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ABSTRACT. A study is made of Lamb’s plane problem in mlcropolar viscoelastic half-

space with stretch. The viscoelasticity is characterized by the rate-dependent

theories of mlcro-viscoelastlclty generalizing the classlcal Kelvln-Voigt theory. The

displacement components, force stress, couple stress and vector first moment are

obtained for a half-space subjected to an arbitrary normal load. Two particular cases

of a horizontal force and a torque which are time harmonic have been considered.

Several limitlng cases are obtained as special cases of the present analysls.
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INTRODUCTION.

Lamb’s problem [I] has received considerable attention by several researchers in

different elastic media with various kinds of loading. In particular, Nowackl and

Nowackl [2] have studied the Lamb problem in mlcropolar elastic media. Chadha [3] has

investigated the Lamb problem in mlcropolar elastic media and discussed the

propagation of waves in a seml-lnflnlte mlcropolar elastlc solid due to loading at the

plane boundary of a seml-half space. Acharya and Sengupta [4] have recently studied

the same problem in a thermo-elastlc medium under the influence of temperture. They

have examined the longltudlnal and transverse thermo-elastlc waves in a mlcropolar
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semi-infinlte space bounded by a plane in which a normal loading is applied. In a

recent paper by Ray and Sengupta [5], a study is made of a two-dimensional waves in a

micropolar thermo-viscoelastic medium. More recently, Kumar and Chadha [6] and

Chadha, Kumar and Debnath [7] have made an investigation of the Lamb problem in a

microelastic half-space with stretch, and in a thermoelastic micropolar medium with

stretch.

Based upon the linear theory of micropolar viscoelastic waves due to Eringen [8-

9], a study is made of Lamb’s plane problem in micropolar viscoelastic half-space with

the effect of stretch. The displacement components, force stress, couple stress, and

vector first moment are determined for a half-space subjected to an arbitrary normal

load. Two particular cases of a horizontal force and a torque which are time harmonic

are cited as examples of the general theory.

2. BASIC CONSTITUTIVE AND FIELD EQUATIONS.

Making reference to Eringen [8-10] and Nowackl [11], the constitutive and field

equations for mlcropolar viscoelastic solids with stretch in the absence of body

forces, body moments and stretch forces are

+ 2 (a + a ) (ui, j kjik), (2.1)
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where tji,mji and j are the components of force stress, couple stress and vector

first moment, p is the density, J is the rotational inertia, u is the displacement

vector, is the microrotation vector and is the scalar microstretch,

8
0

are material constants.and I, , a, 8, Y, , ao’ no
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3. BASIC EQUATIONS AND THE BOUNDARY CONDITIONS

We consider a seml-inflnlte homogeneous, isotropic, micropolar viscoelastic solid

with stretch. We take the rectangular Cartesian coordinates x, y, and z with the

origin at the plane boundary of the half-space, z > o and the z-axls is normal to the

medium. We assume that there is a uniform stretch in the x-dlrectlon and a given

loading function g(x,t) normal to the free surface z o.

We consider the two-dlmensional problem so that the displacement and

microrotation are independent of the y coordinate. Hence, we may write

u__ (Ul, o, u 3) and

_
(o, 2’ o). We introduce displacement potentials

$(x,z,t) and $(x,z,t) defined by u Sx + Sz and u
3 Sz Sx" Consequently,

equations (2.4) (2.6) can be written in terms of $ and $ as

(3.1)

(3.2)

(3.3)

(3.4)

where
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Eliminating or m2 from (3.2) and (3.3), we obtain
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The boundary conditions of the problem are

where

(3.6abcd)

(3.7)

(3.8)
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82 }

m32 [(T + e) + (’Y1 + el) -’] 6o
(R) o (3.X3 Co -z + 3 x

In addition, we assume that , , m2 and tend to zero as z =.

4. SOLUTION OF THE PROBLEM.

We apply the double Fourler transform (k,z,s)of f(x,z,t) defined by (Mylnt-U

and Debnath, [13]) as

(k,z,s) = f f exp{i(kx + st)} f(x,z,t) dxdt (4.1)

and its inverse is given by

f(x,z,t) ff exp[-i(kx+st)] (k,z,s)dkds

Applications of this transforms to equations (3.1) (3.4) gives
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(4.7)

(4.8)

The solutions of (4.2) (4.4) with the boundary conditions at infinity are

-s z -s
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where it is assumed that Re(sj) 0 for J I, 2, 3, 4 and

B a2B, C a3C, (4.11ab)

2 sc2 2
k
2

s
2

aj Pl_i sPl’
[(c

2
i (sj + ], J 2,3 (4.12ab)

Applying the Fourier transforms (3.1) to the boundary conditions (3.6abcd)

(2.10) and combined with (4.gab) (4.10ab), we obtain
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Application of the inverse Fourier transformation to (4.9ab) (4.10ab) gives
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-s
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2= f (2 +3c
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Using (4.19) (4.22), we obtain the formal solutions for the displacement components,

mcrorotations, force stress, couple stress and vector first moment in the form

-t(kx + st
Ul 2-- ff Fl(Z’k’s) (k,s) e )dkds, (4.23)

-i(kx + st)
u3" 2-- ff F2(z’k’s) (k,s) e dkds, (4.24)

2 :- ff F3(z’k’s) (k’s)e-t(kx + St)dkds (4.25)

:!_t33 2 ff F4(z’k’s) (k’s)e-f(ks + St)dkds’ (4.26)

t31 -- f Fs(z,k,s) ’(k,s)e-i(ks + St)dkds, (4.27)

m32 2-- ff F6(z’k’s) (k’s)e-i(kx + St)dkds’ (4.28)

X3 I__
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where
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5. PARTICULAR SOLUTIONS OF INTEREST.

We first consider a time harmonic concentrated normal load in the form
it

g(x,t) P (x) e (5.1)

where P is a constant and (x) is the Dirac delta function and is the frequency.

The double Fourier transform of g(x,t) is

(k,s) P (s-o)

Consequently the solutlons assume the form

Ul P27 f [Fl(z,k,S)]s. exp[1(kx + t)]dk (5.2)

u3 2- f [F2(z’k’s)]s=exp[-1(kx + mt)]dk

2 = f [F2(z’k’s)]s=exp[-1(kx + t)]dk

(5.3)

(5.4)

P =mexp [-i (kx + t dk (5.5)t33 2-- f [F4(z’k’S)]s

=mexp -i (kx + t) dk 5.6t31 27 f [Fs(Z’k’S)]s

P
=toeXp[-1(kx + tot)]dk (5.7)m32 2 f [F6(z’k’S)]s

)’3 --- =exp -i (kx + t dk
67 f [FT(z’k’S)ls

Neglecting the viscous effects, we obtain the corresponding results for the mcropolar

elastic half space with stretch

u P [Gl(z k s)]
s =exp[-i(kx + t)]dk (5.9)

u3 2-- f [G2(z’k’S)]sffimexp[-1(kx + mt)]dk (5.10)

P =mexp [-I (kx + t) dk (5.2 f [G3(z’k’s)]s

t33 2-- f [G4(z’k’S)]s=exp[-1(kx + t)]dk, (5.12)

t31 2-- f [Gs(z’k’S)]sfexp[-1(kx + mt)]dk, (5.3)

3 P--
2, f [G7(z’k’s)[]s=exp[-1(kx + t)]dk (5.15)

=mexp[-1(kx + mt)]dk, (5.14)m32 2 f [G6(z’k’s)]s
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where
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21.ksj
2 + (-a)k2-2aajl J--2 3(U+a)sj

(5.29ab)

rjl (" + g)ajl Sjl J=2,3 (5.30)

tjl iSokajl j=2,3. (5.31)

If we neglect both the viscous and stretch effects, we obtain the corresponding

displacements, microrotation and stresses for the micorpolar elastic half space. For

the sake of brevity, we avoid writing down these results.

We next consider the effects of the harmonic torque with its axis parallel to the

z-axis in the form

-imtg(x,t) M[(x-a) (x+a)]e (5.32)

where M is the magnitude of the torque. The double Fourier transform of (5.32) gives

(k,s) 2iM sin ka (s-m) (5.33)

Using this expression in the equations (4.23) (4.29), we obtain

sln(ka)e-ikXdku Q f [Fl(Z,k,S)]s=m

u
3 Q f [F2(z,k,S)]sftosin(ka) e-tkXdk,

to
2 Q f [F3(z,k,S)]s=tosin(ka)e-ikxdk,

sin(ka)e-tkXdkt33 Q f [F4(z,k,S)]s=

sin(ka)e-ikXdkt31 Q f [Fs(z’k’s)]s=

)-- Q [F(z,k s)] stn(ka)e-ikxdk,

k
3

Q f (FT(z,k,S)]s=m3 sin(ka)e-lkXdk’

iM -itwhere Q e

(5.34)

(5.35)

(5.36)

(5.3z)

(5.38)

(5.39)

(5.40)

(5.41)

These results are in excellent agreement with those for the cases without viscous

and/or stretch effects which have been discussed by several authors including McCarthy

and Eringen [9], Kumar and Chadha [6] Nowacki and Nowaki [2], and Acharya and Sengupta
[4].
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