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ABSTRACT. The joint normality of two random vectors is obtained based on

normal conditional with linear regression and constant covariance matrix of

each vector given the value of the other without assuming the existence of the

joint density. This result is applied to a characterization of matrix variate

normal distribution.
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1. INTRODUCTION AND BASIC RESULTS
Let X (XI Xm)’ and Y (Y1,...,Yn)’ be two given random vectors. If the

joint distribution of X and Y is an (m + n) variate normal distribution, then

X Y y and Y IX x both have multivariate normal distributions for all

x e Rm and y e Rn (Anderson [1]). Brucker [3], then Fraser and Streit [5],

Castillo and Galambos [4] considered the bivariate case, Bischoff and Fieger [2]

gave a characterization in multivariate case. In these papers the existence of a

joint density was accepted. All the above results can be seen in a survey paper of

Hamedani [8]. In this note without suppose the existence of a continuous joint

density for X and Y we show that if X IY= y and Y IX x both have

multivariate normal distributions with linear regressions and constant

covariance matrices, then the joint distribution of X and Y is a multivariate

normal distribution. This result then is extended to characterize a matrix variate

normal distribution. A result of Gupta and Varga [6] (Corollary 2.1) can be
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considered as a Corollary of this result under some special covariance matrix

structure.

The basic results of matrices and linear transformations used in the proof of

Theorem 2.1 can be found in Halmos [7] or Young and Gregory [8].

WhevectornormweusehereistheEuclideannorm, Ilxll=l
the matrix norm

[[A[[ sup{[[Ax][" x e Rn, ][x[[ 1] =’1 (1.1)

where ; _> ;!,2 > -> ln -> 0 are the eigen values of A’A. In Rn under the

topology corresponding to the metric d(x,y)= [[x-y[[ the set S= (x:xe Rn, [[x[[
=1} is a compact set. Consequently, for every n x n matrix A, [[Ax[[ is a real

valued continuous function on S. Hence, if A is a nonsingular matrix, there

exists so and sl of S such that
0< co [[As0][= inf {[[As[[" s a_ S} <_ [[As[[ <sup{[[As][" s. S}

IIA]I IIAs111 -1, Vs S. (1.2)

2. A CHARACFERIZATION OF MULTIVARIATE NORMAL
DISTRIBUTION

In this section we give a characterization of multivariate normal

distributions based on conditional normality of each vector given the other.

This result will be extended to a matrix variate case.
THEOREM 2.1. Let X (X1 Xm)’ and Y (Y1,...,Yn)’ be two random

vectors. Suppose that X] Y y N(Ay + b,Z’l) and YI X x N(Cx + d,X’2) for

every x Rm, ye Rn, where A isa mxn matrix, C isa nxm matrix,

b Rm, d Rn, Z’l is a m x m positive definite covariance matrix, 22 is a

n x n positive definite covariance matrix, A, b, 21 do not depend on y and C,

d, 22 do not depend on x. Then

(a) p(AC) < 1, where p(AC) denotes the spectral radius of AC.
(b) 21,1C’ AZ2,2, where 21,1 (Ira AC)"1 21, 22,2 (In CA)"1 2.
(c) X N(uI,ZI,I), Y N(p2,22,2), where lZl (lm AC)-1 (Ad + b),

12 ([n -CA)"1 (Cb + d).

(d) The joint distribution of X and Y is a (m + n) variate normal distribution

with covariance matrix Z’ (Zi,j), i,j 1,2, where Z’l,l, Z:2,2 are given in (b),

and Cov(X,Y) AZ2,2 ZI,IC’.
PROOF. From X IY y N(Ay + b,Zl), /y Rn,

x,y(s,t) y(t + A’s) exp ib’s- ,lS (2.1)

/s e Rm, t e Rn, and from YI X x N(Cx + d,Z2), Vx e Rm,

x,y(s,t) x(s + C’t) exp id’t- ,2t ’s Rm, t Rn. (2.2)

Hence

and

{ 1 }X(S) y(A’s) exp ib’s s’Zls ’s Rm,

1 t’ } Rn.qy(t) qx(C’t) exp id’t- 22t, ,’t e

(2.3)

(2.4)
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Substitute (2.4) in (2.3),

x(s) x((AC)’s) exp i(Ad + b)’s - s’(AX2A’ + I21)s ,’s e Rm. (2.5)

For any k 0,1,2 iterating (2.5) k times,

k k
O((AC) ’k s) exp i(Ad + b)’ (AC) ’! s- s’ y. ((AC)’I) (A.X2A’ + Y.1)(AC) ’I

j=0 ]=0
Vs Rm. (2.6)

Let k --e ,,,,, the left side of (2.6) is @x(s), the limit of the right side of (2.6)

must exist for all s R n. We go to show that
k

lim s’ . ((AC)’J) (A,2A + X1)(AC) ’j s (2.7)
k-,, j=0

must exist for all s Rm. Suppose this limit does not exist for a 0 so Rm.
Since each ((AC)’I) (A,2A + X1)(AC) ’j is a nonnegative definite matrix for

j 0,1,2 then (2.7) must approach +. Consider the characteristic function of
the random variable s(’)X

sx(W) X(WSO) rx((AC) ’k wso) exp i(Ad + b)’ (AC) ’j sow
j=0

-lw2 s) ., ((AC)’J) (AX2A’ + X1)(AC) ’j so Vw R, k 0,1,2,
j=0

Hence,

Osx(w) < exp w2s6 y ((AC)q) (A,2A’ + 21)(CA) ’j so (2.8)
j=0

for all k 0,1,2 Vw R. Then for w 0, the limit of the right side of (2.8) is

zero when k --) ,,. Consequently, sf(w) 0 for w 0 and s(:(0) 1. This is

a contradiction since sM(W) is a characteristic function. Therefore the limit in

(2.7) exists for all s Rm. From AX2A’+ Z’I is a symmetric positive definite

matrix, then

E II , c) sll -< E
j=0 j=0

1(’ +21 ll(c’ 12, R, (2.9)

1)hr 0 < 0 inell(’ +  11 F om limit in (2.7)exists

and only if 2 (AC)’]s < Nse R. This is equivalent to lim (AC)q= , and
j=O J

then is equivalent to p(AC) < 1, where p(AC) is the spectral radius of AC. In

this case,
lim qx((AC) ’j s) 1, (2.10)
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k
pl lim
k j=O

and

(AC) ’! (Ad + b) [(/- (AC)’)-I] (Ad + b) (I- AC)-1 (Ad + b),

k
Z1 lira ((AC)’J) (AZ2A’ + Z;)(AC) ’j,

k-oo j=0

(2.11)

(2.12)

x(s) exp i121s S’Xl,lS Vs Rm. (2.13)

Substituting (2.13) in (2.4)

q)y(t) exp z122t - X2,2t, Vt e Rn,

where
/22 Ca1 + d,

2:2,2 C2h,C’ + 2:2.
Then if we substitute again (2.14) in (2.3), we will get

121 A122 + b,

X1,1 AX2,2A’ + X1.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

The joint characteristic function of X and Y is obtained by substituting (2.13) in

(2.2)

pX,Y(s,t) exp 121s + zp2t- [s’2l,lS + t’,2,2t + s’,Yl,lC’t + t’CF,l,lS]

(2.19)

Ws Rm, t Rn, or by substituting (2.14) in (2.1)

x,y(s,t) exp 12s + 122t- [s’Y-I,1S + t’E2,2t + s’AY-2,2t + t’Y-2,2A’s]

(2.20)

Vs Rm, t Rn. Then by the uniqueness of the characteristic function,

AX2,2 ZI,1C’. (2.21)

From (2.18) and (2.21),
AZ2,2A’= XI,1C’A’= 21,1 2J1.

Hence

and from (2.16) and (2.21),
Xl,1 (Ira AC)-1 X1, (2.22)

F,2,2 (In CA)- X2. (2.23)

Theorem 2.1 is proved.
3. A CHARACTERIZATION OF MATRIX VARIATE NORMAL

DISTRIBUTION
Let X be a k x n random matrix, where the row vectors are X’i (Xil,...,Xin),

i=1 k. The notation Vec(X’)=(X X)’ isa knxl random vector. X is

defined to have a k x n matrix variate normal distribution with mean matrix p

of dimension k x n having row vectors 12 ,Pk and with covariance matrix

(’,j), i,j 1,...,k, denoted by Nk,n(p,Z) if Vec(X) has a kn-variate normal

distribution with mean vector (Pl p), where 12i E(Xi), 1 k, and with

covariance matrix X (X/,j), i,j 1 ,k, where Xi,j Cov(Xi,Xj), i,j 1,...,k.

In the following part (R) denotes the Kronecker product of two matrices and

Ik the k x k identity matrix.



CHARACTERIZATION OF MATRIX VARIATE NORMAL DISTRIBUTION 345

THEOREM 3.1. Let X and Y be two random matrices of dimension kl x n
and k2 x n, respectively. Suppose X IY y Nkl,n(Ay + B,,S1) for all y, where

(1)
A isa kl xk2 matrix, B isa kl xn matrix, Z’l =2, isa klnxkln positive

v(1) (Xi,XI) under the conditionaldefinite covar!ance matrix, 4,/ =Cov

distribution, i,j 1,...,kl, and A, B, .S1 do not depend on y, and
Y IX x Nk2,n(Cx + D,X2) for all x, where C is a k2 x kl matrix, D is a k2 x n

(2))matrix, L’2 (Z.,j is a k2n x k2n positive definite matrix, ,S (2)
i, Cov(Yi,YI)

under the conditional distribution, i,j ,k2, and A, B, X2 do not depend on

x. Then
(a) p(AC) < 1.

(b) Z’I,I(C’ (R) I) (A (R) In) 2,2, where

,El,1 ((lk AC)-1 (R) I,,) XI,

Z72,2 ((/k2 -CA)
-1 (R) In) ,2.

(c) X Nkl,n(Pl,,l,l) Y Nk2,n(P2,,2,2) where ,ul (]k -AC)-l (AD + B),

122 (]k -CA)-1 (CB + D).

(d) The joint distribution of X and Y is a (k! + k2) x n matrix variate normal

distribution with covariance matrix (X./,/), i,j 1,2, where

Z1,2 ((A(lk2 CA)-1) (R) ln),F,2, Z2, ((C(lkl AC)-1) (R) In)X1.

PROOF. From the hypothesis of this theorem and from the fact that
Vec((AB)’) (A (R) In)Vec(B’) if B has n columns,
Vec(X’) Vec(Y’) Vec(y’) N((A (R) In) Vec(y’) + Vec(B’),Z:l) and
Vec(Y’) Vec(X’) Vec(x’) N((C (R) In) Vec(x’) + Vec(D’),,E2). Then by Theorem

2.1 and the properties of Kronecker product of matrices (Anderson (1984)) the
results of this theorem are obtained.

The following result given by Gupta and Varga [6] can be considered as a

Corollary of Theorem 3.1 by giving special structures to covariance matrices of
conditional distributions of X Y and Y X in Theorem 3.1.

COROLLARY 3.1. Let X and Y be kl x n and k2 x n random matrix,

respectively, and suppose that
X IY Nkl,n(AY + B, ,El (R) )

Y IX Nk2,n(CX + D, 2 (R) ),

where A: kl x k2, B: kl x n, 21: kl x kl, : n x n, C: k2 x kl, D: k2 x n, X2:k2 x

k2, 2h, X2, positive definite. Then
(a) p(AC) < 1, F,IC’ A,F,2,

(b)

If the condition that X and Y have a joint continuous density is accepted,
the result of Bischoff and Fieger [2] can be applied to characterizie a matrix

variate normal distribution without assuming linear regressions. The result is

given by the following theorem.
THEOREM 3.2. Let X and Y be two random matrices of dimensions kl x n

and k2 x n, respectively, with a joint continuous density function. If the
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conditional distributions of X given Y y and Y given X x are both matrix

variate normal, then the following statements are equivalent
(a) X and Y have a joint (kl + k2) x n matrix variate normal distribution.

(b) 22(x) is constant in Rln where 272(x) is the covariance matrix of Y IX x.

(c) For the mnimal eigen value ;I.(x) of the positive definite matrix E’(x)

,/-2.(,rb/) --)oo as z’--9 for j= 1,...,kin,

where bl,...,bkln is an arbitrary, but fixed, basis of Rkln

Note that without supposing at least a constant covariance for a conditional

distribution, the joint normal distribution does not hold [8].
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