HOW MANY NUMBERS SATISFY THE 3X + 1 CONJECTURE?

I. KRASIKOV
School of Mathematical Sciences
Tel-Aviv University
Israe 1
(Received March 25, 1988 and in revised form December 12, 1988)

ABSTRACT. Let $\theta(x)$ be the number of numbers not exceeding x satisfy the $3 x+1$ conjecture. We obtain a system of difference inequalities on functions closely related to θ. Solving this system in the simplest case, we
establish $\theta(x)>c x^{\frac{3}{7}}$. This improves a result of Crandall [1].

KEY WORDS AND PHRASES. $3 X+1$ conjecture, residue class, difference inequality. 1980 AMS SUBJECT CLASSIFICATION CODES. $11 \mathrm{~A}, 1 \mathrm{BB}$.

1. INTRODUCTION.

The famous conjecture of Collatz-Kakutani, also known as the Syracuse or the " $3 \mathrm{X}+1$ " problem, claims that the sequence

$$
\alpha_{n+1}=T\left(\alpha_{n}\right)=\left\{\begin{array}{l}
\frac{3 \alpha_{n}+1}{2}, \alpha_{n} \equiv 1(\bmod 2) \tag{1.1}\\
\frac{\alpha_{n}}{2}, \alpha_{n} \equiv 0(\bmod 2)
\end{array}\right.
$$

converges to the cycle $(1,2)$ for any $\alpha_{0} \in Z^{+}$.
The following well-known heuristic argument serves as an evidence for its validity. Consider T as though it were a random walk. It is natural to suppose that odd and even numbers appear independently, with probability $1 / 2$ at each jump.

Then $T^{(n)}\left(\alpha_{0}\right)$ should converge since the mathematical expectation of $\frac{T(\alpha)}{\alpha}$ is about $\left(\frac{3}{2} \cdot \frac{1}{2}\right)^{1 / 2}<1$.

Although this conjecture seems to be intractable at present, some supporting results have been obtained. An interesting review on this problem can be found in [2]. In particular, Crandall [1] proved that the conjecture is true for many values of α_{0}. Namely, set $\vartheta(x)=\mid\left\{u: T^{(k)}(u)=1\right.$ for some $k \geqslant 0$ and $\left.u \leqslant x\right\} \mid$. Thus, $\vartheta(x)$ is just the number of numbers not exceeding x satisfing the conjecture. Then Crandall's result is $\theta(x)>\mathrm{cx}^{r}$, for appropriate constants $c, r>0$. However, his proof gives a very poor value for r, about 0.05 .

Here we derive a system of difference inequalities on functions closely related to θ (Lemma 4). Solving this system in the simplest case, we establish $\theta(x)>\mathrm{cx}^{\frac{3}{7}}$. Actually our proof gives a little more, namely:

```
given any v\equiv1 or 2(mod 3) that is not in a cycle, for all x > 1
```

$$
\mid\left\{n \leqslant v x: T^{(k)}(n)=v \text { for some } k \geqslant 1\right\} \left\lvert\, \geqslant c_{0} x^{\frac{3}{7}}\right.,
$$

where c_{0} is a positive constant independent of v.
In some sense the proof may be regarded as an attempt to formalize the above mentioned heuristic argument.

2. RESULTS.

Consider the infinite directed graph G on the vertex set $v=Z^{+}$and the edge set $E=\{(T(v), v)\}$, whose edges are oriented from $T(v)$ to v. Denote by $G(v, x)$ an induced subgraph of G whose vertex set consists of all integers n such that some $T^{k}(n)=v$ and $T^{i}(n) \leqslant x$ for $0 \leqslant i \leqslant k$. That is, it consists of all integers n whose trajectory hits v and remains below x the entire time. In particular $G(v, x)$ is the empty set if $x<v$. We also put $G(v)=G(v, \infty)$. Observe that $G(v)$ has at most one cycle since the in degree of each vertex, but may be v, is one. Moreover, if v does not lie in a cycle of G then $G(v)$ is a tree.

Here we prefer to deal with U, the mapping inverse to T, namely:

$$
U(\alpha)=\left\{\begin{array}{l}
2 \alpha, \alpha \equiv 0,1(\bmod 3) \tag{2.1}\\
2 \alpha \cup \frac{2 \alpha-1}{3}, \alpha \equiv 2(\bmod 3)
\end{array}\right.
$$

Since only numbers $\alpha \equiv 2$ (mod 3) have two inverses under T, we wish to analyze iterates under $U=T^{-1}$ restricted to integers $\equiv 2$ (mod 3). To do this we must consider values of $\alpha(\bmod 9)$.

Let S_{n} be complete system of residue classes modulo 3^{n}. We siplit S_{n} as follows:

$$
S_{n}=\bigcup_{i=0}^{2} R_{n}^{i} \text {, where } \alpha \in R_{n}^{i} \Leftrightarrow \alpha \equiv i(\bmod 3)
$$

Furthermore, put

$$
R_{n}^{2}=Q_{n}^{2} \cup Q_{n}^{5} \cup Q_{n}^{8}, \text { where } \alpha \in Q_{n}^{i} \Leftrightarrow \alpha \equiv i(\bmod 9)
$$

Obviously, $U: R_{n}^{o} \rightarrow R_{n}^{o}$ and $U: R_{n}^{1} \rightarrow R_{n}^{2}$. The action of U on R_{n}^{2} can be split into the four following operators:

$$
\begin{aligned}
& U_{1}: R_{n}^{2} \rightarrow R_{n}^{2}, U_{1}(\alpha)=4 \alpha \\
& U_{2}: Q_{n}^{5} \rightarrow R_{n-1}^{0}, U_{2}(\alpha)=\frac{2 \alpha-1}{3} \\
& U_{3}: Q_{n}^{2} \rightarrow R_{n-1}^{2}, U_{3}(\alpha)=\frac{4 \alpha-2}{3} \\
& U_{4}: Q_{n}^{8} \rightarrow R_{n-1}^{2}, U_{4}(\alpha)=\frac{2 \alpha-1}{3}
\end{aligned}
$$

The following lemma is an easy exercise in elementary number theory: LEmma 1.
(i) $\quad U_{1}$ ia a bijection $R_{n}^{2} \leftrightarrow R_{n}^{2}$. Moreover, if $\alpha \in R_{n}^{2}$ then $\ell=3^{n-1}$ is the smallest positive integer such that $\mathrm{U}_{1}^{(\ell)}(\alpha)=\alpha$.
(ii) $\quad U_{3}$ is a bijection $Q_{n}^{2} \rightarrow R_{n-1}^{2}$.

$$
\begin{equation*}
U_{4} \text { is a bijection } Q_{n}^{8} \leftrightarrow R_{n-1}^{2} \tag{iii}
\end{equation*}
$$

The action of U on R_{n}^{o} and R_{n}^{1} is much simpler. Namely, $U: R_{n}^{o} \rightarrow R_{n}^{o}$ and $U: R_{n}^{1} \rightarrow R_{n}^{2}$ are bijections. Moreover, since $\alpha \in R_{n}^{o}$ implies $U(\alpha)=2 \alpha \in R_{n}^{0}$ we get

LEMMA 2. If $v \in R_{n}^{o}$ then $G(v)$ is a chain.
Now we define the functions we deal with in this paper.
Let $v \equiv m\left(\bmod 3^{n}\right)$. We set $f(v, x)=f_{n}^{m}(v, x)=|G(v, x)|$. (The reason for using the redundant notation $f_{n}^{m}(v, x)$ instead of $f(v, x)$ is to simplify the statement of the difference inequalities that follow.)

Observe that for $v \leqslant x$

$$
\begin{align*}
& \mathrm{f}_{\mathrm{n}}^{\mathrm{m}}(\mathrm{v}, \mathrm{x})=1+\left[\log _{2} \frac{\mathrm{x}}{\mathrm{v}}\right], \mathrm{m} \in \mathbb{R}_{\mathrm{n}}^{\mathrm{o}} \tag{2.2}\\
& \mathrm{f}_{\mathrm{n}}^{\mathrm{m}}(\mathrm{v}, \mathrm{x})=1+\mathrm{f}_{\mathrm{n}}^{2 \mathrm{~m}}(2 \mathrm{v}, \mathrm{x}), \mathrm{m} \in \mathrm{R}_{\mathrm{n}}^{1} \tag{2.3}
\end{align*}
$$

Furthermore, let $W=\{w\}$ be the set of those vertices of G which do not belong to a cycle. For instance, $U^{k}(4) \epsilon W$ for all $K \geqslant 0$. Then $G(w)$ is a tree and we set

$$
\phi_{n}^{m}(y)=\inf _{v \in W} f_{n}^{m}\left(v, 2^{y} v\right)=\inf \left\{f\left(v, 2^{y} v\right): v \in W \text { and } v \equiv m\left(\bmod 3^{n}\right)\right\}
$$

Note that for any $m \equiv 2(\bmod 3)$ and n, the set $\{v: v G(u), v \equiv m$
$\left.\left(\bmod 3^{n}\right)\right\} \neq \phi$ because $2^{k} v$ is in this set and 2 is a primitive root (mod 3^{n}) for all n.
LEMMA 3. $\phi_{n}^{m}(y)$ is nondecreasing function of y.
PROOF. Obviously, $f_{n}^{m}(v, x)$ is a nondecreasing function of x.
Hence, $\phi_{n}^{m}(y)=\inf f_{n}^{m}\left(v, 2^{y} v\right)$ is nondecreasing function of y.
The following lemma gives important recurrent inequalities on $\phi_{n}^{m}(y)$.
LEMMA 4. For $\mathrm{y} \geqslant 0$,

$$
\left\{\begin{array}{l}
\phi_{n}^{m}(y) \geqslant \phi_{n}^{4 m}(y-2)+\phi_{n-1}^{\frac{4 m-2}{3}}(y+\alpha-2), m \in Q_{n}^{2} \tag{2.4}\\
\phi_{n}^{m}(y) \geqslant \phi_{n}^{4 m}(y-2)+\phi_{n-1}^{3}(y+\alpha-1), m \in Q_{n}^{8} \\
\dot{\varphi}_{n}^{m}(y) \geqslant \phi_{n}^{4 m}(y-2)+[y+\alpha], m \in Q_{n}^{5}
\end{array}\right.
$$

where $\alpha=\log _{2} 3 \simeq 1.585$ and

$$
\begin{equation*}
\phi_{n-1}^{m}(y)=\min \left(\phi_{n}^{m}(y), \phi_{n}^{m+3^{n-1}}(y), \phi_{n}^{m+2 \cdot 3^{n-1}}(y)\right) . \tag{2.5}
\end{equation*}
$$

PROOF. (2.5) follows immediately from the definition of $\phi_{n}^{m}(y)$. Let us demonstrate (2.4). If $v=m\left(\bmod 3^{n}\right), m \in Q_{n}^{5}$ then, by (2.1), if $v \leqslant x$,

$$
|G(v, x)| \geqslant|G(4 v, x)|+\left|G\left(\frac{2 v-1}{3}, x\right)\right|
$$

If $\frac{2 v-1}{3} \equiv 0(\bmod 3)$ then $G\left(\frac{2 v-1}{3}, x\right)$ is a chain by 1 emma 2. Thus, by (2.2), if $v \leqslant x$,

$$
f_{n}^{m}(v, x)=f_{n}^{4 m}(4 v, x)+1+\left[\log _{2} \frac{3 x}{2 v-1}\right]
$$

Hence, $\phi_{n}^{m}(y) \geqslant \phi_{n}^{4 m}(y-2)+[y+\alpha]$.
If $m \in Q_{n}^{8}$ then $G(v, x)$ is a forest. Hence,

$$
|G(v, x)|=|G(4 v, x)|+\left|G\left(\frac{2 v-1}{3}, x\right)\right|
$$

By $\frac{2 v}{3}=1<\frac{2 v}{3}$ and by lemma 3 we get, if $y \geqslant 0$ and $x=2^{y} v$, then

$$
\begin{gathered}
\dot{\psi}_{n}^{n}(y)=\inf f_{n}^{m}(v, x)=\inf \left(f_{n}^{4 m}(4 v, x)+f_{n-1}^{\frac{2 v-1}{3}}\left(\frac{2 v-1}{3}, x\right)\right) \geqslant \\
\geqslant \inf f_{n}^{4 n}(4 v, x)+\inf f_{n-1}^{\frac{2 v-1}{3}}\left(\frac{2 v}{3}, x\right) \geqslant \phi_{n}^{4 m}(y-2)+\phi_{n-1}^{\frac{2 v-1}{3}}(y+\alpha-1) .
\end{gathered}
$$

The case $m \in Q_{n}^{2}$ may be considered similarly to the case $m \in Q_{n}^{8}$. We orait the details

THEOREM 1. $\theta(x)>c_{2} x^{\frac{3}{7}}$.
PROOF. For $n=2$ the system (2.4) becomes for $y \geqslant 0$,

$$
\begin{aligned}
& \left.\phi_{2}^{2}(y) \geqslant\right\rangle_{2}^{8}(y-2)+\phi_{1}^{2}(y+\alpha-2) \\
& \psi_{2}^{8}(y) \geqslant \phi_{2}^{5}(y-2)+\phi_{1}^{2}(y+\alpha-1) \\
& \phi_{2}^{5}(y)>\phi_{2}^{2}(y-2)
\end{aligned}
$$

where $\phi_{1}^{2}(y)=\min \left(\phi_{2}^{2}(y), \phi_{2}^{8}(y), \phi_{2}^{5}(y)\right)$. Observe that $\phi_{2}^{8}(y)>\phi_{1}^{2}(y)$ for $y \geqslant 2$ by $\varphi_{2}^{8}(y) \geqslant \phi_{2}^{5}(y-2)+\phi_{1}^{2}(y+\alpha-1)>\phi_{1}^{2}(y)$, since $\phi_{1}^{2}(y+\alpha-1) \geqslant \phi_{1}^{2}(y)$ and $\phi_{2}^{5}(y-2)>0$ if $y \geqslant 2$. Hence,

$$
\phi_{1}^{2}(y)=\min \left(\phi_{2}^{2}(y), \phi_{2}^{5}(y)\right) \geqslant \min \left(\phi_{2}^{2}(y), \phi_{2}^{2}(y-2)\right)=\phi_{2}^{2}(y-2)
$$

This yields if $y \geqslant 6$,

$$
\begin{aligned}
& \phi_{2}^{2}(y) \geqslant \phi_{2}^{5}(y-4)+\phi_{1}^{2}(y+\alpha-1)+\phi_{1}^{2}(y+\alpha-2) \\
& \geqslant \phi_{2}^{2}(y-6)+\phi_{1}^{2}(y+\alpha-1)+\phi_{1}^{2}(y+\alpha-2) \\
& \geqslant \phi_{2}^{2}(y-6)+\phi_{2}^{2}(y+\alpha-5)+\phi_{2}^{2}(y+\alpha-4)
\end{aligned}
$$

The initial conditions $\phi_{2}^{2}(0)=1$ imply $\phi_{2}^{2}(y) \geqslant 1$ for $y \geqslant 6$, whence one proves by induction on n, that for $n \leqslant y \leqslant n+1$, one has $\psi_{2}^{2}(y) \geqslant c_{1} \lambda^{y}$, where $\lambda \simeq 1.3534$ is the largest root of $1=\lambda^{-6}+\lambda^{\alpha-5}+\lambda^{\alpha-4}$.

Finally, we obtain $\vartheta(x) \geqslant c_{2} x^{\log _{2} \lambda}>c_{2} x^{\frac{3}{7}}$, where $\log _{2} \lambda=0.436$.
REMARK. Although system (2.4) seems to be very complicated and we were unable to
solve it for $n \geqslant 3$, averaging it over all residue classes modulo 3^{n-1} looks much more attractive. Namely, define

$$
F_{n}(y)=3^{-n+1} \sum_{m \in R_{n}^{2}} \phi_{n}^{m}(y)
$$

Using lemmas 1 and 4 we get

$$
\begin{aligned}
3^{n-1} F_{n}(y) & =\sum_{m \in R_{n}^{2}} \phi_{n}^{m}(y) \geqslant \sum_{m \in R_{n}^{2}} \phi_{n}^{m}(y-2)+\sum_{m \in R_{n-1}^{2}} \phi_{n-1}^{m}(y+\alpha-2)+\sum_{m \in R_{n-1}^{2}} \phi_{n-1}^{m}(y+\alpha-1)= \\
& =3^{n-1} F_{n}(y-2)+3^{n-2} F_{n-1}(y+\alpha-2)+3^{n-2} F_{n-1}(y+\alpha-1)
\end{aligned}
$$

Thus,

$$
F_{n}(y) \geqslant F_{n}(y-2)+\frac{1}{3} F_{n-1}(y+\alpha-2)+\frac{1}{3} F_{n-1}(y+\alpha-1)
$$

Observe that the associated limit equation $1=\lambda^{-2}+\frac{1}{3}\left(\lambda^{\alpha-2}+\lambda^{\alpha-1}\right)$ has $\lambda=2$ as the smallest positive root. Therefore, one might expect that the solution of the
difference ineqalities gives $\theta(x)>c_{n} x^{r}$, where $r_{n} \rightarrow 1$ when n tends to infinity.

REFERENCES

1. CRANDALL, R.E., On the " $3 \mathrm{X}+1$ " problem Math. Comp. 32, (1972), 1281-1292.
2. LAGARIAS, J.C., The $3 X+1$ problem and its generalizations, The American Math. Monthly 92, (1985), 3-23.
