THE DITTERT'S FUNCTION ON A SET OF NONNEGATIVE MATRICES

SUK GEUN HWANG and MUN-GU SOHN

Department of Mathematics Teachers College Kyungpook University Taegu 702-701 Republic of Korea

SI-JU KIM

Department of Mathematics Education Andong University Andong, Kyungpook 760-380 Republic of Korea

(Received November 6, 1989 and in revised form January 12, 1990)

ABSTRACT. Let K_n denote the set of all $n \times n$ nonnegative matrices with entry sum n. For X $\in K_n$ with row sum vector (r_1, \dots, r_n) , column sum vector (c_1, \dots, c_n) , Let $\phi(X) = \prod r_i + \prod c_j - perX$. Dittert's conjecture asserts that $\phi(X) \leq 2 - n!/n^n$ for all X $\stackrel{i}{\in} K_n$ with equality iff X = $[1/n]_{n \times n}$. This paper investigates some properties of a certain subclass of K_n related to the function ϕ and the Dittert's conjecture.

KEY WORDS AND PHRASES. Permanent, Dittert's function, Λ-admissable matrix. 1980 AMS SUBJECT CLASSIFICATION CODE. 15A48.

1. INTRODUCTION.

Let K_n denote the set of all $n \times n$ nonnegative matrices whose entries have sum n, and let ϕ denote a real valued function of K_n defined by

$$\phi(X) = \prod_{i=1}^{n} \sum_{j=1}^{n} x_{ij} + \prod_{j=1}^{n} \sum_{i=1}^{n} x_{ij} - perX$$

for $X = [x_{ij}] \in K_n$ where perX stands for the permanent of X;

$$perX = \sum_{\sigma \in S} x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

Let J_n denote the n × n matrix all of whose entries are 1/n. For the function ϕ there is a conjecture due to Eric Dittert.

CONJECTURE (Marcus and Merris [1], Conjecture 28]). For A ε K_n,

$$\phi(A) \leq 2 - \frac{n!}{n^n}$$

with equality if and only if $A = J_n$.

In this paper, we will call ϕ the <u>Dittert's function</u>. It is proved that the Dittert's conjecture is true for n < 3 (Marcus and Merris [1], Sinkhorn [2], and Hwang [3]). For a matrix X ε K whose row sum vector is (r_1, \dots, r_n) and whose column sum vector is (c_1, \dots, c_n) ,

Let

$$\overline{\mathbf{r}}_{\mathbf{i}} = \mathbf{r}_{1} \cdots \mathbf{r}_{\mathbf{i}-1} \mathbf{r}_{\mathbf{i}+1} \cdots \mathbf{r}_{n} (\mathbf{i}=1,\dots,n),$$
$$\overline{\mathbf{c}}_{\mathbf{j}} = \mathbf{c}_{1} \cdots \mathbf{c}_{\mathbf{j}-1} \mathbf{c}_{\mathbf{j}+1} \cdots \mathbf{c}_{n} (\mathbf{j}=1,\dots,n)$$

and

$$\phi_{ij}(X) = \overline{r}_{j} + \overline{c}_{j} - perX(i|j)$$
 (i,j = 1,2,...,n)

where X(i|j) denotes the matrix obtained from X by deleting the row i and column j. A matrix A $\in K_n$ is called a ϕ - maximizing matrix on K_n if $\phi(A) > \phi(X)$ for all X $\in K_n$. In [3], the following results are proved.

THEOREM A. If $A = [a_{11}]$ is a ϕ - maximizing matrix on K_n , then

$$\phi_{ij}(A) \left\{ \begin{array}{l} = \phi(A) & \underline{if} \ a_{ij} > 0 \\ < \phi(A) & \underline{if} \ a_{ij} = 0 \end{array} \right.$$

THEOREM B. If, for every ϕ - maximizing matrix A on K_n , $\phi_{ij}(A) = \phi(A)$ for all $i, j=1, \dots, n$, then J_n is the unique ϕ - maximizing matrix on K_n .

We see that $\phi(A) > 0$ for all $A \in K_n$. For $A \in K_n$ with row sum vector (r_1, \dots, r_n) and column sum vector (c_1, \dots, c_n) , if either $r_1 \dots r_n > 0$ or $c_1 \dots c_n > 0$, then $\phi(A) > 0$. Now, for $A \in K_n$ with $\phi(A) > 0$, Let $A = [a_{ij}]$ denote the $n \times n$ matrix defined by

$$a_{ij}^{\star} = \frac{\phi_{ij}(A)}{\phi(A)} \quad (i,j = 1,\ldots,n).$$

For $\Lambda \in K_n$, we say that $A \in K_n$ with $\phi(A) > 0$ is Λ -<u>admissable</u> (or A is admissable by Λ) if $tr(\Lambda^T A^*) > n$ where Λ^T denotes the transpose of Λ and tr denotes the trace function. Let $\zeta_n(\Lambda)$ denotes the set of all Λ -admissable matrices.

It follows from Theorem A that every $\phi\text{-maximizing matrix A}$ is self-admissable i.e. A ϵ $\zeta_{\mu}^{\mu}(A)$.

If for each ϕ -maximizing matrix A there exists a positive matrix A εK such that A $\varepsilon C(\Lambda)$, then the Dittert's conjecture is true (See section 2).

In such a point of view, it would be interesting to study the classes (A) for some particular matrices $\Lambda \in K_n$. Such a matrix Λ should be one which is most likely to posess the property that all ϕ -maximizing matrices on K_n are Λ -admissable.

In this paper we find some matrices in $\zeta_{\mathcal{L}}(\Lambda)$ for certain Λ 's and investigate some properties of the Dittert's function related to the class $\zeta_{\mathcal{L}}(\Lambda)$.

2. THE CLASS $(\zeta, (\Lambda)$ AND ϕ - MAXIMIZING MATRICES.

From now on let $Max(K_n)$ denote the set of all ϕ -maximizing matrices on K_n .

THEOREM 2.1. If each A ε Max(K_n) is admissable by a positive matrix in K_n, then Max(K_n) = {J_n}, i.e. the Dittert's conjecture holds.

PROOF. Let A ϵ Max(K_n) and let $\Lambda = [\lambda_{ij}] \epsilon K_n$ be a positive matrix such that A $\epsilon \zeta(\Lambda)$. Then

$$n \leq tr(\Lambda^{T}A^{\star}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} \frac{\phi_{ij}(A)}{\phi(A)} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} = n \qquad (2.1)$$

by Theorem A. Therefore the inequalitites in (2.1) are all equalities and hence $\phi_{ij}(A) = \phi(A)$ for all i, j = 1,2,...,n since Λ is a positive matrix. Now the assertion of the theorem follows from Theorem B.

For A \in K_n with row sum vector (r_1, \dots, r_n) and column sum vector (c_1, \dots, c_n) , Let A = $[a_{ii}]$ denote the n × n matrix defined by

$$\hat{a}_{ij} = \frac{r_i c_j}{n} \quad (i,j = 1,\ldots,n).$$

Since $\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i}c_{j} = n^{2}$ we see that $A \in K_{n}$. In particular if $A \in Max(K_{n})$, then A is a positive matrix since $r_{i} > 0$, $c_{j} > 0$ for all i, j = 1, ..., n because per A > 0 [2].

We believe that every A ε Max(K_n) is \hat{A} -admissable, which we can not prove yet. We may ask which matrices A ε K_n are \hat{A} -admisable and which are not. We have an answer to this question.

THEOREM 2.2. If A is positive semidefinite symmetric matrix in K_n , then A is A-admissable.

PROOF. Let A be a p.s.d. symmetric matrix in K_n and let r_i be the i-th row sum of A(i=1,...,n). Then the condition that A is \widehat{A} -admissable is equivalent to

$$\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i}r_{j} \phi_{ij}(A) > n^{2} \phi(A).$$
(2.2)

Let $r=r_1\cdots r_n$ and let $\tilde{r}_i = r_1\cdots r_{i-1}r_{i+1}\cdots r_n$ (i=1,...,n). Then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{r}_{i} \mathbf{r}_{j} \phi_{ij}(\mathbf{A}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{r}_{i} \mathbf{r}_{j} [\overline{\mathbf{r}}_{i} + \overline{\mathbf{r}}_{j} - \operatorname{perA}(\mathbf{I}|j)]$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} [(\mathbf{r}_{i} + \mathbf{r}_{j})\mathbf{r} - \mathbf{r}_{i} \mathbf{r}_{j} \operatorname{perA}(i|j)]$$
$$= 2n^{2}\mathbf{r} - \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{r}_{i} \mathbf{r}_{j} \operatorname{perA}(i|j).$$

Since

by a theorem of Marcus and Merris [4], we have

$$\sum_{i=1}^{n} \sum_{i=1}^{n} r_{i}r_{j} \phi_{ij}(A) > 2n^{2}r - n^{2} \text{ perA} = n^{2}\phi(A)$$

and the proof is complete.

Note that not every matrix A ε K is \widehat{A} -admissable. For n=2, the matrix

$$\mathbf{A}_{\mathbf{x}} = \begin{bmatrix} 2-2\mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{0} \end{bmatrix}$$

in K₂ is not A_x -admissable if $0 < x < \frac{1}{2}$. For n > 3, we have an EXAMPLE 2.1. Let T_n denote the following $n \times n$ matrix.

$$T_{n} = \begin{bmatrix} 0 & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ \vdots & \vdots & & \vdots \\ 0 & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}$$

Then $T_n \in K_n$ and $(r_1, \dots, r_n) = (1, \dots, 1), (c_1, \dots, c_n) = (2, \frac{n-2}{n-1}, \dots, \frac{n-2}{n-1}).$ We have $n^2 \phi(T_n) - \sum_{i=1}^n \sum_{j=1}^n r_i c_j \phi_{ij}(T_n) = 2 \frac{(n-1)!}{(n-1)^{n-2}} > 0$

so that $T_n \in \mathcal{C}(T_n)$ and hence that T_n is not \hat{T}_n -admissable.

3. THE CLASS $C(J_n)$ AND THE MONOTONICITY OF THE DITTERT'S FUNCTION.

Another candidate for positive $\Lambda \in K_n$ with "good" $\zeta_r(\Lambda)$ is the matrix J_n . A nonnegative square matrix is called a <u>doubly stochastic</u> matrix if all the row sums and column sums are equal to 1. It is conjectured that every $n \times n$ doubly stochastic matrix is J_n -admissable (Dokovic [5] and Minc [6]) but this still remains open. Here we have to notice that A is J_n -admissable (i.e. $A \in \mathcal{C}_r(J_n)$) if and only if

$$\sum_{i=lj=l}^{n} \sum_{\phi_{ij}}^{n} (A) > n^{2} \phi(A).$$

We can show that $\dot{\zeta}_{e}(J_{n}) \neq K_{n}$ for n > 3 (see Example 3.1). However it seems that $Max(K_{n}) \quad \dot{\zeta}_{e}(J_{n})$. It is clear that J_{n} and the $n \times n$ identity matrix I_{n} are J_{n} -admissable. We can show that all diagonal matrices in K_{n} are also J_{n} -admissable.

THEOREM 3.1. Every diagonal matrix in K_n is J_n -admissable.

PROOF. Let A = diag(a_1, \ldots, a_n) $\in K_n$, $a = a_1 \ldots a_n$ and $\overline{a_i} = a_1 \ldots a_{i-1}$ $a_{i+1} \ldots a_n$ (i=1,...,n). If a=0, there is nothing to prove. Suppose a > 0. Then $\phi(A)=a$ and n n n n n

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \phi_{ij}(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} (\overline{a}_{i} + \overline{a}_{j}) - \sum_{i=1}^{n} \overline{a}_{i}$$

=
$$(2n-1)$$
 $\sum_{i=1}^{n} \overline{a_{i}}$
= $(2n-1)a$ $\sum_{i=1}^{n} \frac{1}{a_{i}} > n(2n-1)a$.

Therefore,

$$\phi(\mathbf{A}) < \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(\mathbf{A})$$

if $n \ge 2$, and the proof is complete.

The Dittert's function ϕ has some nice behavior on the set $\overset{k}{\varphi}(J_n)$ namely that ϕ is monotone on the straight line segment joining J_n and A $\varepsilon^{k}_{\gamma}(J_n)$ whenever the line segment lies in $\dot{\zeta}_{\gamma}(J_n)$. To show this, let Δ be a function define by

$$\Delta(X) = \phi(X) - \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(X), X \in K_n.$$

Let $A = [a_{ij}] \in K_n$ have row sum vector (r_1, \dots, r_n) and column sum vector (c_1, \dots, c_n) . For a real number t, $0 \le t \le 1$, let $A_t = (1-t)J_n + tA$: = $[a_{ij}(t)]$ and let the row sum vector and the column sum vector of A_t be $(r_1(t), \dots, r_n(t))$ and $(c_1(t), \dots, c_n(t))$ respectively.

Letting

$$r(t) = r_{1}(t) \cdots r_{n}(t),$$

$$c(t) = c_{1}(t) \cdots c_{n}(t),$$

$$\overline{r}_{i}(t) = r_{1}(t) \cdots r_{i-1}(t)r_{i+1}(t) \cdots r_{n}(t), (i=1,...,n),$$

$$\overline{c}_{j}(t) = c_{1}(t) \cdots c_{j-1}(t)c_{j+1}(t) \cdots c_{n}(t), (j=1,...,n),$$

we compute, for t > 0, that

$$\frac{d}{dt} r(t) = \frac{1}{t} \sum_{i=1}^{n} \{r(t) - \overline{r}_{i}(t)\}$$

$$= \frac{n}{t} \{r(t) - \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{r}_{i}(t)\},$$

$$\frac{d}{dt} c(t) = \frac{1}{t} \sum_{j=1}^{n} \{c(t) - \overline{c}_{j}(t)\}$$

$$= \frac{n}{t} \{c(t) - \frac{1}{n^{2}} \sum_{j=1}^{n} \overline{c}_{j}(t)\},$$

$$\frac{d}{dt} perA_{t} = \frac{n}{t} \{perA_{t} - \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} perA_{t}(i|j)\}$$

$$\frac{d}{dt} \phi(A_{t}) = \frac{n}{t} \{r(t) + c(t) - perA_{t}$$

$$- \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} [\overline{r}_{i}(t) + \overline{c}_{j}(t) - perA_{t}(i|j)]\}$$

so that

$$= \frac{n}{t} \{ \phi(A_t) - \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(A_t) \},$$

which is

$$\frac{d}{dt} \phi(A_t) = \frac{n}{t} \Delta(A_t).$$

Thus we have the following

THEOREM 3.2. Let $A \in K_n$. If $A_t \in C(J_n)$ for all t, $0 \le t \le 1$, then the Dirrert's function is monotone decreasing on the straight line segment from J_n to A.

It is not hard to show that, for any A ϵ K_2,

$$\frac{1}{2^2} \sum_{i=1}^2 \sum_{j=1}^2 \phi_{ij}(A) = \frac{3}{2}.$$

On the other hand, the validity of Dittert's conjecture for n=2 gives us that

$$\frac{3}{2} = \phi(J_n) \ge \phi(A).$$

Therefore it follows that $K_2 = C(J_2)$. However it does not hold in general that $K_n = C(J_n)$.

EXAMPLE 3.1. Let

$$u_{n} = \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

and let

$$U_{3} = \begin{bmatrix} 0 & \frac{3}{4} & \frac{3}{4} \\ \frac{3}{4} & 0 & 0 \\ \frac{3}{4} & 0 & 0 \end{bmatrix}$$

•

Then

$$\phi(U_n) = 4\left(\frac{n}{n+1}\right)^n$$

and

714

$$U_{n}^{*} = \frac{n+1}{4n} \begin{bmatrix} 2 & 3 & \dots & 3 & 3 & 3 \\ 3 & 4 & \dots & 4 & 3 & 3 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 3 & 3 & \dots & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 & 3 \end{bmatrix}.$$

Hence

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(U_n)$$

= $\phi(U_n) \times (\text{sum of entries of } U_n^*)$
= $4(\frac{n}{n+1})^n \frac{n+1}{4n} [2 + 4(n-3)^2 + 3(6n-10)]$
= $(\frac{n}{n+1})^{n-1} (4n^2 - 6n + 8).$

Thus we have

$$n^{2}\phi(U_{n}) - \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(U_{n})$$

= $(\frac{n}{n+1})^{n-1} (\frac{4n^{3}}{n+1} - 4n^{2} + 6n - 8)$
= $\frac{n^{n-1}}{(n+1)^{n}} (2n^{2} - 2n - 8),$

which is positive for all $n \ge 3$, telling us that U_n is not J_n -admissable.

4. CONCLUDING REMARKS.

If, for every A ε Max(K_n), we could find a positive matrix $\Lambda \varepsilon$ K_n such that A is admissable by Λ , it would prove the Dittert's conjecture by Theorem 2.1. It seems to us that the matrices $\hat{\Lambda}$ or J_n are two of the strongest candidates for such matrices. However we may not expect to have a positive matrix $\Lambda \varepsilon$ K_n such that all the matrices in K_n are Λ -admissable.

We shall close our discussion here by giving some further research problems.

PROBLEM 4.1. Determine whether there exists a positive matrix $\Lambda \in K_n$ admitting all matrices in K_n .

We conjecture that such a matrix does not exist.

It is proved that every p.s.d. symmetric doubly stochastic matrix is J_n -admissable [4], from which it follows that the permanent function is monotone increasing on the straight line sequment from J_n to any p.s.d. symmetric doubly stochastic matrix (Hwang [7]).

PROBLEM 4.1. Determine whether every p.s.d. symmetric matrix in K_n is J_n -admissable.

If every p.s.d. symmetric matrix in K_n is J_n -admissable, then it follows from Theorem 3.2 that the Dittert's function is monotone decreasing on the straight line segment from J_n to any p.s.d. symmetric matrix in K_n . We conjecture that the Problem 4.1 will have an affirmative answer.

PROBLEM 4.3. Is every ϕ -maximizing matrix A on K_n A-admissable or J_n-admissable?

If Problem 4.3 has an a affirmative answer, it would prove the Dittert's conjecture as we stated earlier.

ACKNOWLEDGEMENT. Research supported by a grant from the Korean Ministry of Eduation via the Kyungpook University Basic Science Res. Inst., 1988.

REFERENCES

- 1. MINC, H. Theory of permanents 1982-1985, Lin. Multilin. Alg. 12 (1982).
- SINKHORN, R. A problem related to the van der Waerden permanent theorem, <u>Lin.</u> <u>Multilin. Alg. 16(1984)</u>, 167-173.
- 3'. HWANG, S.G. On a conjecture of E. Dittert, Lin. Alg. Appl. 95 (1987), 161-169.
- MARCUS, M. and MERRIS, R. A relation between permanental and determinantal adjoints, J. Austral. Math. Soc. 15 (1973), 270-271.
- DOKOVIC, D.Z. On a conjecture by van der Waerden, <u>Mat. Vesnik</u> <u>19(4)</u> (1967, 272-276.
- 6. MINC, H. Theory of permanents 1978-1981, Lin. Multilin. Alg. 12 (1982), 227-263.
- 7. HWANG, S.G. On the monotonicity of the permanent, to appear in <u>Proc. Amer.</u> Math. Soc.
- 8. MINC, H. Permanents, Encyclopedia of Math. and Its Appl. 6, Addison-Wesley, 1978.
- 9. HWANG, S.G. A note on a conjecture on permanents, Lin. Alg. Appl. 76 (1986), 31-44.

The present address of Dr. Suk Geun Hwang is:

Department of Mathematics Sung Kyun Kwan University Suwon 440-746 Republic of Korea

716