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ABSTRACT. Let 0(x) be the number of numbers not exceeding x satisfy the 3X +

conjecture. We obtain a system of difference inequalities on functions closely

related to 0. Solving this system in the simplest case, we

3
7establish 0(x) > cx This improves a result of Crandall [I].
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I. INTRODUCTION.

The famous conjecture of Collatz-Kakutanl, also known as the Syracuse or the

"3X + i" problem, claims that the sequence

an+l T(Un)

3a +
a (mod 2)2 n

n--, a -=- 0 (mod 2)
n

(1.1)

+converges to the cycle (1,2) for any s
0

Z

The following well-known heuristic argument serves as an evidence for its

validity. Consider T as though it were a random walk. It is natural to suppose that

odd and even numbers appear independently, with probability I/2 at each Jump.
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(n)
Then T (0) should co,verge since the mathematical expectation

: /2of
T()

is about <--g- (. -)
Although this conjecture seems to be intractable at present, some supporting

results have been obtained. An interesting review on this problem can be found in

[2]. In particular, Crandall [I] proved that the conjecture is true for many values

of 0" Namely, set 9(x) {u T(k)(u) for some k 0 and u x} i"
Thus, 0(x)is just the number of numbers not exceeding x satisfing the conjecture.

Then Crandall’s result is 0(x)> cxr, for appropriate constants c, r > 0. However,

his proof gives a very poor value for r, about 0.05.

Here we derive a system of difference inequalities on functions closely related

to 0 (Lemma 4). Solving this system in the simplest case, we

3

establish 0(x) > cx Actually our proof gives a little more, namely:

given any v E or 2 (mod 3) that is not in a cycle, for all x )

3

{n vx: TIk(n) v for some k I} c0x7,

where co is a positive constant independent of v.

In some sense the proof may be regarded as an attempt to formalize the above

mentioned heuristic argument.

2. RESULTS.

+
Consider the infinite directed graph G on the vertex set V Z and the edge

set E [(T(v), v)}, who.e edges are oriented from T(v) to v. Denote by G(v,x) an

induced subgraph of G whose vertex set consists of all integers n such that

some Tk(n) v and Ti(n) x for 0 k. That is, it consists of all integers n

whose trajectory hits v and remains below x the entire time. In particular G(v,x) is

the empty set if x < v. We also put G(v) G(v,=). Observe that G(v) has at most

one cycle since the in degree of each vertex, but may be v, is one. Moreover, if v

does not lie in a cycle of G then G(v) is a tree.

Here we prefer to deal with U, the mapping inverse to T, namely:

u(=)

2a, 0,1 (rood 3)

2a-
2a U -------, a 2 (rood 3)

(2.1)

Since only numbers a--2 (rood 3) have two inverses under T, we wish to analyze
-I

iterates under U T restricted to integers 2 (rood 3). To do this we must

consider values of a (rood 9).
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Let S be a complete system of resldue classes modulo 3 n. We split S as
n n

follows:

2
S U R i

where a R i <--> a -= i (rood 3).
n n’ n

i=O

Furthermore, put

R2 Q2nlgQ5nL, Q8 where , i
n n’ Qn <=> c :_ i (rood 9).

R R
2

R
2

R R and U: The action of U on can be split intoObviously, U:
n n n n n

the four following operators:

R
2

R
2

U Ul(a) 4
n n’

5
R
o

U () 2-
U2: Qn n-I 2 3

U3: R2n-I’ U3 (a)
4 23

8
R
2 2a

U4: Qn n-l’ U4(e) 3

The following lemma is an easy exercise in elementary number theory:

LEMMA I.

R
2

R
2

R
2

(i) U ia a bljectlon Moreover, if e
n

then
n n

(I)smallest positive integer such that U (e) .
n-1

is the

(ii) 2R2U
3

is a bljectlon Qn n-l"

8 2(lii) U
4

is a bljectlon Qn Rn-l"

The action of U on R and R is much simpler. Namely, U: R R and
n n n n

R R
2

RU: are bijections. Moreover, since e&R implies U(a) 2a we get
n n n n

LEMMA 2. If v R then G(v) is a chain.
n

Now we define the functions we deal with in this paper.

Let v E m (mod 3n). We set f(v,x) f(v,x) G(v,x) l" (The reason for using the

redundant notation fm(v,x) instead of f(v,x) is to simplify the statement of the
n

difference inequalities that follow.)

Observe that for v ( x

f (v,x) + [log2 v n
(2.2)

fm(v,x) + f2m(2v,x), m e RI. (2.3)
n n n
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Furthermore, let W {w} be the set of those vertices of G which do not belong to

a cycle. For instance, uk(4) W for all K 0. Then G(w) is a tree and we set

m(y) inf fro(v, 2Yv) inf{f(v,2Yv): ve W and v m (rood 3n)}.
n nvW

Note that for any m =- 2 (rood 3) and n, the set [v: v G(u), v E m

(rood 3n)} because 2kv is in this set and 2 is a primitive root (rood 3 n) for all n.

LEMMA 3. _m(y) is nondecreasing function of y.

PROOF Obviously, fm(v,x) is a nondecreaslng function of x.

mHence, (y) inf fm(v 2Yv) is nondecreaslng function of y.
n n

The following lemma gives important recurrent inequalities on (y).
LEMMA 4. For y 0,

4m-2
m 4m 3 2n (y)

n
(y- 2) + n-I (Y + a 2), m Qn

2v-I
8m( .4m( 3

(y + a- I), m e Qnn y) n y- 2) + n (24)

,m( 4m 5
qn y)

n
(y- 2) + [y + a], me Qn

where a Iog23 1.585 and

m nm (y), m+3n-1 nm+2" 3n-1

n-I (y) mln n (Y)’ (y)).

PROOF (25) follows immediately from the definition of :(y).
demonstrate (2 4) If v m (rood 3n), 5

mE Qn then, by (2.1), if v x,

2v- 2v3-If 3 0 (rood 3) then G ,x) is a chain by lemma 2. Thus, by (2.2),

if v x,
3xf(v,x) f4m(4v,X)n + + [log

2 2v -i]"

4mHence, _m(y). n (y 2) + [y + a].

8
If m e Qn then G(v,x) is a forest. Hence,

Let us
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2v- 9v-: and by lemna 3 we get, if y 0 and x 2Yv, thenBy <

2v-1

n’n(Y) inf fm(vn ,x) inf (f4m(4vn ,x) + fn_13 (2v_,x))

2v-I 2v-I

inf f4m(4v’n x) + inf fn_13 (2v3-I ,x) O4mn(y 2) + n_13 (y + a- I).

2 QS. We omit theThe case m Qn may be considered slmllarly to the case m
n

details

3
7

THEOREM I. 0(x) > c2x
PROOF. For n 2 the system (2.4) becomes for y O,

2 8 2
2(y) #2(y- 2) + Ot(y + a- 2),

2(y) , (y-2) + 2l(y + - 1),

5 2
$2 (y) > 2 y 2),

2 2 8 5 8 21where $1(y) mln ($2(y), 2(y), 2(y)). Observe that $2(y) > $ (y) for y 2 by

8 5 2 2
2 (y) 2 (y 2) + I (y + I) > I(Y)’

2 2 5
since I (y + a I) I (y) and 2(y- 2) > 0 if y 2. Hence,

$2 22 5 2 2 2
(y) rain ($ (y), 2 (y)) min (2(Y)’ 2 (y 2)) 2(y 2)

This yields if y 6,

2
5 2 + 2)(y) 2(y- 4) + l(y + - I) + 21(y

2 2 2
2 (y 6) + I (y + a I) + !(y + 2)

22(y- 6) + 22(y + - 5) + 22(y + - 4).

2 2
The initial conditions 2(0) imply 2(y) for y 6, whence one proves by

induction on n, that for n y n + I, one has ,22(y) c!%Y, where k 1.3534 is the

-6 + X-5 +largest root of %

3
log2k

Finally, we obtain 0() c2x > c2x wheme log2k 0.436.

REMARK. Although system (2.4) seems to be very complicated and we were unable to
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solve it for n 3, averaging it over all residue classes modulo 3

attractive. Namely, define

n-I
looks much more

F (y) 3
-n+l " 2 :(Y)"n m:Rn

Using lemmas and 4 we get

3n-I Fn(Y)=m( R
2 m(n 2

m
2

m
y)

R2
(y-2) + ). n_l(y + a-2) + n_l(y+a-l)

m- mgR m-R
n n n-I n-I

3n-lFn (y 2) + 3n-2Fn_l(y + a- 2) + 3n-2Fn_l (y + a 1).

Thus,

F (y) Fn(Y- 2) + Fn_l(y + c- 2) + Fn_l(y + ct- l).
n

a-2+ -IObserve that the associated limit equation 4
-2

+ has k 2 as

the smallest positive root. Therefore, one might expect that the solution of the

n
difference ineqalities gives 0(x) > CnX ,where rn when n tends to infinity.
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