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1. INTRODUCTION.

Throughout the paper E1 C E2 C is a sequence of Hausdorff locally convex spaces with

continuous identity maps E --, En+l, n 5 iV. Their locally convex inductive limit is denoted by

indE. If all spaces En are Banach, resp. Frchet, then we call indEn an LB-, resp. LF-space.

According to [3], [4 5.2], the space indE,., is called: a-regular if any set bounded in indE,., is

contained in some E,
//-regular if any set which is bounded in indE,., and contained in some E, is then bounded in

another E,
regular if its is simultaneously a-and//-regular.
By Makarov’s Theorem, [4; 5.6], every Hausdorff quasi-complete LF-space is regular. It is

natural to ask whether this theorem can be reversed for LB-spaces. By Raikov’s Theorem, [4;
4.3], every LB-space is quasi-complete iff it is complete. So in [5] Mujica asks" Is every regular LB-
space complete? In [6], resp. [7], the authors constructed quasi-, resp. sequentially-, incomplete

/3-,regular LB-spaces. They erroneously claimed that those spaces were regular. Here we partially

correct that error by presenting an example of a regular quasi-incomplete LB-space. The question

of existence of a sequentially-incomplete regular LB-space still remains open.

2. NOTATION AND AUXILIARY RESULTS.
Let N {1,2,3,...},R (-oo, oo). Define an order on NN by a, E NN,a

_
= aCn)

(n) for all N. For each a NN,z RNxN, d m,a N, put

{/-1 i<n},(i,j)NxN,rC,x,m) sup{lx,l;i,j m,j > =(i)},aCn),
1

if
E n

Y. {y ;Illylll. E{(a(n),i)-lly,il;i,J N} < +},. { x.; v(,,) 0 to,o N}.



676 J. KUCERA AND K. McKENNON

For brevity we write X indX., Y projY., E indE.. Finally, we have an inner product

(z,y) < z,y >= E{z,y,j,i,j E N} defined on X. x Y.,n N, and on X x Y.

LEMMA 1. For any sequence {a; k N} c N there exists a N such that m--liminf a >__ 1

for all k N.
PROOF. Put a(m) m{a(m);k m},m e N. Then a (a(1),a(2),...) h the required

property.

LEMMA 2. For each n N

(a) X,Y are Banach spaces.

(b) E is a closed subspace of X. Hence it is also a Banach space.

(c) X C X+,Y D Y+, and E c E+, where all inclusions are continuous.

PROOF. (a) Each X, resp. Y, a weighted -, resp. /-space, is Banach.

(b) x,,x e E, there e a,,a e NN such that r(a,, x,,m) 0,i 1,2. Then we have
i F(a + a x + xz,m) 0. Hence x + x E, and

Let {x(k); k N} be a sequence in E with a limit x X. For each k N take a e N for

i 2’z.r(,.(),m) 0. By Lena 1, there is a e NN such that mliminf a __> 1 for any

kN.

Given an bitry > 0, choose k N so that [Ix- x(k)[[, < . For this pticul k, te
m,,m e N sothat =m > ’ for anym_> m,, andr(at,x(k),m) < e for y m_> m. Finally,

put m0 m{m,m,n}. m mo then for i,j m,j > 2a(i), we have j > a(i) which

implies x(k),#l r(a,,x(k),m). Moreover a(n),# 1 since

a(n),#lx,# x(k),#l + a(n),ilx(k)i/ [Ix- x(k)ll, + r(a,,x(k),m) < + . Thus r(2a, x,m) < 2
dx E,.

(c) For each (i,j) N x N, we have a(n + 1), a(n),i. Hence ][x]]n+, ]Ix]In for any x e X
d lyll I Ivll I+1 for y V e Yn+l.
LEMMA 3. For each n N, let en > 0, B, {z E,; I111 < ,d v be the convex hull of

U{B,; n N}. Then the closure of V in E is the same the a(E, Y)-closure of V.

PROOF. Let E be the dual spe for E. From the duality theo we know that is the same

the a(E, E’)-closure of V. Since Y c E, we have a(E, Y) C a(E, E). Thus it remains to show

that v E is a a(E, Y)-limit of a net a v(a)- A V, then v is in the a(E, E’)-closure of V.
For eh a A, there exists re(a) N such that v(a) E{A(a,p)b(a,p);p 1,2,.-. ,m(a)},

where A(a,p) > O,{A(a,p);p 1,2,...,re(a)} 1, d b(a,p) B,{,), 1’ n(a, 1) < n(a, 2) <
< n(a,m(a)). Take (i,j) e N x N. Let r be the lgest integer, less than or equal to re(a), for

which S, {A(a,p)b(a,p)i1;p 1,2,... ,r} [vi[. Denote the signum function by sgn and put

O, r + 1 < p re(a)
Then le(,p),l Ib(,P),l for each p m() which implies e(a,p) B.{,} and w(a)
{x(,),(,); x,2,... ,m()} e V. Moreover

() Iv, (),1 Iv, v(),l.
To prove (1) d (2), we have to distinguish two ces:
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(b) r mCct). Then IC),,I < {C,)lC,),l; x,2,... ,C)} < {AC,P)lbC,P),, I;

{A(,p)b(,p),;p 1,2,... ,m()} Iv,y- v(),l.
The Banach space co(N x N) of double null sequences is contained in E and the identity maps

x x x co(N x N) Ez E are continuous. Hence the restriction of each f E’ to

co(N x N) is continuous. It follows from the Riesz-Kakutani-Hewitt Representation Theorem that

there exists a signed, regular, bounded, Borel meure g on the discrete locally compact Hausdorff

space N x N such that f(x) f xd,x Co(N x N).
Each x E is a pointwise limit, well a limit in E, of a sequence {x(k) co(N x N); k N)

tifying I(),l I,l... N. Hee it follow fom the Lebeague Dominant Theorem that

f(z()) ] x(k)d xd. Since f(x(k)) f(x), we have f(x) f xd,x E.

The a(E, Y)-convergence implies the pointwise convergence. Thus, according to (2), w(a) v

pointwise. Then, by (1) d the Lebgue Domint Theorem, we have f(w(a)) j w(a)d

] d. f(). f ’. =d i i= th (.’)-or of .
LEMMA 4. Let be the same closed neighborhood of 0 in E in Lemma 3 and for each

a N,(i,j) N x N,

poo,c() ar(,(l,l 0 fo e s,m e .
Let Vo {y e g;I < ,z > ,z e V}. Then the pol (Vo) in E is the a(E,Y)-closure

of V which, by the Lena 3, equals . The polars V and o in (E’,a(E’,E)) are equal. Hence
Vo o (Vo)OO which implies that Vo is a(E’, E)-dense in V. Thus to prove that x(a)-z()
holds, it sumc to show I< ,z(a) x() > [ 1 for all Vo.

Choose ff Ng so that if(n) > m{4,g},n N, and an arbitrary Vo. Denote by {Yl
the element of Y defined by I1, I,1, (,J) x . si== i b==d t, we hv I1 o.
For eh n N, put

{ ifi=,j>(),j=2’forsomekN }d(n) 0 otherwe

,, , wh < ,() (,) > IV{.((), (,),); (i,Y) x } v{l,((),
(),)I;Y > w(), } {1,,,1;2 > (), } {(dCi),,,)-ll,,,ldCi),,,; 2 > Ci),
} {(C)){l,.ldC),.;2 > C)}; N} {CC))l < Il.d() > I; }
{C());i N} {C4’); } {2-’; } , q...
3. MAIN RESULTS.

PROPOSITION 1. The net (3) is bounded in/ and Cauchy in/.

Proof follows from Lemma 4.

PROPOSITION 2. The net (3) does not converge in/.

PROOF. Assume x(a) -- z in/. For each (i,j) E N N the functional z z,. E R is

continuous. It implies x(a)ij --, zij. Fix (i,j) E N x N and choose " NN so that if(i) > j. Then
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for x > /, we have

1 if j=2forsomekEN }z(ct)i z(/)i 0 otherwise

Take a e NN and m N. Then for >_ m, 2 > a(i), we have 1 z,.2,

_
r(,., ). Hence z E

for any n N.
PROPOSITION 3. The space E is regul.

PROOF. Assume that E is not regular. Then there exists a set B bounded in E such that for

any n N either B is contained nd not bounded in E or BkE #.
Choose x(1) E B,z(1) # 0, and (i(1),j(1)) E N x N so that Z(1),(1)j(1) # 0. Put e,

I(1),.#,1. Suppo that z(k),i(k),j(k), and ,k 1,2,-.-,n- 1, where n > 1, have been

selected. Then there e two ces" Either B c E. and B is not bounded in E. or there exists

x BE.. h the second c=e I111. +. Hnce in either c=e there is z(n) B such that

I1(=)11 > -. m={.t; / 1,2,... ,n 1} and we can choose (iCn),jCn)) N x N so that

(4) la(n),.).#.)z(n).).#t.)l n. m={.t;/= 1,2,...,n- 1}. Put

(5) .. min{’a(n),),()lx(k),),#()l; k 1,2,... ,n). Then

a

In ft, for p r the inequRlity (6) follows from (5) d for p < r the inequMity (4) implies

Let a 0-neighborhood V be the sine in Lemma 3. Since B is bounded in E there ex-

w,re A, 0,{,; 1,2,...,,} 1, V() . Sy Ca), w (P),C,,C,Iv(),C,.C,I
Ily()ll, < ,, (p),,.,l(),c,.,c,l,i imp]i IvCP),C,.C,I < I(),C,.C,I,P 1,2,...,,.

H I(’),,.,1 I’S{YC),,.,;P ,2,...,,}1 S{IvCP),,.C,I;P 1,2,.-.,,) <
S(I,(’),,.t,I; 1, 2,...,,} I(’),,,,1,

By combining all three Propositions we get:
THEOREM. The spe indE is a regular LB-space which is not qui-complete.
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