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ABSTRACT. In this paper we study some properties of the seml-sub-hypergroups and the

closed sub-hypergroups of the hypergroups. We introduce the correlated elements and

the fundamental elements and we connect the concept antipodal of the latter with

Frattln’s hypergroup. We also present Helly’s Theorem as a corollary of a more

general Theorem.
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INTRODUCT ION.

In 1934 F. Marly introduced a new mathematical structure which he called

hypergroup (see Marly [I]). A hypergroup (H,.), is a non-vold set H endowed with a

hypercomposltlon "." (i.e. a mapping of H x H into the set P(H), of all subsets of H)

which satisfies the following axloms:

i) (x.y).z x.(y.z) for every x,y,z e H (associative axiom)

ii) x.H H.x H for every x e H (reproductive axiom)

It holds that x.y for every x,y e H (see Mlttas [2]). We note that if "." is a

hypercompositlon in a set H and A, B are subsets of H, then A.B signifies the union

U __(a,b)eAxBa’b" A.b and a.B will have the same meaning as A. {b} and {a}.B

respectively. We also make no distinction between the elements and thel r

corresponding singletons, when nothing opposes it.

The hypercomposltlon "." leads, in a quite natural way, to two new

hypercomposltlons ":" and ".." which are defined as follows (see also [I]):

a:b {x’e tl a e x.b)

a..b {x e H a b.x}.
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Whenever "." is commutative, then a:b a..b for all a,b H. Besides one can easily

observe that a:b * , a..b # . Indeed Ince H H.b b.tl there is at least one x

and one y such that a e x.b and a e b.y. Therefore, the sets a:b and a..b are non

void.

A subset K of the hypergroup H will be called a seml-subhypergroup

of fl if a.b c K holds for every a,b e K, while it is called a sub-hypergroup of fi, if

the reproductive axiom holds in K as well (i.e.a.K- K.a K for every a e K). It

is easy to prove that if in a semi-sub-hypergroup K, Is valid a: b cK and a..bcK, for

all a,b K, then K is a sub-hypergroup of ft. Indeed, the proof of the regneratlve

axiom is as follows: Let a e K. Then a.K

_
K and K.a c_ K. Next, since r..a c_ K,

r:a K, for every r e K, we have: m a.K and r K.a respectively. Thus K a.K and

K K.a, and so K K.a a.K.

A sub-hypergroup K of fi is called closed from the right (resp. from the left), if

a.K N K (resp. K.a N K ) holds for every a e -K. K is called closed if it is

closed from the right and from the left. For the closed sub-hypergroups thls

proposition is valid: K is closed from the right if and only if the relation

a.(NK * implies that a e k (resp. from the left) (see also Mittas [2],[3] and

Krasner [4]).

Undoubtedly the hypergroup can be considered as one of the most general

structures of the abstract Algebra. Therefore, even the study of its elementary

properties, imposes technical difficulties on the whole procedure.

The hypergroup, very often, is endowed with axioms which vary in strength and

which make it a less general structure than the one that was initially introduced, and

so, the research on this field is led through more concrete paths. So for instance

F. Marry considered hypergroups, that have at least one bilaterally unit element and

which he named regular hyergroups. He also considered regular hypergroups H, such

that for every element a e H there exists at least one a’ H such that

e a.a’ Na’.a, where e is a unit of H. He named these hypergroups completely

regular hypergroups. A special form of a completely regular hypergroup is the

canonical hypergroup. It has a unit element, which is scalar s e H is called

scalar, if for every x E H the sets s.x and x.s are singletons) and a unique inverse

for every of its elements (see Hittas [2], Roth [5]). The hypergroup has also been

used as a basis for the creation of other algebraic structures, which were born out of

a mathematical need (exampll gratia see Krasner [6]). Some examples of such

structures are the hyperflelds and the hyperrings (eg. Massouros [7], Nakassls [8]),

the hypermodules, the vector hyperspaces (Massouros [9], Mittas [10]) etc.

Numerous papers based either on the research of the algebraic structure of

hypergroups, or on the study and the development of the applications that can possibly

derive from them, have been published since 1934. Today the research leads to some

more specific hypergroups, but Marty’s initial hypergroup has not been fully

investigated and there is the possibility for further research. In this paper we

present a series of properties and we study some special categories of elements, and
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the correlated elements and the fundamental elements, and motivated by the latter we

introduce Frattini’s semi-sub-hypergroup. Also we prove a theorem, which, in our

opinion, is the most general form that one can give in Helly’s Theorem.

2. SOME PROPERTIES OF THE SEMI-SUB-HYPERGROUPS AND THE SUB-HYPERGROUPS.

Let us begin this section by giving some examples of hypergroups.

(i) Let H be a non-void set with card H > 4. We introduced in it a

hypercomposition "." as follows:

We define an element e to be the neutral element of H, that is a.e e.a a for

every a e H.

a.b H {a,b,e} for every a,b e H with a b

a.a {a,e} for all a H.

Then (H,.) becomes a hypergroup (see also Nakassls [8]). For the two operations ":"

and ".." we have:

a:b {x e H a x.b} H-{a,b} b:a

a:a {x e H a x.a} {a,e}

and because of the commutatlvity of ".", a:b --a..b.

(li) Let H be a non-void set and "." a hypercomposltlon defined as follows:

a.b {a,b} for every a,b H with a * b

a.a H for all a e H

Then (H,.) is a hypergroup and for the two operations ":" and ".." we have:

{x e H a x.b} {a,b} --b:aa:b

a:a {x H a x.a} H.

Because of the commutativlty of "." we have: a:b a..b.

(iii) Let H be a non-void set. We introduce in H a hypercomposltion "." defined

as follows:

a.b {a,b} for every a,b e H with a # b

a.a H {a} for all a e H.

Then (N,.) becomes a hypergroup (also see Massouros [II]) and for the two operations

":" and ".." we have:

a:b {x e H a e x.b} {a,b} b:a

a:a {x H a e x.a} --H {a}.

Since "." is commutative a:b --a..b holds.

(iv) Let H be a group. We endow H with a hypercompositlon "." defined as follows:

a.b {a,b,ab} for every a,b H.

Then (H,.) becomes a hypergroup. In this hypergroup for the hypercompositions ":" and

".." we have:

a:b {x e H a x.b} {a,ab-1}
a..b {x e H a b.x} {a,b-la}.
(v) Let V be a vector space over an ordered field F. We introduce in V a

hypercomposition defiend as follows (also see Vougiouklis [12]):

a.b {ha + Kb 0 < %, K: + -- I}.
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Then (V.,) becomes a hypergroup. One can see that the convex sets of V are simply the

seml-sub-hypergroups of (V,.), while the subspaces of V are the closed sub-hypergroups

of (V,.). So in some vector spaces, one can have an optical view of the

hypercomposltlon, the seml-sub-hypergroups and the closed sub-hypergroups.

PROPOSITION 2.1. A sub-hypergroup K of a hypergroup is right closed (resp. left

closed) if and only if a:b_K (resp. a..b

_
K) for every a,b e K.

PROOF. Let us suppose that K is a right closed hypergroup and let a,b c K. Then

for every x e a:b we have a x.b; so K fl x.K . Thus, since K is right

closed, x e K. Hence a:b __K. Conversely, let K 0 x.K , for some x e . Then

there are a,b e K such that a e x.b, thus x e a:b and since a:b_K, we have x e K.

PROPOSITION 2.2. Let K be a closed sub-hypergroup of a hypergroup and let

a K. Then

K K:a a:K K..a a..K.

PROOF. Since K is a closed sub-hypergroup we have K: a _K. Now, let x e K,

then x. a cK and so x K:a. Thus K cK:a and consequently K- K:a. Similarly the

other equalities can be proved.

PROPOSITION 2.3. Let (H,.) be a hypergroup. Then,

i) (a:b):c a:(c.b) and (a..b)..c a..(b.c)

(ti) b e a..(a:b) and b e a:(a..b)

PROOF. i) Let x (a:b):c. Then x.c 0 a:b @, and therefore

a e (x.c).b x.(c.b). So there exists an element z c.b such that a e x.z.

Thus x e a:z, and therefore x a:(c.b). Conversely, let x a:(c.b). Then

a x.(c.b) (x.c).b. Thus x.c 0a:b @. Let z e x. cfl a:b. Then x z:c and

therefore x (a:b):c. The proof of the other equality is analogous to this one.

(ii) If z e a:b, then, by definition, a z.b. Therefore a (a:b).b. This

means that there is an x a:b such that a x.b or equivalently b a..x.

So b e a..(a:b). Similarly one can prove that b a:(a..b).

SYMBOLISM. Let E be a subset of a hypergroup (H,.) Then [E], < E > will signify,

the seml-sub-hypergroup and the closed sub-hypergroup of (H,.), respectively, which is

generated from E and contains it. Also, as a matter of. simplicity we shall

write [aI,a2,...,n and < al,a2,...,an > instead of [{al, a2, .... n}] and

< {al, a2,...,an} >.
PROPOSITION 2.4. Let H,K be two closed sub-hypergroups of a hypergroup , then

< H K > < H.K > < H:K > < H..K >

SKETCH OF PROOF. Since H.K < H UK > we have that < H.K > < H U K >. On the

other hand H < H.K > and K c< H.K >. Indeed, for H, for instance, we have:

< H.K > (H.K):(H.K) (because of prop. 2.3,i)

((H.K):K):H D___
H:H (because of prop. 2.2)

H
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Thus < H K > c__ < H.K > and so < HU K > < H.K >. Analogous is the proof of the

other equalities.

PROPOSITION 2.5. Let A and B be two subsets of a hypergroup and H a closed sub-

hypergroup of such that B c H. Then:

i) (A:B) [1H (A [1H): B

if) (A..B) [1 H (A n H)..B.

PROOF. From the relation A OH A we have

(ANH): B (A: B) (2.1)

Also from the relations A[1HcH and B c H we have

(A [1H) BH (2.2)

Thus, from the relations (2. I) and (2.2) we deduce that

(ANH): B c_(A:B) [1H.

Next let x (A:B)OH. Then there are a A, b B such that x E a:b or

equivalently a x.b. But x.b cH, thus a H so a A[1H. Therefore

a:b(AOH): B and thus x (A[1 H):H. So (A:B)

completed. With the same procedure we can prove

PROPOSITION 2.6. Let A,B be two subsets of a hypergroup R and H a closed sub-

hypergroup of R with A H.

Then

(A.B) [1 H A. (B nH).

PROOF. From the relation A.(B [1 H)

_
A.B, H we deduce that A.(B [1 H) (A.B) [1 H.

Next let x e (A.B)[1H. Then there are a A, b B such that x a.b, from where we

have b x..a and so b H. Thus b B [1H and therefore x A.(B[1H). Hence

(A.B)[1 H _A.(B [1H) and so the proposition.

In Vouglouklls [12] p. 9 one can find Interesting remarks on relations llke the

ones of propositions 2.6 and 2.7.

PROPOSITION 2.7. Let H be a hypergroup and a e H.

Then

[] 1 Uct2 U... U U...

2 i i-Iwhere {}, . and .
SKETCH OF PROOF. Let A be the right part of the above equality. Then it is

obvious that A c []. Next it is not difficult to show that A is a seml-sub-

hypergroup of H and moreover that it is the minimum one generated by and containing

it.
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n 2 n-I
REMARK 2.1 (i) If for some term of A, the relation a ca U a U... U a is

n+r a2 an-vatid, then we have that a c a U U... U for every r e N (see Vouglouklls

[13]). li) A semi-sub-hypergroup, which is generated by a single element Is called a

monogene (see Mittas [2]).

THEOREM 2.1. Let us consider a subset E of a commutative hypergroup H. If

E {al,a2,...,an} then

[E] ([a1] U.. U[an ])u

U( [al l. [a2l U... U[an_ll.[anl)U

UeU

u([a [a ])

SKETCH OF PROOF Let A be the second part of the above equality Since [E] is

the seml-sub-hypergroup which is generated from al, ,an we have aI, ..., an E [E]

and one can easily see that [E] must contain all the sets of the form

[ai] [aj] with i j n. Thus A c_ [E]. Next, through not so difficult

calculations, one can prove that A is a seml-sub-hypergroup and moreover that it is

the minimum one generated from [E].

PROPOSITION 2.8. In every commutative hypergroup H the set
n
H [ai] [al].[a2] [a is a seml-sub-hypergroup of H that absorbs every

ill
n

element of [al,a2,...,an].
n

PROOF. In the beginning we observe that the set [a
t

absorbs all the monogene

semi-sub-hypergroups [ai] ( i ( n. Indeed for every {1,2,... ,n} we have

([al].[a2] [an])[a] [al].[a2], ....[an].
n

From this relation conclude that [ai] absorbs every set of the form

11

[al] [aK] with ( 1 < < (n. Thus if x,y [ai] then
K

i=l

n n n n
x.y c__ [ai]. [ai] [ai] and so g [aI] is a seml-sub-hypergroup of H. Next we

i=l i=l i i=l

have
n

[ai] [al,a2,...,an]

([az] [a2] [an]).
([a1] U... U [%] U

U[al] [a2] [aK:]U
u[a] [a2] [an ])

n

[al].[a2] [a
n

U..o U[al].[a2] [an H
i-I
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PROPOSITION 2.9.

hypergroup H. Then

Let us consider a subset E {al,a2, an}, of a commutative

[al,a2,...,an] ([all U [a2] U...U[Ctn]) n

PROOF. From the Theorem 2.1 we have

[all u[a2] u... U[anl E_[al,a2,...,anl.

And since [al,aZ,...,an] is a semi-sub-hypergroup, ([all U [a2] O...0 [an])
n

c__[al,a2 an]. Conversely. Let x e [al,a2 ..... an]. Then there are agl,...,al
n such that x [a1] [a<]. In the casewith I < <

that < n we add to the above relation some more terms until we get n terms.

Thus we have

Therefore

[,jzi] e[?l u... u [%]

[:]E[I] u...u[%]

[a:] c_[a1] U-..U [%].

[ae,1] [a,z,:] c_,.([ll u...u [%])n

and the Proposition is proved.

3. CORRELATED ELEMENTS.

DEFINITION 3.1. In a hypergroup H the elements al,a2,...,an, will be called

correlated if there are distinct integers kl,...,kv,l,...,K that belong to

{l,2,...n} such that

[Xl .... ,aXv] n [aK1,...,a] , .
In the contrary case the elements al,a2,... ,an will be called not correlated.

THEOREM 3.1. Let us suppose that the elements aI, a
n

of a hypergroup R are

correlated. We consider all the seml-sub-hypergroups of R which are generated from

n-1 elements of the above ones. Then the intersection of all these seml-sub-

hypergroups is not void.

PROOF. Since the elements are correlated, there are distinct integers

1"’’’v’kl ,k {I, ...,n} such that

[a1 a] 0 [akl akV] * . (3.1)
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But every semi -sub-hype rgroup whI ch is generated by n-l elements from

the al, an contains one of the two seml-sub-hypergroups that are me.hi[one in the

above relation. So the elements of the [ntersectlon of the two sub-hypergroups of

(3.1) belong to all the seml-sub-hypergroups that are produced from q-I elements.

Consequently these elements will also belong to the Intersection of all these semi-

sub-hypergroups and therefore thelr Intersection will be non-wold.

THEOREM 3.2. Let be a hypergroup in which the elements of every set with

cardInality greater than n, are correlated. Also let (KI)II, with card I > n, be a

finite family of semi-sub-hypergroups of . Then, If every of these seml-sub-

hypergroups have non-void intersection, all of them have non-wold intersection.

PROOF. We shall prove the theorem by induction. We shall first show that the

intersection of every n + seml-sub-hypergroups Is non-void. Without loss of

general try we may prove thls statement for the semi-sub-hypergroups

Ki, i n+l. Thus every time we choose an element which belongs to the

Intersection of seml-sub=hypergroups of the Ki, i n+l So

let x
i Ji Kj. Then

xI, ..., xi_[,xi+l,’’’,xn+ g K
i

and therefore

ix ,... ,xi_ ,xi+ ,. ,Xn+ c_ Ki

But every n+l elements of are correlated, thus the elements x ,Xn+ are

correlated and because of the Theorem 3.1, the seml-sub-hypergroups

Xl, ..., Xi_l,Xi+l, ,Xn+l] i n+l

have non-wold intersection. Consequently the sets KI, i n+l have non-wold

Intersection. Now, suppose that the intersection of the members of each set of

(card I) semf-sub-hypergroup’s is non-wold. So, for every i I,, we pick an

element xi which belongs to the intersection ji Kj. Then

xI {xj, J I-{i}}_ZI

and therefore iXi] Ki. But every n+l elements of are correlated, thus the

elements {xi, I I} are also correlated and because of Theorem 3.1, the seml-sub-

hypergroups [XI] i E I have non-void intersection. Consequently the sets

Ki, i I have non-void intersection.

In the case of the hypergroup (V,.), where V is a vector space, the correlated

elements are directly connected with the afflne dependance. It can be prove that the

correlated elements are affinely dependent and that the affinely dependent elements

are correlated. Indicatively let us show the first part of the above. Suppose that

the elements aI, ..., an of V are correlated. Then there are distinct integers

I’ , kl,...,k such that

[al, ..., av] n[al,...,au] .
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But because of the Theorem 2.1 the semt-sub-hypergroups of the form [al,...,av] can

be represented from the combinations of Lhe monogene semf-sub-hypergroups [ak]. So

some intersections of these combinations are non-void. Also [ai] at. Thus, there

are {I I {I ,} and {Jl ’Jr }c {KI .... K such that

ai| a
i

O ajl ajt "
Now let x be an element which belongs to this last intersection. Then

x flail + + rKaIK with rl + + r and x slajl + + stair with

s + + s I. Thus we have
t

slajl + + stair + (-rl)ail + + (-r)ai 0

with s + + s
t
+ (-r I) + + (-r) 0 but without all the coefficients s, r

being equal to 0. Thus the elements al, ..., an are afflnely dependent.

After this remark we can take the Helly’s Theorem (e.g. see Bronsted [14]) as a

corollary of Theorem 3.2.

COROLLARY 3.1. Let us consider a finite family (Ci)iI of convex sets in Rd, with

d+l < card I. Then, if any d+l of the sets CI have a non-empty intersection, all the

sets CI have non-empty intersection.

4. FUNDAMENTAL ELEMENTS.

DEFINITION 4. I. Let a be an element of a seml-sub-hypergroup H of a

hypergroup D. Then a will be called fundamental element of H, if from the

relation < a >0x.y , it follows that x,y < a >, for every x,y H.

In what follows R will signify a hypergroup and H a seml-sub-hypergroup of R.

PROPOSITION 4.1. a is a fundanmntal element of H if and only if H- < a > is a

semi-sub-hypergroup of H or the void set.

PROOF. If a is a fundamental element and x,y are in H < a >, x.y is a subset of

H that does not intersect < a >. Hence x.y cH < a > and so H < a > is a semi-

sub-hypergroup of H. Conversely, let a H and let H < a > be a semi-sub-hypergroup

of H. Let us suppose that there are x,y e H such that

< a >Ox.y , x,y H.

Both x,y can not belong to H < a >, since H < a > is a seml-sub-hypergroup of H.

If x c < a >, then < a >n< a > y @, from which y < a >: < a > or equlvalently

y e < a >. Therefore a is fundamental. If H < a > , the proof is trlvlal.

REMARK 4.1. Let a be an element of H. Then a is a fundamental element of H if

and only if from the relation

< a > na an ’ {aI, ..., an}OH,_ n 2

we derive {al,...,an}C_< a >.

Indeed if < a > intersects a an @’ then < a > contains a and intersects

a2,... ,a
n
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PROPOSITION 4.2. Suppose that there is a subset A of H such that H [A]. Also

let a be a fundamental ele,ent of H. Then

<a>nA.
PROOF. Since H- < a > is a seml-sub-hypergroup or the vold set, If A did not

intersect < a >, It would at most generate H < a >.
THEOREM 4.1. Let H be commutative and H [A], for o subset A of . Also let

A be a non-fundamental element of H. Then

< >n[A- {a)] .
PROOF. From the assumption that is a non-fundamental element, derives that

there are x,y c H < a > such that

< > x.y (4.1).

Since H [A] there are elements of A such that

x [=] [= (4.2)
n

and

y [+] [=] (4.3).

N from the relations (4.2) and (4.3) we have

or eltmlnating the equal terms we get

x.y c_ [iI] [p] (4.4)

Combining now (4.1) and (4.4) we have

< a>0 [l] [] .
If in (4.5) holds tt holds that [B] [a], for every I,...,, then the theorem

has already been proved, because

and

[St [S.l E [A- {a}]

< a > n[A- (a} .
But if we suppose that one of the [i] ’s say [I ], equals [a], then

< a > 0[a].[2] [] @. From the last relation we derive that there are

v e < a >, w e [a] and [2 [] such that v m.B, from which it follows

that e v:t. So B e < a >. Hence S e < a > 0 [B2] [p]. Thus

< a >O [2] [13] and thls completes the proof.

According to Proposition 2.8, the set [i [] of the relation (4.5) of

the above theorem, is a semi-sub-hypergrop of H. So if

x e [a] n[I] [BI [B], then

[x] c__ [a] [BI [8] (4.6)

Now, assume that the sets [x], x in H, are a partition of H. Then from (4.6) we get
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tha:_ Ix] [a]. Thus the relaLi_on [1 [A- [}] * becomes [=1 _[A- {=}] and so

we have tle Corollary.

COROLLARY 4.1. Let H be commutative and }| [A], for some subset A of H. Suppose

that the sets ix], [n H, are a partition of H. Then [A- {a}] H, if is a

nonf undamental element.

Thus we observe that there are certain elements which always part [cl pate [n any

set o[ generators, either by themselves, or through those elements that derive from

their mo,logene sub-hypergroups. Even though these elements are fundamental (and ths

[s why we have named them so) for the genesis of the semi-sub-hypergroup, there are

times that they can not produce the semi-sub-hypergroup by themselves. On the other

hand we can define the nongenerators of a semi-sub-hypergroup H in the same way, as

they are defined [n the classical case in group theory i.e. t is called a nongenerator

of H if H [t,X] always implies that H [X], when X is a subset of H. So the

nongenerators are the concept antipodal of the fundamental elements and when their set

[s non-vo[d, they form a seml-sub-hypergroup (H) of H which we shall call Frattlni’s

semi-sub-hypergroup. If we would like to have an optical view of the fundamental

elements and Fratt[n’s sem[-sub-hypergroup we could consider the vector space R2 in

example (v). In this hypergroup any convex angle [s a seml-sub-hypergroup. The only

fundamental element of a convex angle [s its vertex, while all the other points

(elments) of the angle are nongenerators and they form the Frattini’s semi-sub-

hypergroup. Of course it is obvious that the only fundamental element of the angle

can not generate the angle by itself.
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