A NOTE ON THE k-DOMINATION NUMBER OF A GRAPH

Y. CARO

Department of Mathematics University of Haifa-Oranim

Geva 18915
Israel
and
Y. RODITTY

Department of Mathematics
Beit-Berl College and School of Mathematical Sciences Tel-Aviv University

Israel
(Received December 30, 1988 and in revised form February 1, 1989)

ABSTRACT. The k-domination number of a graph $G=G(V, E), \gamma_{k}(G)$, is the least cardinality of a set $X \subset V$ such that any vertex in $V X$ is adjacent to at least k vertices of X.

Extending a result of Cockayne, Gamble and Shepherd [4], we prove that if $\delta(G) \geqslant \frac{n+1}{n} k-1, n>1, k \geqslant 1$ then, $\gamma_{k}(G) \leqslant \frac{n p}{n+1}$, where p is the order of G.

KEY WORDS AND PHRASES. k-dominating set and k-domination Number.
1980 AMS SUBJECT CLASSIFICATION CODE. 05C35.

1. INTRODUCTION.

A set X of vertices of a graph $G=G(V, E)$ is k-dominating if each vertex of $V \backslash X$ is adjacent to at least k vertices of X. The k-domination number of a graph G, $\gamma_{k}(G)$, is the smallest cardinality of a k-dominating set of G.

We write $\delta=\delta(G)$ for the minimum degree of vertices in G and $|G|=p$ is the number of vertices of G.

Several results concerning $y_{k}(G)$ have been established by Fink and Jacobson [1], [2] who showed that $\gamma_{k} \geqslant \frac{k p}{\Delta+k}$, and recently by Favaron [3].

As for the upper bound, Cockayne, Gamble and Shepherd proved the following:
THEOREM l.l. If G has p vertices and $\delta \geqslant k$, then $\gamma_{k}(G) \leqslant \frac{k p}{k+1}$.
2. MAIN RESULTS.

Our aim in this note is to extend Theorem 1.1 and give a shorter proof of that given in Cockayne, Gamble, and Shepherd [4]. We prove,

THEOREM 2.1. Let n, k be positive integers and G a graph such that
$\delta(G) \geqslant \frac{n+1}{n} k-1$. Then, $\gamma_{k}(G) \leqslant \frac{n p}{n+1}$.

PROOF. Let $V_{1}, V_{2}, \ldots, v_{n+1}$ be a partition of $V(G)$ into $n+1$ subsets which maximizes the number of edges in E^{\prime} where $E^{\prime}=E(G) \prod_{i=1}^{n+1} E\left(\left\langle V_{i}\right\rangle\right)$ and $\left\langle V_{i}\right\rangle$ is the subgraph induced on the vertex set V_{i}.

By a classical argument of Erdös [5] we have that for every $x \varepsilon V, \operatorname{deg}_{H}(x) \geqslant$ $\left[\frac{n}{n+1} \operatorname{deg}_{G}(x)\right]$, where $H=H\left(V^{\prime}, E^{\prime}\right), V^{\prime}=V$, and E^{\prime} is as above. Hence we conclude that:

$$
\operatorname{deg}_{H}(x) \geqslant\left[\frac{n}{n+1}\left(\frac{n+1}{n} k-1\right)\right]=\left[k-\frac{n}{n+1}\right]=k
$$

 dominating set of G since each vertex $x \varepsilon V_{1}$ is adjacent to at least k vertices of A. Thus it follows that $\gamma_{k}(G)<p-\left|v_{1}\right|<\frac{n p}{n+1}$.

COROLLARY 1. [4] If $\delta(G) \geqslant k$ then $\gamma_{k}(G) \leqslant \frac{k p}{k+1}$.
PROOF. Take $n=k$ in Theorem 2.1.
COROLLARY 2: If $\delta(G) \geqslant 2 k-1$ then $\gamma_{k}(G)<\frac{P}{2}$.
REMARK. Using a similar argument we can prove the following:

$$
\text { If } \delta(G) \geqslant k \geqslant 1 \text { and } x(G)=n \text {, then } r_{k}(G) \leqslant \frac{(n-1) p}{n} \text {. }
$$

REFERENCES

1. FINK, J.F. and JACOBSON, M.S., n-Domination in Graphs, Graph Theory with

Applications to Algorithms and Computer Science, Proc. of 5th international Conference, Kalamazoo (1984), 283-300.
2. FINK, J.F. and JACOBSON, M.S., On n-Domination, n-Dependence and Forbidden Subgroups, id. 301-311.
3. FAVARON, O., k-Domination and k-Independence in Graphs, Technical report Orsay, France (1987).
4. COCKAYNE, E.J., GAMBLE, B., SHEPHERD, B., An Upper Bound for the k-Domination Number of a Graph. J. of Graph Theory 9 (1985), 533-534.
5. ERDOS, P., On some Extremal Problems in Graph Theory, Israel J. of Mathamatics 3(1965), 113-116.

