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ABSTRACT. A study is made of the propagation of Rossby waves in a stably stratified

shear flows. The wave equation for the Rossby waves is derived in an isothermal

atmosphere on a beta plane in the presence of a latitudinally sheared zonal flow. It
is shown that the wave equation is singular at five critical levels, but the wave

absorption takes place only at the two levels where the local relative frequency

equals in magnitude to the Brunt Vaisala frequency. This analysis also reveals that

these two levels exhibit valve effect by allowing the waves to penetrate them from one

side only. The absorption coefficient exp(2) is determined at these levels. Both

the group velocity approach and single wave treatment are employed for the

investigation of the problem.
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1. INTRODUCTION.
Longuet-Higgins [1-2] used the Rossby B-plane approximation to investigate the

propagation of planetary waves on a rotating sphere. He also studied the
characteristic feature of westward propagation of these waves in an unbounded ocean,
and also established the existence of a cut-off frequency due to tidal effects above
which these waves cease to propagate. Subsequently, Debnath [3] has also investigated
the long period response of an unbounded B-plane ocean with bottom friction to initial

disturbances of wind stress applied at the free surface of the ocean. He also studied
the free and forced barotropic motions produced by stationary or travelling
atmospheric winds.
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In atmospheric studies, there has been considerable attention to the vertical

propagation of Rossby waves, including the interaction between Rossby waves and zonal

currents. In a classical paper by Charney and Drazin [4], it was shown that effect on

the vertical propagation of Rossby waves of zonal flows in the Earth’s atmosphere was

to make the dominant planetary waves evanescent in the vertical direction, so that the

winds simulate a quasi-solid boundary which prevents the vertical propagation of the

large flux of wave energy from the lower to the upper atmosphere. Subsequently,

Dickinson [5] studied the behaviour of waves at a critical latitude where the speed of

the zonal flow matches with the wind speed in the case of Rossby waves. He has also

pointed out the existence of critical latitude which occurs at the intrinsic frequency

d O, where the northward transfer of zonal momentum experiences a finite jump.

Later on, Lindzen [6] has shown that a transfer of wave energy and momentum to the

wind may take place at such latitudes in a manner which is somewhat similar to the

critical layers for gravity waves in a vertically stratified shear flow studied by

Booker and Bretherton [7]. It was shown by Brooker and Bretherton that if the

component in the direction of the streaming of the phase velocity of a gravity wave

matches the flow speed at some point, a critical layer develops and most of the wave

en’ergy is absorbed into the mean flow for Richardson numbers of order one or more. It

should be pointed out that a critical level is the level at which fluid velocity

becomes equal to the horizontal phase velocity of the wave. The wave equation is

singular at this level. In their study of a Boussinesq inviscid adiabatic fluid in a

non-rotating system, Booker and Bretherton concluded that the waves are attenuated as

they pass through the critical level when the Richardson number is greater than 1/4.

Recently, Mekki and McKenzie [8] used the Rossby B-plane approximation to study

the propagation of atmospheric Rossby gravity waves in latitudinally sheared zonal

flows. They derived a general wave equation for an isothermal atmosphere under the

Boussinesq approximation with ^ < f2 and < < N 2 where the intrinsic frequency

Rd kU m, m is the frequency of the wave, k is the zonal wavenumber and U is the

zonal flow speed, f is the Coriolis parameter and N is the Brunt-Vaisala frequency.

They described a wide class of possible wave motions, in the presence of a background

zonal flow, ranging from high frequency acoustic-gravity-inertial waves to low-

frequency Rossby waves. Special attention has been given to the propagation

properties of Rossby waves in various kinds of latitudinally sheared zonal flows which

occur at different heights and seasons in the Earth’s atmosphere.

In spite of the above works, relatively less or no attention has been given to

the existence and properties of critical levels associated with Rossby waves in an

isothermal atmosphere on a B-plane approximation in thoe presence of a latitudinally

sheared zonal flow. The wave equation related to this problem is derived to

investigate its singular behaviour. It is shown that this equation is singular at

five critical levels, but the wave absorption takes place only at the two levels where

the local relative frequency, d’ equals in magnitude to the Brunt-Vaisala frequency.

Special attention is given to the conditions for the transmission and capture of the

waves at the critical levels.
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2. BASIC EQUATIONS OF MOTION AND EQUILIBRIUM CONFIGURATION.

The equations of momentum, continuity, and energy for an inviscid fluid rotating
with angular velocity under the gravitational acceleration g are given by (see
Greenspan [9])

p + (u V) u + 2_ x u_ Vp + p (2.1)

V u=O (2.2)

(- + u_ V) p 0 (2.3)

where p,u p represent the density, fluid velocity, and the pressure respectively.

We study the problem under the assumption of the Rossby B-plane approximation, so

that the Coriolis parameter f 2R sin o can be expanded in a Taylor series about a

reference latitude o to obtaino

f 2R sin o 2R[sin o o, (0 o o) cos oo] fo + By, (2.4)

eo,with fo 2R sin S (2__) cos oo at o o o, y R(o Oo), and R is the

mean radius of the Earth.

With reference to the rectangular Cartisian coordinates x (eastward),
y (northward) and z (vertical), the basic equilibrium state is given by

P Po P Po u_ (u, v, w) (U(y), 0,0) (2.5)

where Po is the pressure, Po is the density and U(y) is the basic velocity which

depends on y only. Substituting (2.5) into (2.1) (2.3) with (2.4), we obtain

BPo BPo Bp
Bx 0 U f Po pog (26)By az

We also assume that the basic density distribution varies with z so that

B =-o (27)(nPo
It follows from (2.6) that

BPo
Po By

aPo
Po Bz

f U o (2.8)g

o (2.9)

We next impose a small perturbation with respect to the equilibrium state, so
that it induces changes in pressure, density, and velocity fields given by

P Po + p P Po + p (u, v, w) (U + u v w ), (2.10)
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where p p (u v w are the perturbation quantities.

Substituting these into (2.1)-(2.3) and invoking linearization, we obtain the
fol lowing equations"

au au * aU *po + U ---+ v - v f) B_p__@x (2.11)

po(aV av *f *-- + U @-- + u + p U f p (2 12)@y

aw aw + *)po(- + u E) (az g p (2 13)

. . apo ap
0ap + U ap * w*aT + v @T + @T 0 (2.14)

au + av aw
i) @---- + @z 0 (2.15)

where the coefficients of these equations are function of y and z.

Using Eckart’s transformations

1/2 (p, p) (u* v w "1/2 (u v w)(P* P*) Po Po (2.16)

the above system of equations reduces to one in which the coefficients are independent

of x, z, and t. Therefore, it is then possible to assume normal mode solutions in the
form

(y) exp [i(kx + mz mt)] (2.17)

We next eliminate all the dependent variables in favor of the velocity field v to
obtain a single equation for v-

dvA Rd
d2v + (A’Rd 2Ri d) - + IS’ + C + DU iR iBU ] v 0 (2.18)

where d kU-, A Q-I[ go ], R Q-l[-gm] (2.19abc)

S Q-I[u gok + fk fgok +T kU’

( fUo B Q-l[Ufkmo] (2.21)Q k2N2 (k2+ m2 + 02/4), a g

D Q-l[ k R- fo2 d2
m2o

4 f ad] (2.22)
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C Q-l[ufm2 d + Ufk2 d +
f22 d m2f22

+ d

_k2 R3 + N2k 2 2 3 o2R 2d3
d d m d -- --T- ] (2.23)

and primes denotes the differentiation with respect to y.

It is noted that equation (2.18) is singular at Rd O, A 0 and Q O. Of

these singularities, wave absorption takes place only at the singularities of A O,

where A is a quadratic expression in Rd and hence there exist two distinct critical

levels. Hence, the propagation properties of the waves near these singularities are

of special interest and will be discussed in the following sections.

3. WAVE ACTION FLUX

The upward transfer of wave energy per unit area at any level is the mean rate of

working of pressure forces in the fluids above, E , where the over bar denotes an

average over a horizontal wave length

E pv [p v + pv ] Re (pv*) (3.1)

where * denotes the complex conjugate. It can be shown that

dv *E Re[iv*A d + (R+iS)vv Rd (3.2)

Now, we define M as the wave action flux. In this case M is proportional to the

angular momentum flux about the rotation axis, as the ratio of wave energy flux to the

local relative frequency, we obtain

M- E Re[iv*A dv

d 2 - + Rvv*] (3.3)

Differentiating (3.3) with respect to y and substituting the wave equation (2.18) into

dM
the resulting expression, we find, - 0 except at the critical levels, where sub-

stitution of (2.18) is not valid. Thus, M is constant between critical levels, but it

has a discontinuity at each critical level. In the absence of rotation, M is

proportional to the vertical flux of horizontal momentum, but in the presence of

rotation, about an axis, M may be related to the angular momentum flux about that

axis, and conveniently acts as a measure of the intensity of the wave.

4. SINGULARITIES OF THE WAVE EQUATION AND BEHAVIOR OF ITS SOLUTION

(a) Singularity at d N where N is the Brunt Vaisala frequency.

It is noted that the wave equation has a regular singularity at Yc+ where

d (Yc+) k U (yc+) m N (4.1)
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The method of Frobenius shows that v(y) can be written as

v(y) (y-yc) [I + al(y-yc+ + (4.2)

Substitution of (4.2) into (2.18) gives the indical equation for which has

solutions, x O, + iv where u [2R(Yc+)/A (yc+)].
Hence,

v Cl[l+Cll(y-yc) + ...]+C2(y-yc)i[l+C21(y-yc)+ ...] (4.3)

(i) , iv To determine the appropriate branch for (y-yc+) in (4.2), we follow

Booker and Bretherton [1967]; it will be assumed that (dA/dy) > O, with m > 0

(m mr + imi), so that the amplitude of the wave at any section is slowly growing
with time. Thus, n (yc+) > or < 0 according as > 0 or < O. In the limit m O,

the appropriate path for determining the branch of (y-yc+) passes below (above) Yc+

ly_yc iv for y

(y_yc)iV
> Yc+

(4.4ab)

ly_ycli, exp(,) for y < YC+
Substituting (4.4ab) into (4.2) we obtain

V

C21y-ycli"[l + C21(y-yc) + ]

C21y-ycliexp(u)[l + C21(y-yc) + ]

for y > Yc+
for y < Yc+

(4.5ab)

Substituting the above expression for v into (3.3) we obtain

I R IC2122 for y > Yc+
I 2R IC21 exp(2) for y < Yc+

(4.6ab)

The energy

R IcI 2
2 for y > Yc+

2
-2 R d IC21 exp(2) for Y < Yc+

(4.7ab)

Since the sign of E M d’ determines the direction of wave, it follows that if

dA
< (> 0), the solution represents a wave propagating downwards (upwards). In

either case the wave energy flux across the critical level is decreased by the factor

exp (2). The solution is characterised by the condition
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dAVgu Rd - < 0 (4.8)

where Vg is the horizontal propagation velocity.

(ii) x 0 This solution is regular at Yc+" Evaluating (3.3) at y Yc+’ we
ob ta n

E 1/2 R d IC112 (4.9)

Hence, this solution represents a wave propagating in a direction opposite to the one

we have just investigated. This solution is characterized by

dAVg d - > 0 (4.10)

Thus, the critical level, Rd N acts as a valve. A wave propagating towards a valve

will be transmitted (or) unattenuated by a factor exp (2u) according as

dAVg Rd i > or < 0 (4.11ab)

(b) Singularity at d N.
There is a singularity at Yc- where d (Yc-) N. Seeking a solution of the

form (4.2) in the variables (y-yc_) leads to an indical equation for }., with solutions
}, O, -i.

An analysis similar to the above shows that for the solution given by , -i
1 2R d C21 for y > Yc

E (4.12ab)
2R d IC21 exp(-2,) for y < Yc

Hence, this solution represents a wave propagating vertically downwards (or) upwards

dAaccording as - > or < O. In either case, the wave energy flux is attenuated by

the factor exp(21).
This solution is again characterised by

dAVg Rd - > 0 (4.13)

For the solution given by ; 0

E 1/2 R d Ic ]2 (4.14)

and hence represents a wave propagating downwards (or) upwards according as

dAu a > or < o, the solution is characterized by

dAVg u Rd < 0 (4.15)

Thus, the critical level d N also acts as a valve, operating on the same

criterion as the critical level at Rd N. A wave propagating towards a critical

level is transmitted (or) absorbed according as

dAVg Rd a < or > o (4.16ab)
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(c) Singularity at Rd O.

There is a regular singularity at Yo’ where kU(Yo) m. Seeking a solution of
the form (4.2) in the variables Y-Yo leads to an indical equation for , with
solutions, , O, 1. The general solution is thus regular and has the form

V(y) a
0

[1 + aol(y-yo) + (4.17)

where a is an arbitrary constant and aol are known constants. Substitution of
(4.17) into (3.3) shows that M is a regular function of y near Yo"

A similar solution and conclusion hold near the singularity at Q O.

5. WAVE PROPAGATION IN A SLOWLY VARYING MEDIUM

When the properties of the medium vary only slightly over distance of the order
of a wavelength, the concept of a wavegroup is extremely helpful.

If U(y) and N’ do not vary much over a wavelength, the wave equation with hori-
zontal wave numbers k and and vertical wave number m satisfies the dispersion

relation

o2f2[N2k2 + m2f2 + T + Ufk2: + Ufm2] Rd + gokB 0

If k, m, g and m vary with position and time and U with y only, we may write the above

dispersion relation in the form

d D(k, g, m, y) (5.2)

and then formally define the group velocity

BD BD BD) (5.3)g (Ug,Vg,Wg) (--, , B-
which therefore also varies with position and time. The significance of the group
velocity as defined above is that an observer moving always with the local group

velocity will find locally a constant value of the horizontal wave numbers and

frequency, however, since the background velocity varies horizontally, will change in

horizontal wave number 4. Thus, the role of (5.1) when the background velocity is not

uniform is (i) to enable us to calculate the horizontal wave number at each level in

terms of the local background velocity at that level, having selected a particular

group (that is, having assigned values m, k and m and then (ii) to permit us to use

these values to calculate the group velocity at every level and in this way compute
the trajectory of the group. We now use this procedure to study the propagation of

wave groups in the neighborhood of the critical level.
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As the group approaches its critical level y Yc’ at which

[2 N2] 0
Yc (5.4)

one group of (5.1) increases indefinitely and is given asymptotically by

[ N2] -2omUf

The asymptotic behavior of the horizontal component of the group velocity V
corresponding to the root of (5.5) is given by

B__ Vg omUf
a

ad 22 (5.6)

Using (5.4) and (5.5), we obtain

dA 2
Vg 4omUfd (a) (y_yc)2 (5.7)

Thus, when (y-yc) is small, the distance y of the group satisfies

t a (Y-Yc)2 (5.8)

where a is a constant. On integrating the equation we obtain

(y-yc) I/(at + b) (5.9)

Hence, it follows that the time taken by a group to pass from a level Yl to level Y2
is

t2 tI [ (5.10)
Y2-Yc Yl-Yc

which is arbitrarily large if Y2 is sufficiently near Yc" In other words, the

wavegroup takes an infinite time to reach the critical level. So, the group is

neither transmitted nor reflected and simply slows down until either diffusion,

turbulence, or other non-linearities destroy it.

This group is characterized by

Vg omUf d > 0 (5.11)

The other root of (5.1) tends to a finite value f as the critical level is

approached, and accordingly Vg tends to a non-zero finite value there, and the group

according to f is transmitted across the critical level. This group approaches the

critical level from a direction such that

Vg omUf 9d < 0 (5.12)

Thus, a wave approaching its critical level is either captured or transmitted

according as

Vg omUf Rd > or < 0 (5.13ab)
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The picture presented in this section, with wavenumbers varying only very

slightly over distances of the order of a wavelength and complete capture rather than

partial transmission, arises naturally out of the picture presented in the previous

section when ul >> (formally, as u ).

6. DISCUSSIONS AND CONCLUSIONS

The wave equation is derived for Rossby waves in an isothermal atmosphere on a

beta plane in the presence of a latitudinally sheared zonal flow. This equation is

singular at d -+ N, d 0 and Q O. The first two singularities are different in

form from the singularities obtained in the case of a vertically rotating stratified

atmosphere. The wave action flux which is the ratio of the wave energy flux to the

local relative frequency (which is proportional to the angular momentum flux) is

constant everywhere inside the fluid except at the critical level; we find it as an

appropriate measure of the magnitude of the waves when the propagation of waves across

the critical level is studied. Using this wave action flux, it is shown that the

waves are transmitted across the critical level d O, Q 0 without any attenuation,

while the other two critical levels +_ N behave as valves by permitting waves to

penetrate them without any attenuation one way only.

Also at these critical levels, an absorption coefficient exp(2u) is obtained.

In this way, we have used Rossby wave problem as an example to demonstrate that the

normal mode solution with critical level behavior in some cases bears no resemblance

to the initial value problem, not even in the infinite time limit.
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