ON CLOSE-TO-CONVEX FUNCTIONS OF COMPLEX ORDER

H.S. AL-AMIRI and THOTAGE S. FERNANDO
Department of Mathematics and Statistics Bowling Green State University
Bowling Green, OH 43403 , USA
(Received November 15, 1988)

ABSTRACT. The class $S^{*}(b)$ of starlike functions of complex order b was introduced and studied by M.K. Aouf and M.A. Nasr. The authors using the Ruscheweyh derivatives introduce the class $K(b)$ functions close-to-convex of complex order $b, b \neq 0$ and its generalization, the classes $K_{n}(b)$ where n is a nonnegative integer. Here $S^{*}(b)$ $c K(b)=K_{0}(b)$. Sharp coefficient bounds are determined for $K_{n}(b)$ as well as several sufficient conditions for functions to belong to $K_{n}(b)$. The authors also obtain some distortion and covering theorems for $K_{n}(b)$ and determine the radius of the largest disk in which every $f \varepsilon K_{n}(b)$ belongs to $K_{n}(1)$. All results are sharp.

KEY WORDS AND PHRASES. Starlike functions, close-to-convex functions of complex order, Ruscheweyh derivatives, Hadamard product. 1980 AMS SUBJECT CLASSIFICATION CODE. Primary $30 C 45$.

1. INTRODUCTION.

Let A denote the class of functions $f(z)$ analytic in the unit disk $E=\{z:|z|<1\}$ having the power series

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}, z \varepsilon E . \tag{1.1}
\end{equation*}
$$

Aouf and Nasr [1] introduced the class $S^{*}(b)$ of starlike functions of order b, where b is a nonzero complex number, as follows:

$$
S^{*}(b)=\left\{f: f \varepsilon A \text { and } \operatorname{Re}\left[1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right]>0, z \varepsilon E\right\}
$$

We define the class $K(b)$ of close-to-convex functions of complex order b as follows: $f \in K(b)$ if and only if $f \varepsilon A$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{g(z)}-1\right)\right\}>0, z \varepsilon E, \tag{1.2}
\end{equation*}
$$

for some starlike function g.

The classes $R_{n}, n \varepsilon N_{0}$ and where N_{0} is the set of nonnegative integers, were introduced by Singh and Singh [2], f $\varepsilon \mathrm{R}_{\mathrm{n}}$ if and only if $f \varepsilon A$ and

$$
\begin{equation*}
\operatorname{Re} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}>0, z \varepsilon E \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
D^{n} f(z)=f(z) * \frac{z}{(1-z)^{n+1}} \tag{1.4}
\end{equation*}
$$

and (*) stands for the Hadamard product of power series, i.e., if

$$
f(z)=\sum_{0}^{\infty} a_{n} z^{n}, g(z)=\sum_{0}^{\infty} b_{n} z^{n} \text { then } f(z) * g(z)=\sum_{0}^{\infty} a_{n} b_{n} z^{n}
$$

The operator D^{n} is referred to in A1-Amiri [3] as the Ruscheweyh derivative of order n. Note that R_{0} is the familiar class of starlike functions, $S *$. More, it is known [2] that $R_{n+1} \subset R_{n}, n \in N_{0}$, and consequently R_{n} consists of functions starlike in E.

Let $K_{n}(b)$, $n \varepsilon N_{0}$, b is a nonzero complex number, denote the class of functions f ε A satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}-1\right]\right\}>0, z \varepsilon E \tag{1.5}
\end{equation*}
$$

for some $g \varepsilon R_{n}$. Here $K_{0}(b)=K(b)$.
Many authors have studied various classes of univalent and multivalent functions using the Ruscheweyh derivatives $D^{n}, n \in N_{0}$. In particular one can look at the work of Ruscheweyh [4].

Section 2 determines coefficient estimates of functions in $K_{n}(b), n \in N_{0} . \quad$ In section 3 , we obtain some distortion and covering theorems for $K_{n}(b)$ and several sufficient conditions for functions to be in $K_{n}(b)$. The radius of close-to-convexity for the class of close-to-convex of complex order b is also determined in section 3 .

2. COEFFICIENT ESTIMATES.

In this section, sharp estimates for the coefficients of functions in $K_{n}(b)$ are determined in Theorem 2.1. First, we need the following lemmas.

LEMMA 2.1. For $n \in N_{0}$, let

$$
\begin{equation*}
\left(D^{n} f(z)\right)^{\prime}=\frac{1+(2 b-1) z}{(1-z)^{3}} \tag{2.1}
\end{equation*}
$$

Then $f \varepsilon K_{n}(b)$.
PROOF. Let $g \varepsilon A$ be defined so that

$$
\begin{equation*}
D^{n} g(z)=\frac{z}{(1-z)^{2}} \tag{2.2}
\end{equation*}
$$

The definition of R_{n} implies $g \varepsilon R_{n}$. A brief computation gives

$$
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}-1\right]=\frac{1+z}{1-z}, z \varepsilon E
$$

This proves that $f \in K_{n}(b)$.
REMARK 2.1. The function f as defined in (2.1) has the power series representation in E

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} \frac{n!(M-1)!}{(n+m-1)!}[(m-1) b+1] z^{m} \tag{2.3}
\end{equation*}
$$

LEMMA 2.2. Let $g(z)=z+\sum_{m=2}^{\infty} c_{m} z^{m} \varepsilon R_{n}$ where $n \varepsilon N_{0}$.
Then $\left|c_{m}\right| \leqslant \frac{n!m!}{(n+m-1)!}$.

PROOF. A brief computation gives

$$
D^{n} g(z)=z+\sum_{m=2}^{\infty} \frac{(n+m-1)!}{n!(m-1)!} c_{m} z^{m}
$$

Since $g \varepsilon R_{n}, D^{n} g(z) \varepsilon S^{*}$. Thus, using the well known coefficient estimates for starlike functions one gets

$$
\frac{(n+m-1)!}{n!(m-1)!}\left|c_{m}\right| \leqslant m, m \geqslant 2
$$

and the proof is complete.
LEMMA 2.3. Let $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$. If f $\varepsilon K_{n}(b), n \varepsilon N_{0}$, then

$$
\begin{align*}
\left|m a_{m}-c_{m}\right|^{2} & <4\left[\frac{(m-1)!}{(n+m-1)!}\right]^{2}|b| \\
& \cdot\left\{n!^{2}|b|+\sum_{k=2}^{m-1}\left[\frac{(n+k-1)!}{(k-1)!}\right]^{2}\left[\left|k a_{k}-c_{k}\right|\left|c_{k}\right|+|b|\left|c_{k}\right|^{2}\right]\right\} \tag{2.4}
\end{align*}
$$

PROOF. Let $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$ be in $K_{n}(b)$. Then (1.5) implies

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}-1\right]=\frac{1+w(z)}{1-w(z)}, z \varepsilon E \tag{2.5}
\end{equation*}
$$

for some $g \varepsilon R_{n}$ and where $w \in A$ such that $w(0)=0, w(z) \neq 1$ and $|w(z)|$ < 1 for
$z \varepsilon$ E. Let $g(z)=z+\sum_{m=2}^{\infty} c_{m} z^{m}$. Then (2.5) and the Definition 1.4 imply

$$
\begin{align*}
& w(z)\left\{n!2 b z+\sum_{k=2}^{\infty} \frac{(n+k-1)!}{(k-1)!}\left[k a_{k}+(2 b-1) c_{k}\right] z^{k}\right\} \\
&=\sum_{k=2}^{\infty} \frac{(n+k-1)!}{(k-1)!}\left(k a_{k}-c_{k}\right) z^{k} \tag{2.6}
\end{align*}
$$

Using Clunie's method, that is to examine the bracketed quantity of the left-hand side in (2.6) and keep only those terms that involve z^{k} for $k \leqslant m-1$ for some fixed m, moving the other terms to the right side, one obtains

$$
\begin{aligned}
w(z)\left\{n!2 b z+\sum_{k=2}^{m-1}\right. & \left.\frac{(n+k-1)!}{(k-1)!}\left[k a_{k}+(2 b-1) c_{k}\right] z^{k}\right\} \\
& =\sum_{k=2}^{m} \frac{(n+k-1)!}{(k-1)!}\left(k a_{k}-c_{k}\right) z^{k}+\sum_{k=m+1}^{\infty} A_{k} z^{k} .
\end{aligned}
$$

Let

$$
\begin{align*}
\varphi(z) & =w(z)\left\{n!2 b z+\sum_{k=2}^{m-1} \frac{(n+k-1)!}{(k-1)!}\left[k a_{k}+(2 b-1) c_{k}\right] z^{k}\right\} \\
& =\sum_{k=2}^{m} \frac{(n+k-1)!}{(k-1)!}\left(k a_{k}-c_{k}\right) z^{k}+\sum_{k=m+1}^{\infty} A_{k} z^{k} . \tag{2.7}
\end{align*}
$$

Let $z=\mathrm{re}^{i \theta}, 0<r<1$. Computing $\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(z) \overline{\varphi(z)}$ dz for both expressions of $\varphi(z)$
in (2.7) and using $|w(z)|<1$ we get

$$
\begin{aligned}
& \sum_{k=2}^{m}\left[\frac{(n+k-1)!}{(k-1)!}\right]^{2}\left|k a_{k}-c_{k}\right|^{2} r^{2 k} \\
& \left.\quad\left\langle n!^{2} 4\right| b\right|^{2} r^{2}+\sum_{k=2}^{m-1}\left[\frac{(n+k-1)!}{(k-1)!}\right]^{2}\left|k a_{k}+(2 b-1) c_{k}\right|^{2} r^{2 k}
\end{aligned}
$$

Upon letting $r \rightarrow 1^{-}$and after some easy computations we obtain

$$
\begin{gathered}
\left|m a_{m}-c_{m}\right|^{2}<\left[\frac{(m-1)!}{(n+m-1)!}\right]^{2} 4|b|\left\{n!^{2}|b|+\sum_{k=2}^{m-1}\left[\frac{(n+k-1)!}{(k-1)!}\right]^{2}\right. \\
\left.\cdot\left[\left|k a_{k}-c_{k}\right|\left|c_{k}\right|+|b|\left|c_{k}\right|^{2}\right]\right\}
\end{gathered}
$$

In particular, when $m=2$ we have

$$
\begin{equation*}
\left|2 a_{2}-c_{2}\right| \leqslant \frac{1}{n+1} 2|b| . \tag{2.8}
\end{equation*}
$$

The proof of the lemma is complete.

THEOREM 2.1. Let $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$. If f $\varepsilon K_{n}(b)$ where $n \varepsilon N_{0}$,
then

$$
\left|a_{m}\right| \leqslant \frac{n!(m-1)!}{(n+m-1)!}[(m-1)|b|+1]
$$

This result is sharp. An extremal function is given by (2.3).

PROOF. Let $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$ be in $K_{n}(b)$. Let the associate function of f, $g(z)=z+\sum_{m=2}^{\infty} c_{m} z^{m}$. We claim that for $m \geqslant 2$ and $n \varepsilon N_{0}$,

$$
\begin{equation*}
\left|m a_{m}-c_{m}\right| \leqslant \frac{n!(m-1)!}{(n+m-1)} 2|b|\left[1+\sum_{k=2}^{m-1} \frac{(n+k-1)!}{n!(k-1)!}\left|c_{k}\right|\right] \tag{2.9}
\end{equation*}
$$

We use the second principle of finite induction on m to prove (2.9).
For $m=2,\left|2 a_{2}-c_{2}\right| \leqslant \frac{n!}{(n+1)!} \cdot 2|b|=\frac{2(b)}{(n+1)}$ is true as shown in (2.8). Now assume (2.9) is true for all $m<p$. Taking $m=p+1$ in (2.4), we get

$$
\begin{aligned}
\left|(p+1) a_{p+1}-c_{p+1}\right|^{2} & \leqslant 4\left[\frac{p!}{(n+p)!}\right]^{2}|b| \\
& \cdot\left\{n!^{2}|b|+\left[\sum_{k=2}^{p} \frac{(n+k-1)!}{(k-1)!}\right]^{2}\left|k a_{k}-c_{k}\right|\left|c_{k}\right|+|b|\left|c_{k}\right|^{2}\right\} \\
& =4\left[\frac{p!}{(n+p)!}\right]^{2}|b|\left\{n!^{2}|b|+\sum_{k=2}^{p}\left[\frac{(n+k-1)!}{(k-1)!}\right]^{2}\left|k a_{k}-c_{k}\right|\left|c_{k}\right|\right. \\
& \left.+|b| \sum_{k=2}^{p}\left[\frac{(n+k-1)!}{(k-1)!}\right]^{2}\left|c_{k}\right|^{2}\right\} .
\end{aligned}
$$

Now using (2.9) since $k \leqslant p$, the above yields

$$
\begin{aligned}
& \left|(p+1) a_{p+1}-c_{p+1}\right|^{2} \leqslant 4\left[\frac{n!p!}{(n+p)!}\right]^{2}|b|^{2}\left\{1+2 \sum_{k=2}^{p} \frac{(n+k-1)!}{n!(k-1)!}\left|c_{k}\right|\right. \\
& \left.\left[1+\sum_{\ell=2}^{k-1} \frac{(n+\ell-1)!}{n!(\ell-1)!}\left|c_{\ell}\right|\right]+\sum_{k=2}^{p}\left[\frac{(n+k-1)!}{n!(k-1)!}\right]^{2}\left|c_{k}\right|^{2}\right\} \\
& =4\left[\frac{n!p!}{(n+p)!}\right]^{2}|b|^{2}\left\{1+2 \sum_{k=2}^{p} \frac{(n+k-1)!}{n!(k-1)!}\left|c_{k}\right|\right. \\
& +2 \sum_{k=2}^{p} \frac{(n+k-1)!}{n!(k-1)!}\left[\left|c_{k}\right| \sum_{\ell=2}^{k-1} \frac{(n+\ell-1)!}{n!(\ell-1)!}\left|c_{\ell}\right|\right] \\
& \left.+\sum_{k=2}^{p}\left[\frac{(n+k-1)!}{n!(k-1)!}\right]^{2}\left|c_{k}^{2}\right|\right\} \quad .
\end{aligned}
$$

Applying the principle of mathematical induction on p, it is easily seen that the sum of the last two terms appearing in the bracketed expression in the right hand side of the above is equal to $\left[\sum_{k=2}^{p} \frac{(n+k-1)!}{n!(k-1)!}\left|c_{k}\right|\right]^{2}$. Consequently
it follows that

$$
\left|(p+1) a_{p+1}-c_{p+1}\right|^{2}<4\left[\frac{n!p!}{(n+p)!}\right]^{2}|b|^{2}\left[1+\sum_{k=2}^{p} \frac{(n+k-1)!}{n!(k-1)!}\left|c_{k}\right|\right]^{2} .
$$

This shows that (2.9) is valid for $m=p+1$. Hence, by the second principle of finite induction, the claim is correct. From Lemma 2.2 and 2.9 it follows that

$$
\begin{equation*}
\left|m a_{m}-c_{m}\right| \leqslant \frac{n!m!(m-1)}{(n+m-1)!}|b|, m \geqslant 2 \tag{2.10}
\end{equation*}
$$

Finally from Lemma 2.2 and 2.10 we deduce that

$$
\left|a_{m}\right| \leqslant \frac{n!(m-1)!}{(n+m-1)!}[(m-1)|b|+1], m \geqslant 2
$$

Hence the proof of the Theorem 2.1 is complete.
Putting $n=0$ in Theorem 2.1 we have the following corollary.
COROLLARY 2.1. If $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$ is a close-to-convex function of complex
order b, then $\left|a_{m}\right| \leqslant(m-1)|b|+1$. This result is sharp.
REMARK 2.2. For $b=1$, Corollary 2.1 is reduced to the well known coefficient bounds for the close-to-convex functions due to Reade [5].

Next we have two theorems that provide sufficient conditions for a function to be in $K_{n}(b)$.

THEOREM 2.2. Let $f \varepsilon A$ and $n \varepsilon N_{0}$. If any of the following conditions is satisfied in E, then $f \varepsilon K_{n}(b)$.

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left[\left(D^{n} f(z)\right)^{\prime}-1\right]\right\}>0 \tag{i}
\end{equation*}
$$

$\operatorname{Re}\left\{1+\frac{1}{b}\left[(1-z)\left(D^{n} f(z)\right)^{\prime}-1\right]\right\}>0$, $\operatorname{Re}\left\{1+\frac{1}{b}\left[\left(1-z^{2}\right)\left(D^{n} f(z)\right)^{\prime}-1\right]\right\}>0$,
(iv) $\operatorname{Re}\left\{1+\frac{1}{b}\left[(1-z)^{2}\left(D^{n} f(z)\right)^{\prime}-1\right]\right\}>0$.

PROOF. The proofs follow by choosing g as below:
(i) $\quad g(z)=z$,

$$
\begin{equation*}
g(z)=z+\sum_{m=2}^{\infty} \frac{n!(m-1)!}{(n+m-1)!} z^{m}, \tag{ii}
\end{equation*}
$$

(iii)

$$
g(z)=z+\sum_{m=2}^{\infty} \frac{n!(2 m-2)!}{(n+2 m-2)!} z^{2 m-1}, \text { and }
$$

(iv) $\quad g(z)=z+\sum_{m=2}^{\infty} \frac{n!m!}{(n+m-1)!} z^{m}$ respectively.

THEOREM 2.3. Let $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$. For $n \varepsilon N_{0}$, each of the following conditions is sufficient for f to be in $K_{n}(b)$.
(i)

$$
\sum_{m=2}^{\infty} \frac{(n+m-1)!}{n!(m-1)!}\left|a_{m}\right| \leqslant|b|
$$

$$
\begin{equation*}
\sum_{m=2}^{\infty} \frac{(n+m-1)!}{n!(m-1)!}\left|m a_{m}-\frac{(n+m)(m+1)}{m} a_{m+1}\right| \leqslant|b| \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\left.2(n+1)\left|a_{2}\right|+\sum_{m=2}^{\infty} \frac{(n+m-2)!}{n!(m-2)!} \right\rvert\,(m-1) a_{m-1}-\frac{(n+m)(n+m-1)(m+1)}{m(m-1)} \tag{iii}
\end{equation*}
$$ $a_{m+1}\left|<|b|\right.$, where $a_{1}=1$,

(iv) $\left.\quad 2\left|(n+1) a_{2}-a_{1}\right|+\sum_{m=2}^{\infty} \frac{(n+m-2)!}{n!(m-2)!} \right\rvert\,(m-1) a_{m-1}-\frac{2(n+m-1)}{m-1} a_{m}$ $+\frac{(n+m)(n+m-1)(m+1)}{m(m-1)} a_{m+1}\left|\leqslant|b|\right.$, where $a_{1}=1$.

PROOF. We prove the sufficiency of part (i) since the proofs of the remaining parts are similar to the proof of (i).

From (i) of Theorem 2.2, f $\varepsilon K_{n}(b)$ if f satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left[\left(D^{n} f(z)\right)^{\prime}-1\right]\right\}>0, z \varepsilon E \tag{2.11}
\end{equation*}
$$

Condition (2.11) would be satisfied if

$$
\begin{equation*}
\left|\frac{1}{b}\left[\left(D^{n} f(z)\right)^{\prime}-1\right]-1\right|<2, z \varepsilon E \tag{2.12}
\end{equation*}
$$

is true. However upon substituting

$$
\left(D^{n} f(z)\right)^{\prime}=1+\sum_{m=2}^{\infty} \frac{m(n+m-1)}{n!(m-1)!} a_{m} z^{m-1}
$$

in (2.12) one needs only show

$$
\begin{equation*}
\left|\frac{1}{b} \sum_{m=2}^{\infty} \frac{m(n+m-1)!}{n!(m-1)!} a_{m} z^{m-1}-1\right|<2, z \varepsilon E \tag{2.13}
\end{equation*}
$$

Assuming (i) of this theorem we have

$$
\left|\frac{1}{b} \sum_{m=2}^{\infty} \frac{m(n+m-1)!}{n!(m-1)!} a_{m} z^{m-1}-1\right| \leqslant \frac{1}{|b|} \sum_{m=2}^{\infty} \frac{m(n+m-1)!}{n!(m-1)!}\left|a_{m}\right|+1<2
$$

Thus (2.13) is established and the proof of the sufficiency of part (i) is complete.
REMARK 2.3. For $n=0$ and $b=1$, Theorems 2.2 and 2.3 are reduced to theorems of Ozaki [6].
3. DISTORTION THEOREMS.

The objective of this section is to obtain some distortion theorems for the class $K_{n}(b)$. The radius of the largest disk $E(r)=\{z /|z|<r\}, 0<r<1$ such that if $f \varepsilon K_{n}(b)$ then $f \varepsilon K_{n}(1)$ can be determined as a consequence of one of those results. THEOREM 3.1. Let $f \varepsilon K_{n}(b), n \varepsilon N_{0}$. Then for $|z|=r<1$, and $|2 b-1| \leqslant 1$

$$
\begin{equation*}
\frac{1-|2 b-1| r}{(1+r)^{3}}<\left|\left(D^{n} f(z)\right) \cdot\right| \leqslant \frac{1+|2 b-1| r}{(1-r)^{3}} \tag{3.1}
\end{equation*}
$$

This result is sharp. An extremal function f is given by (2.1).
PROOF. Let $f \in K_{n}(b)$. Then (1.5) implies for some $g \in R_{n}$

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}=\frac{1+(2 b-1) w(z)}{1-w(z)}, z \varepsilon E
$$

where $w \in A$ and $|w(z)| \leqslant|z|$ in E. This gives for $|z|=r<1$

$$
\begin{equation*}
\frac{1-|2 b-1| r}{1+r} \leqslant\left|\frac{z\left(D^{n} f(z)\right)}{D^{n} g(z)}\right|<\frac{1+|2 b-1| r}{1-r} \tag{3.2}
\end{equation*}
$$

The definition of R_{n} implies $D^{n} g(z)$ is a starlike function. Hence by the well known bounds on functions which are starlike in E, we get for $|z|=r<1$

$$
\begin{equation*}
\frac{r}{(1+r)^{2}} \leqslant\left|D^{n} g(z)\right| \leqslant \frac{r}{(1-r)^{2}} . \tag{3.3}
\end{equation*}
$$

Using (3.2) together with (3.3) one can get (3.1) and the proof of the Theorem 3.1 is complete.

Taking (i) $n=0$, and (ii) $n=0, b=1$ in Theorem 3.1, one can immediately obtain the following corollaries, respectively.

COROLLARY 3.1. If f is a close-to-convex function of complex order b where $|2 b-1|<1$, then for $|z|=r<1$

$$
\frac{1-|2 b-1| r}{(1+r)^{3}} \leqslant\left|f^{\prime}(z)\right| \leqslant \frac{1+|2 b-1| r}{(1-r)^{3}}
$$

COROLLARY 3.2. If f is a close-to-convex function then for $|z|=r<1$,

$$
\frac{1-r}{(1+r)^{3}} \leqslant\left|f^{\prime}(z)\right| \leqslant \frac{1+r}{(1-r)^{3}} .
$$

For the proof of Theorem 3.2, we need the following well known result [7; p. 84] concerning the class P of functions $p(z)$ which are regular in E such that $p(0)=1$ and $\operatorname{Re} p(z)>0, z \varepsilon E$.

LEMMA 3.1. Let $p \in P$. Then for $|z|=r<1$,

$$
\begin{equation*}
\left|\mathrm{p}(\mathrm{z})-\frac{1+\mathrm{r}^{2}}{1-\mathrm{r}^{2}}\right| \leqslant \frac{2 \mathrm{r}}{1-\mathrm{r}^{2}} . \tag{3.4}
\end{equation*}
$$

This result is sharp.
THEOREM 3.2. Let $f \varepsilon K_{n}(b), n \varepsilon N_{0}$. Then for some $g \varepsilon R_{n}$ and for $|z|=r<1$,

$$
\begin{equation*}
\left|\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}-\frac{1+(2 b-1) r^{2}}{1-r^{2}}\right|<\frac{2|b| r}{1-r^{2}} \tag{3.5}
\end{equation*}
$$

This result is sharp. An extremal function is given in (2.1).
PROOF. f $\varepsilon K_{n}(b)$ implies that for some $g \varepsilon R_{n}$

$$
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}-1\right]=p(z), \quad z \varepsilon E,
$$

where $p \in P$. Hence (3.5) can be obtained by substituting $p(z)$ in (3.4).
It is interesting to note that the result in Theorem 3.2 does not depend on the value of n. Also, it can be used to solve the problem concerning the radii of K_{n} (b) in $K_{n}(1)$.

THEOREM 3.3. Let $n \varepsilon N_{0}$. If $f \varepsilon K_{n}(b)$, then $f \varepsilon K_{n}(1)$ for $|z|<r^{\prime}$ where

$$
r^{\prime}=\frac{1}{|b|+\sqrt{|b|^{2}-2 \operatorname{Re} b+1}} .
$$

This result is also sharp. An extremal function is given in (2.1).
PROOF. Let $f \varepsilon K_{n}(b)$. Then according to Theorem 3.2 there is some $g \varepsilon R_{n}$ such that for $|z|=r<1, \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} g(z)}$ ifes in the closed disk with center at $\frac{1+(2 b-1) r^{2}}{1-r^{2}}$ and radius $\frac{2|b| r}{1-r^{2}}$. It can be shown that this disk 1 ies in the right half plane if $r<r^{\prime}$. This completes the proof of Theorem 3.3.

REMARK 3.1. Taking $n=0$ in Theorem 3.3, one can see that, r ' is the sharp radius of close-to-convexity for close-to-convex functions of complex order b.

REFERENCES

1. AOUF, M.K. and NASR, M.A., Starlike Functions of Complex Order b, J. Natural Sci. Math. 25(1), (1985), 1-12.
2. SINGH, S. and SINGH, S., Integrals of Certain Univalent Functions, Proc. Amer. Math. Soc. 77(3), (1979), 336-340.
3. AL-AMIRI, H.S., On Ruscheweyh Derivatives, Annales Polanic Math., 38(1), (1980), 88-94.
4. RUSCHEWEYH, S., Convolutions in Geometric Function Theory, Les Presses De 1'Universite De Montreal (1982)
5. READE, M.O., On Close-to-Convex Univalent Functions, Michigan Mah. J., 3, (1955), 59-62.
6. OZAKI, S., On The Theory of Multivalent Functions, Sci. Rep. Tokyo Burnika Paig. A2 (1935), 167-188.
7. GOODMAN, A.W., Univalent Functions 1, Marinar Pub1ishing Company Inc.
8. CLUNIE, J., On Meromorphic Schlicht Functions, J. London Math. Soc. 34 (1952), 215-216.
