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ABSTRACT. An inductive limit E -=ind!im E, is ultrarcgular if it is regular and each set

B C E,, which is bounded in E, is also bounded in E,,. A necessary and sufficient condition

for ultraregularity of E is given provided each E, is an LF-spacc which is closed in E,+.
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Let F be a locally convex space and B C F an absolutely convex subset. We denote by Fm
the linear hull of B and provide it with the topology generated by the Minkowski functional of

B. If the toplogical pace Fm is Banach then B is called a Banach disk. In Ill de Wilde calls

the space F fast complete if every set B, bounded in F, is contained in a bounded Banach

disk. Every sequentially complete space is fast complete.

A strict inductive limit of a sequence F c F.o c of Fr6chet spaces is called an LF-space.

If S C X Y, where X and Y are locally convex spaces, then c.r$ and cg.rS are the

respective closures of ’ in X and Y. Throughout the paper E c E C is a sequence

of Hausdortf locally convex spaces with all inclusions id: E, E,,+ continuous. We denote

indlim E, by E.

In [2] Floret calls an inductive limit E regular, resp. c-regul, if every set bounded in E

is bounded, resp. contained, in some E,. An a-regular inductive limit is ultraregular, resp.

weakly ultraregular, if each set B C E, which is bounded in E, is also bounded, resp. weakly

bounded, in E,.

In [3, 4, Prop. 4] Dieudonnd and Schwartz proved that a strict inductive limit is ultra-

regular if each space E, is closed in E,+. In the case the inductive limit is not strict some

restrictions on topologies of the spaces E,, hav to be imposed.

We introduce two properties-

Every closed absolutely convex neighborh,,l in E,, is closed in Zn-l.
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() If U is a closed absolutely convex neighborhood in E. and V is the closure of U in

then U V E..

Evidently P = Q and if each space E. is closed in E.+, then P is equivalent to Q. If the

inductive limit E is strict then Q holds.

/,emma 1. (Q) holds iff each real f 6 E’. has a real continuous linear extension to E.+,.

Proof. Assume (Q) and takeareal f 6 E’., f O. The set U f-[-1,1] is aclosed

absolutely convex neighborhood in E.. Let V be the corresponding set V c E.+ from (Q). If

E c V we would have U V N E. E. and f 0, which contradicts our assumption f 0.

Hence we can choose zo E.\V. Since V is absolutely convex and closed in E.+, there exists a

real g q E’.+ such that V c g-*(-oo, 1] and g(Zo) > 1. Further f-*(0) c g-(0) which implies

f(zo) O. Without a loss of generality we may assume f(zo) 1. Then f(z f(z)zo) 0

for z E,, and (z- fCz)zo) f-x(0) C g-x(0). Hence, g(z- fCz)zo) gCz) f(z)gCzo) 0

and the functional CgCzo))-xg E’.+x is the desired extension.

Assume that each real f 6 E’. has a real extension g E’ Take a closed absolutelyn+l"

convex neighborhood U C E.. By the Hahn-Banach theorem there exists F C E’. such that

each f q F is real and U N{f-(-oo,1]; f q F}. Let G be the set of all real extensions

of all f q F to E.+,. The set V N{g-*(-oo,1];g 6 G} is closed and absolutely convex in

E.+,. Evidently U c V N E.. Assume U V N E.. Then there is y (V E.)\U C E.\U
and f q F such that y f-(-oo, 1] E. g-*(-oo,1], where g q G is an extension of f.
But then y E. N V C E. g-(-oo, 1], which is a contradiction. Hence U V E. and

() holds.

Lmma P.. (P) = E a-regular.

Proof. Assume that E is not -regular. Then there is a set B bounded in E which is

not contained in any E,. By taking a subsequence of E, E2,..., we may assume that for any

a 6 N there exists b. (B N En)\E._,, Eo {0}.
Since b # 0, there is a closed absolutely convex neighborhood U in E such that b, U.

Also b2 E,. Hence b Ux. By (P), Ut is closed in ’ and there exists an absolutely convex

neighborhood Vt in E such that (b + V + V) N U 0 and (b + Vt + V,) D U 0. Then

b U.U2 cfz(U + V) is a closed absolutely convex neighborhood in E such that b,

Again U is closed in Es and b U. Hence there is an absolutely convex neighborhood Vin

Es such that (b + V + V2) U @ for k 1,2,3. The set Us CE(U + V) is a closed

sbsolutely convex neighborhood in Ez for which }b Us, k 1,2, 3, 4.

Once all such U.,a q N, are constructed, U.;n q N} is a neighborhood in E which

does not absorb B, a contradiction.
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Lemma S. (P) = E weakly ultraregular.

Proof. Assume (P) and E not weakly ultraregular. By I,emma 2, E is a-regular. Hence,

there exists a set B bounded in E and n E N such that/3 C E but B is not weakly bounded

in En. Without a loss of generality we may assume n 1.

Take a real ft E E which is not bounded on B and choose a sequence bn E B, n E N,

such that f(b,) > n. Since (P) implies (Q) there is a real extension f2 E of f and a real

extension/’3 6 E of/’2, etc. Each set Un --/’X(-oo, 1], n N, is a closed absolutely convex

neighborhood in E, and U C Us C Hence U t./{U,; n E N} is a 0-neighborhood in E.

For any n 6 N we have bn nO, i.e. U does not absorb B which is a contradictlon.

Theorem I. Let (P) hold and each E,, be fast complete. Then E is ultrarcgular.

Proo/. By Lemma 2, E is c-regular. Let B C E be bounded. Then B C E, for some

n E N. By Lemma 3, B is weakly bounded in E,. Since E, i,. fast corr.plctc, B is alo bounded

with respect to the topology of E., see [41.
Lemma . Let each E, be an lnductive llmit of metrlzable spaces and E ultraregular.

Then (Q) holds.

Proof. Take a real /" E E,f 0. It suffices to show that f has a continuous linear

extenslon to E. Put F (Ex, top E2). Since the inclusion id: E F ls continuous, each

set bounded in E is bounded in

E and B c E. Then B ls bounded in E by the ultraregularity of E. Hence the spaces

and iv have the same families of bounded sets.

The set .4 --/’- (- I, 1) absorbs all sets bounded in E, hence it absorbs all sets bounded in

F. The space F, a.s an inductive limit of metrizable spaces, is bornological. This implies .4 s a

O-neighborhood in F. Ira .v. b,x, C f-’(a,b), and d min(f(xo)-a,b- f(xo)), then d > 0 and

xo+dA C j-(a,b). Thus f-(a,b) i5 ,,pen in F and f-’(-oo, 1] F\t2{f-’(l,n);n N} is

closed in F. The set M

MCF ME.
Take x E for which f(x) > 1. Tt:cn z M and there exists a real g

_
E such that

M C g-(-oo, 1] and g(x,) > 1. If z f-(O) .!,: flkx) 0 for each integer/ which implies

kx M and z g-(0). Hence f-’(O) (- g-(o. .nd tIwre exists c > 0 such that cg(z) ]’(x}

for z E. The functional cg is the .ougtt lirc,;r continuous extension of f to E=.
Theorem P,. Assume

1. Each E, is closed

2. Each E, is an inductive limit of metrizable spaces.

3. E is ultraregular.

Then (P) holds.
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Proof. By Lemma 4, assumptions 2 and 3 imply (Q) which combined with the assumption

in 1 implies (P).
Theorem 3. Assume

I. Each E is closed in E+I.

2. Each E is LF-space.

Then E is ultraregular iff (P) holds.

Proof. The if part follows from Theorem 2. For the only if part we observe that each

LF-space E satisfies the assumptions of the Dieudonnd-Schwartz Theorem in [3]. Hence E
is ultraregular and therefore also regular. Since regular inductive limit, not necessarily strict,

of Frchet spaces is fast complete, [5], each space E is fast complete. Then, by Theorem 1,

(P) implies the ultraregularity of E.

References

[1] Marc de Wilde, Doctoral Dissertation, Mdm. Soc. R. Se., Liege, 18, 2, 1969.

[2l Klaus Floret, On Bounded Sets in Inductive Limits of Normed Spaces, Proc. AMS, 75,

2, 1979, 221-225.

[31 Jean Dieudonnd, Laurent Schwartz, La dualitd dans les espaces (F) et (LF), Ann. mt.

Fourier (Grenoble) I, 1949, 61-101.

[4] Carlos Bosch, Jan Kucera, A necessary and suicient condition for w.-bounded sets to

be strongly bounded, Proc. AM,q, 101, 3, 1987, 453-454.

[5] Jan Kucera, Carlos Bosch, Bounded sets in fast complete inductive limits, Int. J. Math.

Math. 8ci. 7, 3, 1984, 615-617.


