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ABSTRACT. The class S*(b) of starlike functions of complex order b was introduced and

studied by M.K. Aouf and M.A. Nasr. The authors using the Ruscheweyh derivatives

introduce the class K(b) of functions close-to-convex of complex order b, b 0 and

its generalization, the classes Kn(b) where n is a nonnegatlve integer. Here S*(b)
c K(b) Ko(b). Sharp coefficient bounds are determined for Kn(b) as well as several

sufficient conditions for functions to belong to Kn(b). The authors also obtain some

distortion and covering theorems for Kn(b) and determine the radius of the largest

disk in which every f K (b) belongs to K (I). All results are sharp.
n n
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I. INTRODUCTION.

Let A denote the class of functions f(z) analytic in the unit disk

E {z: zl < I} having the power series

f(z) z + [. amZ z e E. (1.1)
m=2

Aouf and Nasr [1] introduced the class S*(b) of starlike functions of order b, where b

is a nonzero complex number, as follows:

S (b) f: f e A and Re + f(z) > 0, z e E}.

We define the class K(b) of close-to-convex functions of complex order b as

follows: f K(b) if and only if f e A and

zf’ (z)
Re {I + g; I)}> 0, z E, (1.2)

for some starlike function g.
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The classes Rn, n N
O and where NO is the set of nonnegatlve integers, were

introduced by Singh and Singh [2], f R if and only if f e A and
n

z(Dnf(z))
Re > O, z e E, (1.3)

Dnf(z)

where

Dnf(z) f(z) *
z

(1 z)n+l’
(1.4)

and (*) stands for the Hadamard product of power series, i.e., if

z
n nf(z) . a

n
g(z) . b z

n
then f(z)* g(z) a b z

0 0 n 0 nn

The operator Dn is referred to in Ai-Amiri [3] as the Ruscheweyh derivative of

order n. Note that R0 is the familiar class of starlike functions, S*. More, it is

known [2] that Rn+1CRn, n NO, and consequently Rn consists of functions starlike in

E.

Let Kn(b) n E NO, b is a nonzero complex number, denote the class of functions

f g A satisfying

for some g R Here K0(b) K(b).
n

Many authors have studied various classes of univalent and multivalent functions

using the Ruscheweyh derivatives Dn, n N
O In particular one can look at the work

of Ruscheweyh [4].

Section 2 determines coefficient estimates of functions in Kn(b, n e N
O In

section 3, we obtain some distortion and covering theorems for Kn(b) and several

sufficient conditions for functions to be in Kn(b). The radius of close-to-convexlty

for the class of close-to-convex of complex order b is also determined in section 3.

2. COEFFICIENT ESTIMATES.

In this section, sharp estimates for the coefficients of functions in Kn(b) are

determined in Theorem 2.1. First, we need the following lemmas.

LEMMA 2.1. For n NO, let

(Dnf(z)), + (2b- 1)z
3

(2.1)
(1 z)

Then f E K (b).
n

PROOF. Let g A be defined so that

Dng(z) z
2(1 z)
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The definition of Rn implies g e R A brief computation gives
n

[ z(Dnf(z))’ I] + z+
Dng(z) z

, z e E.

This proves that f K (b).
n

REMARK 2. I. The function f as defined in (2. has the power series

representation in E

f(z) --z + . n! <M- I)!
mffi2

(n + m 1)! [(m 1)b + l]z m. (2.3)

. m NOLEMMA 2.2. Let g(z) z + c z E R where n
m n

m--2

Then c 4
n! m!

m (n+m-

PROOF. A brief computation gives

Dn g(z) z + (n + m 1)! m
n: (m 1)’ cz

mffi2
m

Since g E Rn, Dn g(z) E S Thus, using the well known coefficient estimates for

starlike functions one gets

(n+m-1)!ln! (m- 1)! c
m

m, m > 2,

and the proof is complete.

LEMMA 2.3. Let f(z) z + m
a z If f K (b), n E NO, then

[ 12Imam (n + m 1)!Cm 12 4 (m 1)!

kffi2
(k I) 12[

PROOF. Let f(z) z + a z
mffi2 m

be in Kn(b). Then (1.5) implies

[ z(Dn f(z))’ 11 + w(z)+ Dn g(z)
l- w(z) z e E, (2.5)

for some g e R and where w e A such that w(0) 0, w(z) and Iw(z)l for
n
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z E. Let g(z) z + c z Then (2.5) and the Definition 1.4 imply
m=2 m

w(z) {n! 2bz + . (n + k I)!

k=2
(k I)! [kak + (2b l)Ck]Zk}. (n + k -I)..! (kak Ck)zk

k=2 (k- I)’. (2.6)

Using Clunle’s method, that is to examine the bracketed quantity of the left-hand

side in (2.6) and keep only those terms that involve zk for k m- for some fixed

m, moving the other terms to the right side, one obtains

m-1
l[n!2bz + Lr (n + k- I)’.

kffi2
(k l)! [’kak + (2b I.ckzkl,

m. (n + k I)’
Ck)Z

k

k=2 (k-l)’ (kak- + Akzk"
kffim+l

Let

m-1
l[n!2bz + Lr (n + k I)!

k=2
(k 1)! [kak + (2b -l)Ck]Zk}

m (n + k I)’
z
k k

k=2
(k I) (kak Ck + - AkZ

k=m+l
(2.7)

t8Let z re 0 < r < 1. Computing f (z) (z) dz for both expressions of
0

in (2.7) and using Iw(z)l < we get

. (n + k- I)! 2
r2k

k=2 (k-l) [kak Ck 12

ml [ (n + k- 1)’12< n!2 41b12r2 +
kffi2

(k- 1)! Ika k
+ (2b 1)ckl 2 r2k.

Upon letting r 1-and after some easy computations we obtain

mam Cm
2

k=2 (k- 1)!

In particular, when m 2 we have



CLOSE-TO-CONVEX FUNCTIONS OF COMPLEX ORDER 325

The proof of the lemma is complete.

THEOREM 2.1. Let f(z) z + [ m NOa z If f e K (b) where n e
m=2

m n

then
n! (m- I)’la < [(m

m (n / m- 1)! 1),b, + 1].

This result is sharp. An etremal function is given by (2.3).

m (b) Let the associate function of f,PROOF. Let f(z) z + [ a z be in Kn
mffi2

m

g(z) z + I cmzm" We claim that for m ) 2 and n e NO,
m=2

m (n + m- I) 2lb[ + [. (n + k- I)’

k=2
n! (k-l)! -Ck (2.9)

We use the second principle of finite induction on m to prove (2.9).
n! 2(b)

is true as shown in (2.8) NowFor m 2, 12a2 -c21 ( <n + I), 21bl (n + I)
assume (2.9) is true for all m (p. Taking m p + in (2.4), we get

I(P + l)ap+ Cp+I12

Now using (2.9) since k p, the above yields

n! p! !l(p+l)ap+ Cp+ll 2 , 4 (n + p) 1512 P (n + k- I)!

k=2

(n + - I)! (n + k- 1) iCkl2n!(-1)’ .C. n! (k- I)
=2 kffi2

4

2
n! p! | 2
(n+p)! J Ibl I+2 (n+k- I)!

kffi2

+ 2
(n +k i)! [ k-I ]

--2
"! (k- )! I%1 I (" + -

P (n + k 1) 2+ n’ <k- ), ,ck
k-2
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Applying the principle of mathematical induction on p, it is easily seen that the sum

of the last two terms appearing in the bracketed expression in the right hand slde

of the above is equal to !2 n!(n + k I)!
(k I)! Consequently

it follows that

This shows that (2.9) is valid for m p + I. Hence, by the second principle of

finite induction, the claim is correct From Lemma 2.2 and 2.9 it follows that

I. -%. < II .>2. (2.,0)
m (n + m I)!

Finally from Lemma 2.2 and 2.10 we deduce that

Hence the proof of the Theorem 2.1 is complete

Putting n 0 in Theorem 2.1 we have the following corollary.

COROLLARY 2 If f(z) z + a is a close-to-convex function of complex
mffi2

m

order b, then I%1 <- )lbl + I. This result Is sharp.

REMARK 2.2. For b 1, Corollary 2.1 is reduced to the well known coefficient

bounds for the close-to-convex functions due to Reade [5].

Next we have two theorems that provide sufficient conditions for a function to be

in Kn(b).
THEOREM 2.2. Let f e A and n E NO If any of the following conditions is

satisfied in E, then f K (b).
n

Re {1 + [(Dn f(z))’ I]} > O,

Re {I + [(I -z)(Dn f(z))’ I]} > 0,

2Re {I + [(l z )(Dn f(z))’ I]} > 0,

2(iv) Re {I + [(I -z) (Dn f(z))’ 1]} > 0.
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PROOF. The proofs follow by choosing g as below:

(i) g(z) z,

n! (m 1)! m(ii) g(z) z +
(n + m 1) z

m2

(iii) g(z) z + [ n! (2m 2)! 2m-1

m=2
(n + 2m 2)! z and

n! m! m(iv) g() + (n + m 1) respectively.
m2

HgORgN 2.3. Let f() + a For n e N0’ each of the following
m-2 m

conditions is sufficient for f to be in Kn(b).

(i) (n / m 1)!

m=2
n! (m 1)! m [am[ [b[.

(n + m I)! (n + m)(m + 1)
a Ib[(ii) [ n! (m 1)’ Ima

m=2 m m m+l

(iii) 2(n + 1)la2[ +m-2[ n!(n +(mm_-2) [(m- 1)am_l-
(n + m)(nm(m+ m_ -l)l)(m + 1)

am+1,l lbl, where a I,

(iv) 21(n + 1)a2 al + [ (n + m- 2)! 2(n + m l)

m=2
n! (m 2)! [(m 1)am_l a

m- m

(n + m)(n + m 1)(m + 1)
am/l!, ,Ibl’ where a 1.

I)

PROOF. We prove the sufficiency of part (1) since the proofs of the remaining

parts are slmilar to the proof of (1).

From (1) of Theorem 2.2, f c Kn(b) if f satisfies the condition

Re {1 + [(Dnf(z)) 1]} > 0, z c E. (2.11)

Condition (2.11) would be satisfied if

[(Dnf(z))’ I] < 2, z c Z (2.12)

is true. However upon substituting

(Dnf(z)) + [ m(n + m I) m-1
n’ (m I)’ a z

m

in (2.12) one needs only show



328 H.S. AL-AMIRI AND T.S. FERNANDO

II m(n + m I)![- (m )!
m=Ẑ

n.
a z < 2, z eE.
m

(2.13)

Assuming (1) of this theorem we have

,,,(.+m- ): m- )’l - n, (m I)! a z -*I Ib
. m(n + m

m=2 m
m=2

n! (m- l)t. ,am’ + < 2.

Thus (2.13) is established and the proof of the sufficiency of part (i) is complete.

REMARK 2.3. For n 0 and b I, Theorems 2.2 and 2.3 are reduced to theorems of

Ozakl [6].

3. DISTORTION THEOREMS.

The objective of this section is to obtain some distortion theorems for the class

The radius of the largest disk E(r) {z/Is < r}, 0 < r 4 such that ifKn(b).
f e K (b) then f K (I) can be determined as a consequence of one of those results.

n n
THEOREM 3.1. Let f e K (b) n e N

O Then for Izl r < and 12b ,
n

1-i2b- II= i,Dn ,, 1+ 12b- !It (3. I)
3

.,. f.z..’ <- 3(1 + r) (1 r)

This result is sharp. An extremal function f is given by (2.1).

PROOF. Let f K (b). Then (I.5) implies for some g e R
n n

z(Dn f(z))’ + (2b I) w(z)
w(z) z E E,

Dng(z)

where w e A and lw(z) , Izl in E. This gives for Izl -r <

-[2b- l[.r , iz(Dn f(z))’ , + j2b-
+ r vng(z) r

(3.2)

The definition of Rn implies Dn g(z) is a starlike function. Hence by the well known

bounds on functions which are starlike in E, we get for zl r <

r IDn g(z)l < r

(I + r) 2 (I r) 2
(3.3)

Using (3.2) together with (3.3) one can get (3.1) and the proof of the Theorem 3.1 is

complete.

Taking (1) n 0, and (ll) n 0, b in Theorem 3.1, one can immediately

obtain the followlng corollarles, respectlvely.

COROLLARY 3. I. If f is a close-to-convex function of complex order b where

COROLLARY 3.2. If f is a close-to-convex function then for zl r < I,
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1 -r l+r

(1 + r)
3 f’(z) <"(1r) 3

For the proof of Theorem 3.2, we need the following well known result [7; p. 84]

concerning the class P of functions p(z) which are regular in E such that p(0) and

Re p(z) > 0, z e E.

LEMMA 3.1. Let p e P. Then for Izl r < I,

2
,p(z’ +r 2 (3 4)

2 2
-r -r

This result is sharp.

THEOREM 3.2. Let f e K (b), n N
O Then for some g e R and for Izl r < I,

n n

2
[z(D

n f(z))’ + (2b- 1)r 2[b[r (3.5)
2 2"Dn g(z) r r

This result is sharp. An extremal function is given in (2.1).

PROOF. f K (b) implies that for some g e R
n n

[z(Dn f(z))’+
Dn g(z)

p(z), z e E,

where p e P. Hence (3.5) can be obtained by substituting p(z) in (3.4).

It is interesting to note that the result in Theorem 3.2 does not depend on the

value of n. Also, it can be used to solve the problem concerning the radii of Kn(b)
in Kn(1).

THEOREM 3.3. Let n e N
O If f e K (b), then f e K (I) for Izl < r’ where

n n

r

This result is also sharp. An extremal function is given in (2.1).

PROOF. Let f K (b). Then according to Theorem 3.2 there is some g e R such
n n

z(Dn f(z))’

Dn g(z)

at
+ (2b l)r

and radius2
-r -r

lles in the closed disk with center

It can be shown that this disk lles in the
2

right half plane if r < r’. This completes the proof of Theorem 3.3.

REMARK 3.1. Taking n 0 in Theorem 3.3, one can see that, r’ is the sharp radius

of close-to-convexlty for close-to-convex functions of complex order b.
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