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ABSTRACT. For a connected open subset of the plane and n a positive integer,

let B () be the space introduced by Cowen and Douglas. In this article we study the
n

spectrum of restrictions of T in order to obtain more information about the invariant

subspaces of T. When n=l and T e Bl(fl) such that o(T) is a spectral set for T we

use the functional calculus we have developed for such operators to give some Infinite

dimensional cyclic invariant subspaces for T.
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INTRODUCTION.

For a connected open subset of the plane and n a positive integer, let

B () denote the operators T defined on the Hilbert space H which satisfy
n

(a)

(b) ran(T-u) H for in ,
(c) ker(T-o) H, and

(d) dim ker(T-) n for in .
The space B () has been introduced by Cowen and Douglas [I]. This class of operators

n
was further studied by Curto and Sallnas [2]. In partlcular, they show that an,
operator T in B () can be realized as the adJolnt T- of the operator of

n z
multiplication by z acting on a Hilbert space KK of coanalytlc functions on having a

generalized Bergman kernel K.

The class B () is a rich class of operators. To give an example, let A
2
denote

the Hilbert space of analytic functions on the open unit disk D such that

27

0 0
rdrdO<.

A
2

The operator S on defined by (Sf) (z) z f(z) is called the Bergman shift. It is

easy to see that S* is in BI(D).
Shelley Walsh [3] has obtained several results concerning the backward Bergman

shift S*. In particular, the spectrum of restrictions S* where m is an invariant
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subspace for S, Is studied. It Is also pointed out how this study sheds more light on

the structure of the Invariant subspaces for the Bergman shift.

The purpose of the present article is to extend these results to the

class BIfR) in hope that more insight into the Invarlant subspace structure for these

operators can be gained from this study.

2. PRELIMINARIES.

Let H be a separable Hilbert space and let B(H) denote the algebra of all bounded

linear operators on H. For T c B(H) the spectrum, point spectrum, compression

spectrum and approximate point spectrum of T are denoted by o(T),o (T), oc(T), and
p

Oap(T) respectively. For the appropriate definitions see Halmo [4].

Let T be a bounded linear operator on a Hllbert space H. If f c H, then [f] will

be the smallest invarlant subspace for T containing f. The notation [f], is used to

denote the smallest Invarlant subspace for T* containing f. If A H, let VA denote

the closed linear span of A. It is the smallest closed linear subspace of H that

contains A.

A subset S of the open unit disk D is said to be dominating (or dominating

for 8 D) if

Equivalently, a subset S D is dominating if and only if almost every point

of 8 D Is a nontangentlal limit point of S.

The following presentation on the generalized Bergman kernels is taken from Curio

and Salinas [2] and will be needed in the sequel.

2 n C and <2 (R)}. Given aFor n < let { {ak}kffil: a
k ,akn =I

set A, a functional Hilbert space on A will be any Hilbert space which Is a linear
2

subspace of F(,2) the linear space of all -valued functions on A, for
n n

some n .
t2) that satisfies theBy a kernel functions on A we mean a function K:A x A B(
n

following conditions:

(a) Z(,) Z(,) (all , ^);

(b) for every integer k, k > 1, and every collectlon {1"**’k A, the

k k operator matrix Z {K(i’ J)) (I i, J k) is a positive operator

on T
2 Ck.
n
If in addition the k k operator matrix KK in (b) is inJective for every

collectlon {I’ ’k ^, all k I, we shall say that K is strictly positive.
2

Let K
K

be a functlonal Hilbert space on A. If for every ^ and n’
K(k,.) K

K
and

<f,K(,.)> <f(), >, for every f E K,

then we shall say that KK has a reproducing kernel on A and K will be called the

reproducln kernel for K
K

It is well known that Z Is unique.
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Note that if K is a strictly positive kernel function on A, it gives rise to a

functional Hilbert space on A with reproducing kernel K. ([2] section 3). To see

this let D(A) be the linear space of F(A, In2) consisting of all functions of the form

2f ri=Ik K(Ri,.)i, for Ri e A, I e
n

(i=l"’’’k)’ k ) I.

k K( lj ) let <f
k

If g is another function in D(A), g El= j’ ’g>K-- ri,j=l

<K(li,j)i,j>. Now <’’’>K is an inner product on (A). It is easy to show that a

Cauchy sequence in D(A) is polntwlse convergent, and hence the completion K
K of (A)

with respect to <’’’>K is a linear subspace of F(A, ,2).n Furthermore, by construction

of KK, it follows that K is the reproducing kernel for KK. We also observe that if K

is a strictly positive kernel function which is already a reproducing kernel for a

functional Hi[bert space K on A, then K
K

K.

Let A be a domain in the plane and assume that every functional Hilbert space

on A is Invarlant under the map of multiplication by the conjugate of the function

f:A C defined by f(z) z. The restriction of this map to such a functional

Hilbert space will be denoted by T

2
z

Now let A(fl, denote the set of 12-valued coanalytlc functions on the domain
n n

(fi, n2) is invariant under multiplication by z. Allin the plane. Note that

functional Hllbert spaces on R under consideration will be invarlant under T_. A

functional Hllbert space on R which is a linear subspace of (R, 12 will b called
n

a conanaltic functional Hllbert space on R.

2
A kernel function K:R fi+ B(I is called sesqulanalytlc if K(.,.) is analytic

n
In the first variable and coanalytlc in the second variable. Given a sesqulanalytlc

kernel function K on R, let Hp(l; K) be the (p+l) x (p+l) positive operator matrix

whose m, n-entry is

m n K(l,l), 0 m, n ( p.
m! zm n! 8n

We say that the kernel function K is nondeenerate if H (; K) is inJectlve for
p

every I e and every positive integer p.

Let K be a nondegenerate sesqulanalytlc kernel function on ft. Then there exists

a coanalytlc functional Hilbert space KK on such that the nondegenerate kernel

function K on fi is a reproducing kernel for K ([2] section 4). Indeed, let 10 e

and denote by DIO the linear subspace of A(, spanned by functions of

the form f l=0

in D we define
0

j
2 kK(10’"

j, je f g r.q
n k=O k! nk is another function

P q j k K(XO, 0
<f’ g> J-EO k--EO < j! k! J’ nk >

It follows that the completion KI0 of DAO with respect to this inner product is a

coanalytlc functional Hilbert space on , which is independent of 0 and has K as

a reproducing kernel. Therefore K
K Klo.
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A nondegenerate sesqulanalytlc kernel function K on fl Is called a generalized

Bergman kernel (g.B.k for brevlty) if T_ E B(KK) and for every k E fl, T*_ k has
Z Z

closed range, ran K(4,.) ker(T* 4) and dim ker(T* 4) n, where n is a fixed
Z Z

positive integer throughout the rest of this article For a detailed treatment of

generalized Bergman kernels the reader is referred to Curio and Sallnas [2]. In

particular, a g.B.k. K on fl is strictly positive and hence D(R) is dense in KK.
Also K(4,4) is invertible for 4 . The operator T*_ acting on K

K is called the

canonclal model associated with K. For simplicity of ntation set T T
Z

Finally we make a few observations which we will need later Note that

IK(4, ) is in KK and it is easy to see that (T-4),.iK(4’’) i-IK(’’)
i.v (i-l).V

(Differentiate the relation (T-4)K(,.)= 0 i times). We also use the fact that

multiplication by - is an inJectlve operator on K
K to deduce that o (T*) .

P

Since ker(T* -) 0 it follows that ran(T- ) is dense in H. But ran(T- ),

X R, is closed, so ran(T- ) H.

3. SOME INFINITE DIMENSIONAL CYCLIC INVARIANT SUBSPACES.

In this section we will consider a speclal case. Let T

a spectral set for T and o(T) . In [5,6] we have proved the following There is

a compact set L such that o(T) L, the interior of L is simply connected and L is

minimal with respect to these properties Moreover, if denotes the conformal map

from L
0
onto D then A (T) is in BI(()) and o(A) (R)- is a spectral set for

A. Also Let(T) Let(A).

To study the invariant subspaces for such operators we may assume, without loss

of generality, that R is an open connected subset of the unit disk such that LO= D

and T BI()is such that o(T) is a spectral set for T. In this case we also

have D (Seddlghi [5]). We assume this normalization is in effect in this

section If K is a g.B.k, on then for convenience we let H KK.

In the proof of the next theorem we use the functional calculus developed in

(Seddlghi 6 ).

THEOREM I. If f is in H then

[f] {g H: g h(T)f for every h in

PROOF If g h(T)f for every h in H then g p(T)f for every polynomial p. Hence

g [f].

Conversely suppose g If] and h H There is a uniformly bounded sequence

{pn of polynomlals converging polntwise to h in D. Since Pn converges to h weak-

star it follows that Pn(T)/ h(T) weak-star ([6]). Hence Pn(T)f h(T)f weakly,

so h(T)f [f]. But g If], so g h(T)f and the conclusion follows immedlately.

COROLLARY I. If {Am} is a Blaschke sequence of distinct points in R which has all

its limit points on D and {Cm}m=l is a sequence of nonzero complex numbers such

that Era= c
m KA is in H then

m
[f] {g g(m 0 for all m}
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PROOF. If gkk 0 for al[ m then
m

<g Tnf> <T*n g,f> <n g,f> __m__El Cm Xm g (xm) 0. so g e ill

If g . if] and h is in H then h(T)f lm= c
m h(m)Kk

([6]) and <g,h(t)f>
m

E c h( )g(X 0 by Theorem I. Fix m and let h be a function In H such
ra=| m m m

that h(X and h(k)= 0 for k m. Then g( 0. Since 0, we
m m m m

have g(X 0.
m

THEOREM 2. Let [Xk}k; be a sequence of distinct points in fl which has all its

[imit points on @D and is not a dominating sequence, and let [Ck}k= be a sequence of

nonzero complex numbers such that kffil [Ck[ [[KXkI[ < If f kl Ck Kk’
then if]

{g H: g() 0 for all k}.

PROOF. If g()tk) 0 for all k, then for any m we have <g, Tmf> 0 lust as in the

proof of Corollary I, so g [f].

If g if] then kfEl c
k k g(k 0, for any m. Note that for any k,

Since kl lckl lK%kll <-, the sumk|__ ICk gk)l Is finite. By Theorem 3 of Brown et

al [I] we have c
k

g(Xk) 0 for all k. Because c
k

0, it follows that g()- 0 for

all k.

4. THE SPECTRUM OF RESTRICTIONS OF T.

In this section we assume that K is a g.B.k, on and T T* Is the canonical

model In B () acting on H KK. We also assume that o (T) .
n p

LEMMA I. Let m be an Invarlant subspace for T then

oap(T[m f Op(Tjm).
PROOF. Let Oap(TIm) . Then there exists a sequence of unit vectors {fk} in

H with

[[(T )fk[[ 0. Wrlte fk K(,.) + gk’
2

where k n and gk ran K(L,.). Since (T- L)fk (T- )gk’ it follows that

(T L)gk 0. Because T has closed range, It is bounded below on the orthogonal

complement of ker(T k). From this observation we get that gk O.

l kl / l kl 12, which we conclude that
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Therefore {k is uniformly bounded in norm by a constant C. If k [akj }n
j=l’

then jZI= a
k_j

C for all k. For each J, n there is a convergent

subsequence [akl,j}i=! such that a
kl, aj in C.

2Let {aj}j=l.n Then ki in .n Hence IIK(X,.)ki- K(X,.)II

Ii o.

We have shown that K(k,.)ki K(I,.) in H. Observe that

fkl K(k,.)
k

+ gki K(k,.) Therefore K(k,.) is in m. Since (fki) is a

sequence of unit vectors, K(k,.) 0, so o (T ).
p m

We now consider a cyclic invariant subspace m --[f], for T* and discuss the

spectrum of the restriction T Before doing this note that { : f(k) 0}

k : h(k) 0 for every h in m To see this let f(k) 0 and observe that

for every polynomial p and any in 2 we have

<p(T*)f, K(X,.)> <p(X)f(X), > 0.

Note let h E m. Then approximating h by polynomials in T* applied to f, we have

<h, K(,.)> <h(k),> 0 for every in 2. Hence h(k) 0.
n

We also need the fact that {: f() 0} p (Tlm ). To see this assume

2f() 0, then h() 0 for every h in m. This says that <h, K(,.)> 0, in
n

Hence ker(T- k) m so o (T[ ).
p m

THEOREM 3. If m is a cyclic invariant subspace for T* then

o(TIm (T ).
p m

PROOF. Let m [f],. We first show that (T {: f(k) 0}. If we prove
c m

this then since {: f()ffi 0} op(TIm ), by the argument preceding the theorem, we

have oc(Tlm) o T Im)" We now apply Lemma to complete the proof.

To prove o (T {: f(%) 0} it suffices to show that if f(k) 0

then is not in the compression spectrum of T If g ((T-)m) then for any h in mm"
0 <g, (T %)h > <(T* %)g,h >, so (T* k)g (m) m. Thus there is a

sequence {pn of polynomials such that Pn(T*)f (T* %)g. It follows that

<Pn(T*)f, K(,.)> <(T* )g, K(,.)> 0

2 2for every in Hence pn(k)f()ffi (Pn(T*)f) () converges weakly to zero in In

particular, <pn()f(X), f(X) >--pn(%) o. Because f(%) O,
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pn(Z) pn(k)
we have pn(k)/ O. Let qn(Z) Then

z %
(T* )qn(T*)f Pn(T*)f -pn()f (T* )g. Since ran(T* ) is closed, it

follows that T* - is bounded below on ker(T* -) ran(T ) H.

Therefore qn(T*) f g, so g m (m) Thus ((T k)m (m) so is not in the

compression spectrum of T
m

COROLLARY 2. If n and m is a cyclic Invarlant subspace for T* then

o(Tlm {: h(k) 0 for every h in m}.

PROOF. Let m-- If],. If n-- then Op(Tlm) {k: f() 0}. Indeed if Kk e m

then f() <f, Kk > O. By the argument preceding Theorem 3 we have

{: f() O} op(Tlm ). Thus Op(Tlm )--{%:f()-0} {:h() 0 for every h in }.

For a sequence [k in and f in H the notation f({k}) 0 is used to mean that

if occurs in [k N times then f has a zero at k of order at least N. We also

let n(%) denote the number of times occurs in {}.
DEFINITION I. A sequence {k of points in is a zero sequence for if there

exists f in H with f({%k}) 0.

A2Zero sequences for are studied by C. Horowitz [8]. He has shown that they are

quite different from Blaschke sequences.

THEOREM 4. Let n I, and {k be a zero sequence for H. If

m {h: h({kk}) O} then

(Tlm {:h() 0 for every h e m}.

PROOF. It is easy to see that

m--V{IKx: e: {Xk}, i -O,...,n(k)- I}

Therefore the finite linear combinations of functions of the form

N n

k=IZ iffioZk ck’i iKk’
where n

k
n(kk) for each k are dense in m.

If % {} then

N
(T k) Z C

k BiKkk=l i=O
i

N n
r. Ek ((T- k iK + (X

k
X) )i

k=l i:0 Ck’t KXk
k

=k=Ir Ck, 0 (k- ) Kk
k

+ k=Ir i-IZ Ck, i (i i-IKkk + (k ) i K
N nk-I N

[(i+l)Ck i+l
+ (kk- k)Ck i iK+kE Ck (kk-k) nk Kkk"k--I i--I ’nk
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These functions are dense in m so is not in the compression spectrum of T
m

Hence

Note that k E p(Tlm if and only if Kx e m so Op(T Im {X:h(X) 0 for every

h m}. Applying Lemma we obtain the result.
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