A NOTE ON THE k-DOMINATION NUMBER OF A GRAPH

Y. CARO

Department of Mathematics University of Haifa-Oranim Geva 18915 Israel

and

Y. RODITTY

Department of Mathematics Beit-Berl College and School of Mathematical Sciences Tel-Aviv University Israel

(Received December 30, 1988 and in revised form February 1, 1989)

ABSTRACT. The k-domination number of a graph G = G(V,E), $\gamma_k(G)$, is the least cardinality of a set $X \subset V$ such that any vertex in V X is adjacent to at least k vertices of X.

Extending a result of Cockayne, Gamble and Shepherd [4], we prove that if $\delta(G) > \frac{n+1}{n} k-1$, n>1, k>1 then, $\gamma_k(G) < \frac{np}{n+1}$, where p is the order of G.

KEY WORDS AND PHRASES. k-dominating set and k-domination Number. 1980 AMS SUBJECT CLASSIFICATION CODE. 05C35.

1. INTRODUCTION.

A set X of vertices of a graph G = G(V,E) is k-dominating if each vertex of V\X is adjacent to at least k vertices of X. The k-domination number of a graph G, $\gamma_{\rm L}(G)$, is the smallest cardinality of a k-dominating set of G.

We write $\delta = \delta(G)$ for the minimum degree of vertices in G and |G| = p is the number of vertices of G.

Several results concerning $y_k(G)$ have been established by Fink and Jacobson [1], [2] who showed that $\gamma_k > \frac{kp}{\Lambda + k}$, and recently by Favaron [3].

As for the upper bound, Cockayne, Gamble and Shepherd proved the following: THEOREM 1.1. If G has p vertices and $\delta > k$, then $\gamma_k(G) < \frac{kp}{k+1}$.

2. MAIN RESULTS.

Our aim in this note is to extend Theorem 1.1 and give a shorter proof of that given in Cockayne, Gamble, and Shepherd [4]. We prove,

THEOREM 2.1. Let n, k be positive integers and G a graph such that

$$\delta(G) \ge \frac{n+1}{n} k-1$$
. Then, $\gamma_k(G) \le \frac{np}{n+1}$.

PROOF. Let V_1, V_2, \dots, V_{n+1} be a partition of V(G) into n+1 subsets which maximizes

the number of edges in E' where E' = E(G) $\bigvee_{i=1}^{n+1} E(\langle V_i \rangle)$ and $\langle V_i \rangle$ is the subgraph induced on the vertex set V_i .

By a classical argument of Erdös [5] we have that for every $x \in V$, $\deg_{H}(x) > [\frac{n}{n+1} \deg_{G}(x)]$, where H = H(V', E'), V' = V, and E' is as above. Hence we conclude that:

$$\deg_{H}(\mathbf{x}) > \left[\frac{n}{n+1} \left(\frac{n+1}{n} \ k-1\right)\right] = \left[k - \frac{n}{n+1}\right] = k.$$

Assume W.L.O.G. that $|V_1| > |V_2| > \dots > |V_{n+1}|$. Then the set $A = \bigcup_{i=2}^{n+1} V_i$ is a k-

dominating set of G since each vertex x $\in V_1$ is adjacent to at least k vertices of A. Thus it follows that $\gamma_k(G) \leq p - |V_1| \leq \frac{np}{n+1}$.

COROLLARY 1. [4] If $\delta(G) > k$ then $\gamma_k(G) < \frac{kp}{k+1}$. PROOF. Take n = k in Theorem 2.1. COROLLARY 2: If $\delta(G) > 2k - 1$ then $\gamma_k(G) < \frac{p}{2}$. REMARK. Using a similar argument we can prove the following:

If $\delta(G) > k > 1$ and $\chi(G) = n$, then $\gamma_k(G) < \frac{(n-1)p}{n}$.

REFERENCES

- FINK, J.F. and JACOBSON, M.S., n-Domination in Graphs, Graph Theory with Applications to Algorithms and Computer Science, <u>Proc. of 5th international</u> Conference, Kalamazoo (1984), 283-300.
- FINK, J.F. and JACOBSON, M.S., On n-Domination, n-Dependence and Forbidden Subgroups, id. 301-311.
- FAVARON, O., k-Domination and k-Independence in Graphs, Technical report Orsay, France (1987).
- COCKAYNE, E.J., GAMBLE, B., SHEPHERD, B., An Upper Bound for the k-Domination Number of a Graph. J. of Graph Theory 9 (1985), 533-534.
- ERDOS, P., On some Extremal Problems in Graph Theory, <u>Israel J. of Mathamatics</u> 3(1965), 113-116.