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ABSTRACT. In this paper we present an extension of Bauer’s work about u-means. We consider

a kind of composition of an admissible function u(x) (described by Bauer) and of a compatible

function (x). This construction allows us to define (u, )-means. When (x)= x, the (u, )-means
are the u-means introduced by Bauer. The arithmetic, geometric and harmonic means are special

caes.
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1. INTRODUCTION.
In [2] Bauer introduced a class of admissible functions. To each function u(x) in this class it

was possible to associate a u-mean. The arithmetic and geometric means were special cases of u-

means but not the harmonic mean.

In this paper we introduce a class of monotone compatible functions. We consider a kind of

composition of an admissible function u(x) and a monotone function (x) compatible with respect
to u(x) which permits the definition of (u,)-means. When (x)= x the (u,)-means are the u-

means of Bauer. The arithmetic, geometric and harmonic means are special cases.

2. CONTRACTIVE INTERVAL.
In this paper we consider intervals I C [0, +o0[ of the following type

(i) ]0, +oo[,
(ii) ]0, a] or ]0, a[ for 0 < a _< 1,

(iii) [/3, +oo[ or ]fl, +o0[ for 1 _</3 < +oo.
Any interval I of this type is said to be co.tracttve because for any n N {1, 2, 3,...} and x I we

have xn I, or equivalently, for any x, y I we have xy I (see [2]).
3. CLASSES OF FUNCTIONS.

The first class of functions we consider is the class of admissible functions introduced by Bauer
[21.

A strictly positive continuous function u(x) defined on a contractive interval Iu is said
admissible (of type (A) or (B)) if it satisfies one of the following conditions"
(A) z --, u(x)is decreasing,
(B) x - u(x)/z is strictly increasing.

EXAMPLE 1. u(x) xP for p _< 0 or p > are admissible functions on Iu. The function
u(z) 1 2 is admissible on Iu ]0, 1[. The function u(z) e is admissible on [1, + oo[.

To extend the work of Bauer we introduce the following class of functions. A strictly positive
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strictly monotone continuous function (x) defined on a contractive interval I is said compatible if it

satisfies the following condition:

x (ax)/(x)is monotone (as (x)) for any a E I.
Let us consider the following examples.

EXAMPLE 2. (x) xp is strictly increasing for p > 0 and strictly decreasing for p < 0. Also

(ax)/(x) ap, a constant for any fixed a E I. Note that in this case d(xn) [d(x)ln.
EXAMPLE 3. 8(x)=ez and 1=[1, +co[. The function (x)is a strictly increasing

continuous function such that (ax)/(x)= e(c’- 1)z which is an increasing function for any fixed

EXAMPLE 4. (z)= e- and I ]0, 11. The function (x)is a strictly increasing function

on I such that (o,r)/(x) e (Lff-) which is an increasing function for any fixed a e I.
The following preliminary results will be useful in the next section.

LEMMA 1. Let (x) be a compatible function. Then

(i) x (xn) /(x)is strictly monotone (as (x)) for any integer n e N,
(ii) x (anx)/(x)is monotone (as (x)) for any n g and any fixed a I.

PROOF. Let us assume first that (x) is strictly increasing. To prove (i) consider x < y, then

:rn < xn ly < xyn < yn. Hence (xn) / (z) < (xyn 1) / (x) _< (yn) / (y) because (x) is

strictly increasing and compatible. To prove (ii) replace c by an in the definition. The proof is

almost the same when (x) is strictly decreasing.
LEMMA 2. Let u(x) be an admissible function and (x) be a compatible function. If

(I()) C Iu, then for any n E N the function x--, Cn+ 1(x) u(xn)/(x) is strictly monotone

(here uo(x) u((x))). The different cases are summarized in the following table:

type of u(x) (x) strictly monotone Cn + 1(x) strictly monotone

(A) increasing decreasing
decreasing increasing

(B) increasing increasing
decreasing decreasing

PROOF. Let us assume that (x) is strictly increasing (decreaaing). If u(z) is of type (A)
then uo(z)is decreasing (increasing). Also 1/(z)is strictly decreasing (increasing). It follows

that uo(xn)/d(z) is strictly decreasing (increasing). If u(x)is of type (B) then uo(x)/(x)is
strictly increasing (decreasing). From Lemma 1, (xn)/(z)is strictly increasing (decreasing).
The result follows from uo(xn) /(x) [uo(zn) / (xn)] [(zn) / (z)]

4. (ud,)-MEAN$, Let u(x) be an admissible function and (z) be a compatible function such
that (I) C Iu. Let n > 2 and choose any-g (al, a2,...,an) q I I x... x I. We consider

where

E
S(u, ) (-) i--

i=1

ri(’)= H aj= aj /ai.
j=l j=l

Using now the continuity of the functions and the strict monotonicity of
Cn(x) uo(xn- 1)/(z), we can prove the following result (which is a generalization of Theorem
2.1 of Bauer).
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THEOREM 3. Let u(x) be an admissible function defined on Iu and (x) a compatible

function defined on I such that (I)C Iu. Let n E 2 and- =(al,...,an). I. Then the

equation

Cn() s(, )’) (4.)

has exactly one solution in I. It lies in the interval

]c, [ if c min {a,,..., an < max {a1,’" ", an =/
and is equal to cr if cr .

NOTE. With the assumptions made on (z) and the preceding two lemmas, the proof of this

theorem is almost identical to the proof of Theorem 2.1 of Bauer.
PROOF. If cr the result follows from Lemma 2. Let us assume that a and let us

consider the following two cases:

(i) u(x) ,sol t/pe (A) and (z) ,s stnctty decreasing. In this case uo(x) is increasing. For any

i= 1,..-,n we have c"- < ri(-d. </n- and it follows that uo(cn- 1) < uo(ri(-d) < uo(tn- 1).
Also 1/(x) is strictly increasing, then we have (ai)/(c < 1 < (ai) / (/) with strict inequality
for at least one (not necessarily the same for both inequalities). It follows that

(ai) Cn (ct) _< uof(Tri(’))<_ (ai) (4.2)

for 1,---,n.

(ii) u(z) ,s of type (B) and (z) ,s str,ctl ,ncreas,ng. In this case uo(z)/(z) is strictly increasing and

we have

tto(n- 1) _< uof(ri(’) < uo(n- 1)
(cn- 1) (.i(’) (n- I)

and again with strict inequality for at least one i. We also have

(cn-2 ai + 1) --< (7riC)) --< (n-2 ai + I)
for 1,-.-,n (where an + = al)" From Lemma 1 we have

(cn- 1)/() --< b(an-2 ai+ 1)/(ai+ 1) and (n- 2
ai + a)/f(ai+ 1) <_

It follows that

dP(ai + 1) Cn (ct) <_ uodp(ri(-)) <_ (a + 1) Cn (/)- (4.3)
for 1,.--,n.

By adding up (4.2) or (4.3) for i= 1,...,n it follows that Cn(c,)< S(u )(’d’)< Cn() and the

result follows from the continuity and the strict monotonicity of Cn (x).
For the other cases we obtain reverse inequalities and the result follows again.

Under the assumptions of Theorem 3, the (u, q)-mean of the rt numbers al,...,an taken in I will

be the unique solution of (4.1) and will be denoted M(u b)(’). If n 1 we put M(u )(al) a1.

REMARK 1. The u-means introduced by Bauer, denoted Mu), are obtained when (x)is
the identity function id(x), i.e. (x) id(x) x for any x E I, and we have M(u, id)(-) Mu(’).

REMARK 2. For u(x)= 1 we have
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(4.4)

where (-) denotes the vector ((al),...,(an)) and A’)is the arithmetic mean of the n

components of the vector (Vl,... vn).
EXAMPLE 5. Consider u(x)= 1. For (x)= id(x)= x we obtain

M(1, id)(-) A()

and for (z)= 1/x (1/id (z) since

H(al,...,an)-l A(a-l,...,a-1)

it follows from (4.4) that

M(1, 1/id)C) H()

where H(-) denotes the harmonic mean of the n components of-.
possible to obtain the harmonic mean as a u-means (see [1], [2]).

REMARK 3. More generally, if the function (x) is such that

then we have
fi ai)= fi (ai)
i=1 i=1

Let us note that it is not

and it follows that
S(u, )) S(u, id)(())

(M(u, )C)) M(u, id} ((a)) Mu(C)).
EXAMPLE 6. For u(x) 1Ix (l/id) (x), if (x)= id(x) we obtain

M(l/id, id) (’) G(-where G(-) is the geometric mean of the n components of-.

from (4.5) that

M(1/id, 1]id)C) G(’)

If (x)= 1/z (l/id) (x)it follows

because G(afl,. ., a’l) G(al," ", an)-1.
EXAMPLE 7. More generally if up(x)= xp (for p _< 0 or p > 1) and (x)= x id(x) we have

pn-p- 1

M(,,, ia/N)= A(,...,,dtt(,,...,

(see [2]). For (x) 1Ix (1/id) (x) we have

M(up, 1/id)) M(up, id )(i-h- (-d)) -1

(a[,...,aPn)H(al,..’,
pn-p-1
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EXAMPLE S. Consider $(z) ex on I [1, + oo[. If u(z) then

M(l’ )-d) In ( i=12 eai) ln(A(b(al)’’’’’$(a.)))"

More generally, if up(x) xp (p 0 or > 1) we have that M(up, O)) is the unique positive solution,
not smaller th 1, of the polynomiM equation

X exp /a
pMn- 1_ M In

a_

5. APPLICATIONS TO INEQUALITIES. In [2] Bauer presented inequalities between u-

means (or (u, id)-means) and the arithmetic mean. Using the relation (4.5) it is possible to obtain
similar inequalities for the harmonic mean. In fact we have the following results.

THEOREM 4. Let u(x) be a convex admissible function of type (A) defined on the interval

Iu D (I). For every choice of finitely many numbers al,...,an G.. Ieb if

(i) $(z)= id(x) then M(u, id)(al,...,an) <_ A(al,...,an)
(ii) $(z)= (1/id) (z) then m(u 1/id)(al,...,an) > H(al,...,an).
Moreover if u(x) is strictly convex then strict inequalities hold provided that al,...,an are not all
equal.

THEOREM 5. Let u(z) be a concave admissible function of type (B) defined on Iu D $(I,b).
For every choice of finitely many numbers al,...,an E I, if

(i) (x)= id(z) then m(u, id)(al,...,an) < A(al,...,an)
(ii) $(z) (1/id) (z) then m(u 1/id)(al,...,an) > H(al,...,an).
Strict inequalities hold for n >_ 3 provided that a1,..-,an are not all equal.

The parts (i) of these two theorems are the results presented by Bauer in [2] because

mu(’) M(u id) (-)" To prove the parts (ii) we only have to consider the relation (4.5) to obtain

M(u, 1/id)(al,"’,an) 1/Mu(al,...,al).

Then, using the parts (i) we have

Mu(a-1,. .,a-1) <_ A(a-1,. .,a"I)

but A(a-l,...,a-1) H(al,...,an)-1 and the results follow.
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