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ABSTRACT. For a connected open subset Q of the plane and n a positive integer,
let Bn(ﬂ) be the space introduced by Cowen and Douglas. In this article we study the
spectrum of restrictions of T in order to obtain more information about the invariant
subspaces of T. When n=1 and T ¢ BI(Q) such that o(T) = Q@ is a spectral set for T we
use the functional calculus we have developed for such operators to give some infinite

dimensional cyclic invariant subspaces for T.
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1. INTRODUCTION.

For a connected open subset Q of the plane and n a positive integer, let
Bn(n) denote the operators T defined on the Hilbert space H which satisfy

(a) g oT),

(b) ran(T-w) = H for w in Q,

(c) &Egker(T-m) = H, and

(d) dim ker(T-w) = n for w in Q.

The space Bn(Q) has been introduced by Cowen and Douglas [1]. This class of operators
was further studied by Curto and Salinas [2]. In particular, they show that an
operator T in Bn(ﬂ) can be realized as the adjoint TE of the operator of
multiplication by z acting on a Hilbert space KK of coanalytic functions on Q having a
generalized Bergman kernel K.

The class Bn(Q) is a rich class of operators. To give an example, let A2 denote
the Hilbert space of analytic functions on the open unit disk D such that
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The operator S on Az defined by (Sf) (z) = z £(z) is called the Bergman shift. It is
easy to see that S* is in BI(D)'

Shelley Walsh [3] has obtained several results concerning the backward Bergman

shift S*. In particular, the spectrum of restrictions S*lm , where m is an invariant
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subspace for S, is studied. It is also pointed out how this study sheds more light on

the structure of the invariant subspaces for the Bergman shift.

The purpose of the present article 1is to extend these results to the
class BI(Q) in hope that more insight into the invariant subspace structure for these

operators can be gained from this study.

2. PRELIMINARIES.

Let H be a separable Hilbert space and let B(H) denote the algebra of all bounded
linear operators on H. For T € B(H) the spectrum, point spectrum, compression
spectrum, and approximate point spectrum of T are denoted by o(T),ap(T), oc(T), and

oap(T) respectively. For the appropriate definitions see Halmo [4].

Let T be a bounded linear operator on a Hilbert space H. If f € H, then [f] will
be the smallest invariant subspace for T containing f. The notation [f]* is used to
denote the smallest invariant subspace for T* containing f. 1If A H, let VA denote
the closed linear span of A. 1Tt is the smallest closed linear subspace of H that

'
contains A.

A subset S of the open unit disk D is said to be dominating (or dominating
for 3 D) if

sup, ¢ || = ||n]] . noen®.

Equivalently, a subset S D is dominating if and only if almost every point
of 3 D is a nontangential limit point of S.

The following presentation on the generalized Bergman kernels is taken from Curto
and Salinas [2] and will be needed in the sequel.
2 n n 2
For 1 < n < =, let o= {g = {ak}k=1‘ a e C and zk-l"k' < =}, Given a
set A, a functional Hilbert space on A will be any Hilbert space which is a linear

subspace of F(A,ti), the 1linear space of all Ii -valued functions on A, for

some 1 < n < o

By a kernel functions on A we mean a function K:A x A~ B(\i) that satisfies the

following conditions:

@) RO, = k() (all Au e M)

(b) for every integer k, k > 1, and every collection {Al,...,kk} A, the
k x2k oierator matrix kg = {K(Xi, xj)) (1 <1, j < k) is a positive operator
on T, c.

If 1in addition the k x k operator matrix KK in (b) 1is 1injective for every

collection {Al,....,xk} A, all k > 1, we shall say that K is strictly positive.

Let KK be a functional Hilbert space on A. If for every A € A and § ¢ l:,
K(A,.) € € KK and

<E,K(A,.)E> = <E(X), &>, for every f ¢ K,

then we shall say that KK has a reproducing kernel on A and K will be called the

reproducing kernel for KK . It is well known that K is unique.
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Note that if K is a strictly positive kernel function on A, it gives rise to a
functional Hilbert space on A with reproducing kernel K. ([2] section 3). To see
this let D(A) be the linear space of F(A, \t21) consisting of all functions of the form

2,
f = Eli(=l i,.)“; for )‘1 € A, Ei € (i=1,.04,k), k > 1.

k ok
If g is another function in D(A), g = Ei-l K(xj,.)nj, let <f,g>K- zi,j-l

<K()\ )‘j)i n >. Now <.,.> is an inner product on (A). It is easy to show that a
Cauchy sequence in D(A) is pointwise convergent, and hence the completion KK of (A)

with respect to <.,.> is a linear subspace of F(A, 1 ) Furthermore, by construction
of KK, it follows that K is the reproducing kernel for KK. We also observe that if K
is a strictly positive kernel function which is already a reproducing kernel for a

functional Hilbert space K on A, then KK = K.

Let A be a domain in the plane and assume that every functional Hilbert space
on A is invariant under the map of multiplication by the conjugate of the function
f:A > C defined by f(z) = z. The restriction of this map to such a functional

Hilbert space will be denoted by T .
z
Now let A(sz, 1 ) denote the set of 1:—valued coanalytic functions on the domain

Q in the plane. Note that A(Q, 1 ) is 1invariant under multiplication by z. All
functional Hilbert spaces on Q undet consideration will be invariant under T . A
functional Hilbert space on Q which is a linear subspace of A(Q, 1‘21) will bé called

a conanalytic functional Hilbert space on Q.

A kernel function K:Q x Q + B(li) is called sesquianalytic if K(.,.) is analytic
in the first variable and coanalytic in the second variable. Given a sesquianalytic
kernel function K on Q, let HP()‘; K) be the (p+l) x (p+l) - positive operator matrix
whose m, n-entry is

9"
— K(A,A), 0 < m, n < p.
m! 32" n! 3z
We say that the kernel function K 1is nondegenerate if Hp(x; K) is injective for
every A € Q and every positive integer p.

Let K be a nondegenerate sesquianalytic kernel function on Q. Then there exists
a coanalytic functional Hilbert space KK on R such that the nondegenerate kernel
function K on Q is a reproducing kernel for KK ([2] section 4). Indeed, let Ao eQ

and denote by D, the linear subspace of A(RQ,1 ) spanned by functions of

A

0
, KOG 2 . KOG
the form f = Zj=0 —-j—'— Ej’ gje 1. If g = ):k=0 T ™ is another function
in DA , we define
0
a2 3 KOG
=gl ko CTITE o S w7
It follows that the completion K)\ of D)‘ with respect to this inner product is a
0 0

coanalytic functional Hilbert space on @, which is independent of )‘0 € Q and has K as

a reproducing kernel. Therefore KK = K)‘ .
0
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A nondegenerate sesquianalytic kernel function K on Q is called a generalized

Bergman kernel (g.B.k for brevity) {f T e B(KK) and for every A € @, T* - X has
z z
closed range, ran K(\,.) = ker(T* - 1) and dim ker(T* - \) = n, where n is a fixed
z z
positive integer throughout the rest of this article. For a detailed treatment of

generalized Bergman kernels the reader 1s referred to Curto and Salinas [2]. In

particular, a g.B.k. K on Q is strictly positive and hence D(Q) is dense in KK'

Also K(A,)) is invertible for A € Q. The operator T* acting on KK is called the
*

canoncial model associated with K. For simplicity of notation set T = T_.
z
Finally we make a few observations which we will need later. Note that

i i-1
i, _ay KOG ) 3T KAL)
3 K(A,.)E i8 in KK and it is easy to see that (T-)) ] a-n!

(Differentiate the relation (T-A)K(A,.) = 01 times). We also use the fact that
multiplication by z - X is an injective operator on K, to deduce that ap(T*) = ¢.

Since ker(T* - X) = 0 it follows that ran(T - A) is dense in H. But ran(T - 1),
A Q, is closed, so ran(T - 1) = H.

3. SOME INFINITE DIMENSIONAL CYCLIC INVARIANT SUBSPACES.

In this section we will consider a special case. Let T ¢ Bl(ﬂ) such that o(T) is
a spectral set for T and o(T) = Q. In [5,6] we have proved the following. There is
a compact set L such that o(T) L, the interior of L is simply connected and L is
minimal with respect to these properties. Moreover, if ¢ denotes the conformal map
from LO onto D then A = ¢(T) is in Bl(o(n)) and o(A) = ¢(ﬂ)- is a spectral set for
A. Also Lat(T) = Lat(A).

To study the invariant subspaces for such operators we may assume, without loss
of generality, that Q is an open connected subset of the unit disk such that L0= D
and T ¢ Bl(ﬂ) is such that o(T) = Q is a spectral set for T. In this case we also
have 3D Q (Sed@ighi [sl. We assume this normalization is in effect in this

section. If K is a g.B.k. on Q then for convenience we let H = KK'

In the proof of the next theorem we use the functional calculus developed in
(Seddighi [6]).
THEOREM 1. If f is in H then
(f] = {g € H: g h(T)f for every h in H"}

PROOF. If g h(T)f for every h in B then g p(T)f for every polynomial p. Hence
g [fl.

Conversely suppose g € [f] and h € H™. There is a uniformly bounded sequence
{pn} of polynomials converging pointwise to h in D. Since p, converges to h weak-
star it follows that pn(T) + h(T) weak-star ([6]). Hence pn(T)f + h(T)f weakly,
so h(T)f € [f]. But g [f], so g h(T)f and the conclusion follows immediately.
COROLLARY 1. If {Am} is a Blaschke sequence of distinct points in @ which has all
its 1limit points on 3D and {cm}:=l is a sequence of nonzero complex numbers such

that L, ¢ K, is in H then
m= m Am

[f] = {g e : g(xm) =0 for all m} .

1
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PROOF. If g\xm) = 0 for all m then

<g, T"E> = <1*" g,£> = <" g,£> =m§ ©, X, 8 = 0. sogelf].

1

If g ¢ [£] and h is in H then h(T)f = L., ¢ h(A, K, ([6]) and <g,h(D)f>

m=1 “m
m
= £;=1 Cn h(Am)g(xm) = 0 by Theorem 1. Fix m and let h be a function in Ho such
that h(Am) = 1 and h\kk)= 0 for k # m. Then n g(km) = 0. Since n + 0, we
have g(xm) = 0.

THEOREM 2. Let (A be a sequence of distinct points in Q which has all its

a0
k}k=l
limit points on 3D and is not a dominating sequence, and let [ck}:=l be a sequence of
Qo -

nonzero complex numbers such that kgl 'ck' IlKAk" o, If f = k2 Sk ka, then [f)
= {g ¢ H: g(Ak) = 0 for all k}.

PROOF. If g(Ak) = 0 for all k, then for any m we have <{g, ™ = 0 just as in the
proof of Corollary 1, so g ¢ [f].

@ m —c
1f g [f] then k£l S Ak g(kk) 0, for any m. Note that for any k,
sl = s %, 51 < sl 11, |1
@ a0 ——

Since k§l 'ck‘ ‘lKAkI‘ < =, the sumk;.l 'ck g(xk)l is finite. By Theorem 3 of Brown et

al [1] we have ck g(xk) = 0 for all k. Because % # 0, it follows that g(Ak) = 0 for
all k.

4. THE SPECTRUM OF RESTRICTIONS OF T.

In this section we assume that K is a g.B.k. on Q and T = T* is the canonical
model in Bn(ﬂ) acting on H = Ky« We also assume that OP(T) = Q. z
LEMMA 1. Let m be an invariant subspace for T then

oap(r|m) Q= ap(Tlm).
PROOF. Let ) aap(T|m) Q. Then there exists a sequence of unit vectors {fk} in
H with
T - 0g || » 0. urite £ = RO\, D5 + g,
where Ek € 1§ and g, ran K(A,.). Since (T - ).)fk = (T - x)gk, it follows that
(T - X)gk + 0. Because T - X has closed range, it is bounded below on the orthogonal
complement of ker(T - A). From this observation we get that g 0.

Now Ilfk||2 = ||K(A,.)§k||2 + I'gkllz, from which we conclude that
||K(A,.)Ek|' <M for some M.
-1 - -
tence {[g1] = [lxaun™2xan %] < ko ] x an

- Hxan™ A fxo,og ] <nfxa,n™ 2 ).



74 K. SEDDIGHI

n

Therefore {Ek} is uniformly bounded in norm by a constant C. If Ek = {akj}j=l’
a 2
then jzl 'akj'k < C for all k. For each j, 1 < j < n there 1is a convergent
-
subsequence {a such that a » a, in C.
i @y Litim ko T
Let £={a)"_ . Then £ » £ in 12. Hence ||R(A,.)E = K(X,)E[]
j'i=1 k1 n ’ 5ki ’
- ko g = ol] < Qlkan 2] g, - el ~ o
= (A, \Eki A (A, Eki £ .
We have shown that K(A,.)ik > K(A,.)E in H. Observe that
i
f = K(XA,.)E + g > K(XA,.)E & Therefore K(A,.)£ is in m. Since {f } is a
k k k k
i i i i
sequence of unit vectors, K(A,.)E # 0, so A € 0p(T|m ).
We now consider a cyclic invariant subspace m = [f]* for T* and discuss the

spectrum of the restriction Tlm . Before doing this note that {A @ f(i) = 0}
= {Xxe@ h(l) = 0 for every h in m } To see this let f(A) = 0 and observe that
for every polynomial p and any £ in Ti we have
<p(T*)E, K(A,.)E> = <p(NE(N), &> = 0.
Note let h € m. Then approximating h by polynomials in T* applied to f, we have
<h, K(X,.)E> = <h(A),&> = 0 for every £ in li. Hence h(}A) = O.
We also need the fact that {A: £(A) = 0} op(T'm ). To see this assume
f(2) = 0, then h(A) = 0 for every h in m. This says that <h, K(},.)& =0, £ in l:-
Hence ker(T = A) m, so A € op(TIm ).
THEOREM 3. If m is a cyclic invariant subspace for T* then
ot| ) a- op(’l’lm ).

PROOF. Let m = [f]*. We first show that ac(T|In ) @ {x: £()) = 0}. If we prove
this then since {A: £(A) = 0} cp(Tlm ), by the argument preceding the theorem, we
have oc(Tlm) Q o STlm)' We now apply Lemma 1 to complete the proof.

To prove oC(T'm) Q {x: £()) = 0} it suffices to show that if f(A) # O,
then X is not in the compression spectrum of T'm. If g ((T-A)m ) then for any h in m
, 0 = <g, (T -Mh>=<(T* -X)g,h>, so (T* ~A)g € (m ) = m Thus there is a
sequence {pn} of polynomials such that pn(T*)f » (T* - X)g. It follows that
P (T, K(X,.)E> » K(T* - g, K(X, ) =0
for every £ in 1§. Hence pn(i)f(x) = (pn(T*)f) (\) converges weakly to zero in 1§. In

particular, <pn(i)f(k), f(A) > = pn(A) ||f(k)||2 + 0. Because f(A) # 0,
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P (2) - P (D

we have pn(X) + 0. Let qn(z) = . Then

(T* - X)qn(T*)f = pn(T*)f - pn(i)z : ?T* - X)g. Since ran(T* - X) is closed, it
follows that T* - X is bounded below on ker(T* - X) = ran(T - A) = H.
Therefore qn(T*) frg,so0g m=(m ). Thus ((T = \)m ) (m ), so A is not in the
compression spectrum of T|m .
COROLLARY 2. If n =1 and m is a cyclic invariant subspace for T* then
o(Tlm ) Q= {x: h(A) = 0 for every h in m}.
PROOF. Let m = [f],. If n = 1 then g (T| ) (A £(A) = 0}. Indeed if K, € m
then f(1) = <f, Kx > = 0. By the argument preceding Theorem 3 we have
{A: £(X) = 0} up(r|m ). Thus ap<T|m )={A:£(1)=0} = {A:h(A) = O for every h in }.
For a sequence {Ak} in Q and £ in H the notation f({kk}) = 0 is used to mean that
if X occurs in {Ak} N times then f has a zero at A of order at least N. We also
let n()) denote the number of times A occurs in {Xk).
DEFINITION 1. A sequence {Ak} of points in Q is a zero sequence for if there
exists £ in H with f({Ak}) = Q.
Zero sequences for A2 are studied by C. Horowitz [8]. He has shown that they are
quite different from Blaschke sequences.
THEOREM 4. Let n = 1, and {Ak) Q be a zero sequence for H. If
m = {h: h({xk}) = 0} then
c(T'm ) Q= {x:h()) = 0 for every h € m}.
PROOF. It is easy to see that
= V'R A e Oy 4= 0,eee,n(0) - 1)

Therefore the finite linear combinations of functions of the form

N n

z Zk [ 81K , where n < n(kk) - 1 for each k are dense in m.
k,1 A
k=1 i=0 k
If A £ {Ak} then
N
(T-2) & * C 4 aikA
k=1 1=0 ’ k
N n
k i 1
= ©C (¢T-2) 3K, + (A -2) 3 K, )
k=1 i=0 <1 kDT Tk e
N N ™ (1 i1 :
=:r C (O, MK, + L I C 13 K, + (A -1) 3 K, )
k=1 €0 K Mookal ta1 ©f ook e
N %! : N n
= I [@+1)C + (A -AC, ] K +: C (A-2) 3 K, .
=l i=1 k,i+1 k K, i Mgl komy A e
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These functions are dense in m , so A is not in the compression spectrum of T o "

Hence
o (Tl 2 Iy} o | .

Note that X € op(Tlm ) if and only if K, e m , so cp(T'm ) = {x:h()) = 0 for every

A
h € m}. Applying Lemma 1 we obtain the result.
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