z(t))

ala3 [ala2 g’(y(t))a
3 ala4f(z(t))] [g’(y(t))+f(z(t))].
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co
Therefore by (3.1) a

2 dlg’(y(t)) d2f(z(t)) )

ala3
e[g’(y(t)) + f(z(t))].

Since g’(y(t)) < ala2 and f(z(t)) < a2a3/a4 for all y(t), z(t),

cO a2a3
a2 -dlg’(y(t)) -d2f(z(t)) )

ala2 (ala3 +-4- e) for all y(t), z(t)

and this establishes (4.9). Now define a function G of y(t) by

g(y(t
y(-, if y(t) # 0

G(y(t))

tg’(0), if y(t) 0.

(4.10)

Also, let z(t)
F(z(t)) f f($)d$

0

Observe that the conditions g(0) 0 and F(0) 0 imply resepectively that

(4.11)

G(y(t)) g’(OlY(t))

F(z (t)) z(t)f(O2z(t))
(4.12)

where 0 < O (i 1,2).

Given any solution (x,y,z,w) of (2.5)

2 y(t)[2a4d2x(t)+2a4Y(t)+2a4dlZ(t)] + z(t)[2a4 x(t)

+ 2d2w(t)+2Ky(t)+2dlZ(t)g (y(t))+2g(y(t))

z(t)
+ 2d

2 f f()d] + w(t) [2a4d x(t) + 2w(t) + 2cz(t)
0

+ 2d g(y(t)) + 2z(t)f(z(t)) + 2d2Y(t)f(z(t)))]

+ [2w(t)d + 2d2Y(t) + 2z(t)] [-w(t)f(z(t)) -a2z(t)

-g(y(t)) -a
4

x(t)] + [2w(t)d + 2d
2

y(t) + 2z(t)]

0 0 0
[13

2 f w(t+O)dO + {4 f y(t+O)dO + f g’(y(t+O))z(t+O)dO]
-h -h -h

where K (a2d 2 ald
reduces to

and c (a2d d2). On simplication, the above relation

z(t)
2 2a4y2(t) + 2d Iz2(t)g’(y(t)) + 2d

2
z(t)

0
f f()d

w
2+ 2w2(t) 2d (t)f(z(t)) 2d2Y(t)g(y(t)) 2a3z2(t))

0
+ [2dlW(t + 2d2Y(t + 2z(t)] [82 ..[ w(t+0)d0

-h
0 0

+ 134 f y(t+O)d 0 + f g’ (t+O))z(t+O)d 0],
-h -h
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and using (4.11)

V -[d
2
y(t)g(y(t)) a4y2(t)] [(a

2 dlg’(y(t))z2(t)

-d2z(t) F(z(t))] [dlf(z(t))-l] w2(t) + [dlW(t)
0 0

+ d2Y(t) + z(t)] [B
2

w(t+8)dO + B4 y(t+O)d8

0
+ g’(y(t+))z(t+)d].

-h

Now, with G defined by (4.10)

2(t)] y2 (t)G(y(t)) [d
2[dlY(t)g(y(t)) a4Y

Since f(z(t)) 0, [dlf(z(t)-l] w2(t) can be rewritten as

a4
G(y(t))

say.

f(z(t)) [d I/f(z(t) )] w2(t)= T3, say

Denoting [(a
2 dlg’(y(t)))z2(t) d2z(t) d2z(t)F(z(t))] by T

2,
we have

0
9= -T! T

2
T
3
+ [dlW(t) + d2Y(t) + z(t)] [B2 w(t+)d

-h
0 0

+ B4 y(t+8)d8 + g’(y(t+8))z(t+8)dS] and using
-h -h

hypothesis (iii) of Theorem 3.1, we obtain the inequality

where d max (l,d I, d2).

2
sChoose J(s) q for some q > I. Then

J(V) q2V, q > I.

(4.13)

(4.14)

Also assume the following:

and

for q > I, 0 [-h,0], where A (B
5 / BI0)

(4.15)
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Then the inequality (4.13) is strengthened to

0

-h
0 0

+ / lY(t)ldO + Iz(t)ldO]

since A and B max [B2’ 84’ M].

Noting that by relation (4.8) and hypothesis (li) of Theorem 3. I,
2 2T a

3 y (t), and also by hypothesis (ii) of the same Theorem T
3 a[ w (t)

then by (4.9) and (4.12)

provided that

Co Co 2
T
2 (ala3- d0) z 2(t) I/2 (a-)z (t)

co
2 I/2 (ala3dO) (4.16)

we have subject to (4.15)

Co 22
s2(t) I/2 (-l-3)z (t)-a

3 y (t) a

+ fldhq (ly(t)l+lz(t)l+w(t)]) 2.

2
w
2

Since (ly(t)l+Iz(t)l + lw(t)l)2 3[y2(t)+ z (t)+ (t)],

2 oa2 CO 2
-a

3 y (t) a (t) 1/2 /ala3)Z- (t)

+ 38clhq [y2(t) + z2(t) + w2(t)].

On gathering terms and subject to (4.15),

Co 23dqh) z (t)V -(a
3

e 3dqh) y2(t) (2ala 3

(a - 3Bdqh) w2(t), provided 2 is fixed by (4.16).

Therefore for 2 fixed by (4.16) and by condition (3.6) of Theorem 3.1 there are

constants B. > 0 (j=II,12,13) such that subject to assumption (4.15)
3

y2 2
3
w2 (t) ],V(t,(O)) - [BII (t) + Bl2Z (t) + B (4.17)

Co
3dhq) and BI3 (a e-3dhq).where BII (a

3
3Bdhq), BI2-- (.2la3

Taking BI4 min Bj (j 11,12,13), the inequality (4.17) is sharpened to

[y2 2
w
2

V(t, (0)) BI4 (t) + z (t) + (t)] if assumption (4.15) holds. Using the
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relations (4.1), (4.3) and (4.6) observe that

so that

B5[x2(t) + y2(t) + z2(t) + w2(t)] V(t,(O)) B

2
w
2+ y2(t) + z (t) + (t)],

2
10

[x (t)

(4.18)

2 2 w
2B5[x2(t+8) + y (t+8) + z (t+8) + w2(t+8) + (t+8)] V(t+8,(8))

(4.19)
2 w

2Bl0[x2(t+8 + y2(t+8) + z (t+8) + (t+8)], 8 < [-h,0]

Now if (4.15)holds, then

2 2A2x2 y2 2A2yx (t+8) < q (t); (t+8) < q 2(t);

2 2A
2
x
2 2

A2y 2
z (t+8) < q t) and w2(t+8) < q (t),

so that
2

w
2 2

BB5[x2(t+8) + y2(t+8) + z (t+8) + (t+8)] < q

+ y2(t) + z2(t) + w2(t)].

[x2(t)
(4.20)

If (4.20) holds then by (4.19)

2 2 2(V(t+0(0)) < B5q [x2(t) + y (t) + z2(t) + w t)]

and by (4.18) since

2 2
w
2 22[x2(t) + y (t) + z (t) + (t)] q V(t,#(O))Bsq

we have

2VV(t+0, (O)) < q (t (0)), and by definition (4 14)

2jV(t+8, (8)) < q (V(t (0))). Thus, for e2
fixed by (4 16)

taking w(l(0) I) Bl4[y2(t) + z2(t) + w2(t)], we have

V(t+8, @(8)) < J(V(t,@(O))) where 8 [-h,0].

This proves the lemma.

5. PROOF OF THE MAIN THEOREMS.

LEMMA 5.1. Subject to the conditions of Theorem 3.2,

V(2.6 -D < 0
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provided
2 2 w

2
y (t) + z (t) + (t) > R > O, D D(m,d,B0) > 0

PROOF OF LEMMA 5.1. Again, set V(t) V(x(t),y(t),z(t),w(t)).

solution (x,y,z,w) of (2.6), by the methods of lemma (4.2), we obtain

Then given any

2 2 (5.1)

< Bo(y2(t) + z2(t) + w2(t)) +

where

B
0

rain Bj 11,12,13

Letting q(t) x<l<=>l, I’<>1, inequality is sharpened to

2
w
2V---B0(y2(t) + z (t) + (t)) + 3rod q(t). (5.2)

If ](t) ly(t)l, then at least

2
w
2

V -Bo(ym(t) + z (t) + (t) + 2mdiY(t)

<-B0y2(t) + 3redly(t)

Boy2 6md,

So,
2

<- BoDo, provided ]y(t)] > D
O D0(m,d,Bo).

Similar conclusions are true for

Hence

V <-D<O (5.3)

provided
2

z
2

w
2

y (t) + (t) + (t) > R, for some

D D(Bo,m,d) > 0 and some R > 0

PROOF OF THEOREM 3.1. By lemma 4.1, for E-- E fixed by (4.2) there are"

(i) continuous nondecreasing functions

u, v: [0,(R)) [0,) given by
2

u(s) --B5[x2(t) + y2(t) + z2(t) + w (t)].

v(s) Blo[x2(t) + y2(t) + z2(t) + w2(t)] with the required properties,
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(ii) a continuous function V: ExE
4

E defined by (4.1) such that

E
n

By lemma 4.2, for e e2 fixed by (4.16) there are"

(iii) a function w: [0,) [0,) continuous and nondecreasing such that

w(s) w( (0) I) > 0 if s I(0)I > 0, and

(iv) a continuous nondecreasing function J(s) > s such that

(t,(O)) -w(I(O) I) if v(t+e,(e)) < J(V(t,(0)), for e [-h,O].

Then, from (i), (ii), (iii) and (iv) of this section, taking e min (el’ )’

Theorem 3.1 follows from proposition 2.2. of section 2.

Also,2since B[x2(t) + y2(t) + z2(t) + w2(t)] as
2 z(t)x (t) + y (t) + + w2tjt % the solution x 0 of (I.I) is a global attractor

2 2 22 + w
t

0 as t .for (1.1) so that the solution (x,y,z,w) satisfies x
t

+ Yt + zt
PROOF OF THEOREM 3.2. Use is made of lemmas 4.1, and 5.1 and Theorem 2.1 on p.

105 of [5]. Noting that u(Ix I) B5(x2(t) + y2(t) + z2(t) + w2(t)) and

I x2(t) + y2(t) + z2(t) + w2(t) clearly, u(Ixl) --> aslx ---> , and since

by lemma 5.1, for any solution of (2.6) there is some D > 0 satisfying (5.3), the

uniorm boundedness requirements of Theorem 2.1 of [5] are met and hence our uniform

boundedness result follows.

ACKNOWLEDGEMENT. "Dr. Okoronkwo died suddenly and unexpectedly shortly after the

submission of this, his last manuscript. His friends at Loyola University, New

Orleans support this publication in memory of their colleague: cherished, lost, but

never forgotten."

REFERENCES

I. CHUKWU, E.N., On the Boundedness and Existence of a Periodic Solution of Some
Nonlinear Third Order Delay Differential Equation, Accademia Naitonale Dei
Lincei Estratto Dai Rendiconti Della Classe Di Scienze Fisiche, Mathematisch
E. Naturali Serie VIII Vol. LXIV, FASC 5 Maggio, (1978), 440-447.

2. SINHA, A.S.C., On Stability of Solutions of Some Third and Fourth Order Delay-
Differenital Equations, Information and Control 23(2), (1973), 165-172.

3. DRIVER, R.D., Ordinary and Delay Differential Equations, Applied Mathematical
Sciences Series 20, Springer-Verlag, New York, Inc., 1977.

4. DRIVER, R.D., Existence and Stability of Solutions of a Delay-Differential
System, Arch. Rat. Mech. Anal., 10(5), (1962), 401-426.

5. HALE, J.K., Theory of Functional Differential Equations, Applied Mathematical
Sciences Series 3, Springer-Verlag, New York, Inc., 1977.



602 E.O. OKORONKWO

6. RAZUMIKHIN, B.S., The Application of Lyapunov’s Method to Problems in the
Stability of Systems with Delay. Automation and Remote Control 21, (1960),
515-520.

7. EZEILO, J.O.C., On Boundedness and the Stability of Solutions of Some
Differential Equations of the Fourth Order, J. Math. Anal. Appl. 5(I),
(1962), 136-146.

8. KRASOVSKII, N.N., On the Application of the Second Method of A.M. Lyapunov To
Equations With Time Delays, [Russian] Prikl. Mat. i Mekh. 20, (1956), 315-
327.


