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ABSTRACT. The joint normality of two random vectors is obtained based on
normal conditional with linear regression and constant covariance matrix of
each vector given the value of the other without assuming the existence of the
joint density. This result is applied to a characterization of matrix variate
normal distribution.
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1. INTRODUCTION AND BASIC RESULTS

Let X = (X1,..,.Xm)' and Y =(Yq,..,Yp)' be two given random vectors. If the
joint distribution of X and Y isan (m +n) variate normal distribution, then
XY=y and YIX =x both have multivariate normal distributions for all
xe RMm and y e R" (Anderson [1]). Brucker [3], then Fraser and Streit [5],
Castillo and Galambos [4] considered the bivariate case, Bischoff and Fieger [2]
gave a characterization in multivariate case. In these papers the existence of a
joint density was accepted. All the above results can be seen in a survey paper of
Hamedani {8]. In this note without suppose the existence of a continuous joint
density for X and Y we show thatif XY=y and Y|X =x both have
multivariate normal distributions with linear regressions and constant
covariance matrices, then the joint distribution of X and Y is a multivariate
normal distribution. This result then is extended to characterize a matrix variate
normal distribution. A result of Gupta and Varga [6] (Corollary 2.1) can be



342 K.T. DINH AND T.T. NGUYEN

considered as a Corollary of this result under some special covariance matrix
structure.
The basic results of matrices and linear transformations used in the proof of

Theorem 2.1 can be found in Halmos [7] or Young and Gregory [8].
n N\1/2
The vector norm we use here is the Euclidean norm, "x" = [z xin , and

the matrix norm
||A|| = sup("Ax": x € Rn, "x" =1)= \/71 , (1.1)
where 17 2122...2 4, 20 are the eigen values of A'A. In R" under the

topology corresponding to the metric d(x,y) = "x - y“ theset S={x: xe R", "x"

=1} is a compact set. Consequently, for every nxn matrix A, ||Ax| is areal

valued continuous function on S. Hence, if A is a nonsingular matrix, there
exists sy and s7; of S such that

0<co= "Aso" = inf ("As": se S} < "As" Ssup["As": se S}

=la] = Jasi] =Va . wes. (12)

2. A CHARACTERIZATION OF MULTIVARIATE NORMAL

DISTRIBUTION
In this section we give a characterization of multivariate normal

distributions based on conditional normality of each vector given the other.

This result will be extended to a matrix variate case.

THEOREM 2.1. Let X =(X1,...,.Xm)' and Y =(Y1,..,Yn)' be two random
vectors. Suppose that X1Y =y ~N(Ay +b,%;) and YIX =x~ N(Cx +d,X) for
every xe R™, ye R", where A isa mxn matrix, C isa nxm matrix,
be RM, de R", X1 isa mxm positive definite covariance matrix, 2 isa
nxn positive definite covariance matrix, A, b, £1 do not depend on y and C,
d, £ do not depend on x. Then
(@) p(AC) <1, where p(AC) denotes the spectral radius of AC.

() 211C' = A%, where Zj 1=y - AC)1 X1, 52 =y - CA)1 2.

(© X ~N(u1,21,1), Y ~N(uz,2,3), where puj =Up- AC)1(Ad +b),

42 = (I - CA)1(Cb + d).

(d) The joint distribution of X and Y isa (m +n) variate normal distribution
with covariance matrix X= (%)), i,j = 1,2, where Zi1, 22 are given in (b),
and Cov(X,Y) = A% =21,1C".

PROOF. From XY=y ~N(Ay +b,%1), Vye R",

ox.v(s,t) = ¢py(t + A's) exp {ib's - %s' le}, 2.1
Vse Rm, te R", and from Y|X =x~N(Cx +d,X), Vxe Rm,
ox,Y(s,t) = ¢x(s + C't) exp {id't - %t' Zzt} , Vse Rm, te Rn. (22)
Hence
ox(s) = py(A's) exp {ib's - % s'le} , Vse Rm, (2.3)
and
o¥(t) = ¢x(C't) exp {id't - % t Ezt}, Vte Rn. (2.4)
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Substitute (2.4) in (2.3),
ox(s) = px((AQ)'s) exp {i(Ad +b)'s - %s'(AZZA' + E])s} , Vse Rm.(25)

For any k =0,1,2,.., iterating (2.5) k times,

¢x{s)
k |k
= px((AQ) 'k 5) exp {i(Ad +0)' Y (AO)Ts-35" Y (AO)") (ADA" + 21)(AC)! s},
j=0 1=0
Vs e Rm, (2.6)

Let k — oo, the left side of (2.6) is ¢x(s), the limit of the right side of (2.6)
must exist for all s € R". We go to show that

lim s' i((AC)J)' (ADA + E])(AC)'j s 2.7)
k> j=0
must exist for all s e R™. Suppose this limit does not exist for a 0 #sge R™.
Since each ((AC)")' (ARA + Z])(AC)'j is a nonnegative definite matrix for
j=0,1,.2,.., then (2.7) must approach +e. Consider the characteristic function of
the random variable spX

k )
¢$6x(w) = ¢x(wsp) = px((AC)'k wsp) exp {i(Ad +b) 2 (AC)! sqw

j=0
k . .
-%uﬂ s0 Y, ((AO)Y (ADRA" + 2)(AC)" so}, Vwe R, k=0,12,...
j=0
Hence,
1 k .
19, )| <exp { Fwks) Y ((AO)) (ADA" + Z1)(CA) so}, (28)
j=0
forall k=0,1,2,., Vwe R. Then for w# 0, the limit of the right side of (2.8) is
zero when k — . Consequently, ¢ (.)x(w) =0 for w=0 and ¢s(')x(0) =1. Thisis
S

a contradiction since ¢ (.)x(w) is a characteristic function. Therefore the limit in
S

(2.7) exists for all se R™. From AXA'+ 21 is a symmetric positive definite
matrix, then

@ 3 Jaois| <3 swaoy ana+ sacs
<0 j=0

1l e ‘
s|ana+ 2?2 T oy s|2 vse rm, 29
j=0

—

where 0 < ¢g = inf{ " (ARHA' + 21)2 s": s € S}. From (2.9), the limit in (2.7) exists if

and only if )’ "(AC)"S" < e, Vs e RmM. This is equivalent to lim (AC) =0, and
j=0 e

then is equivalent to p(AC) <1, where p(AC) is the spectral radius of AC. In

this case, )
lim ¢x((AQ)!s) =1, (2.10)
k—oo
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k
= lim 3 (AQ) (Ad +5) = [ - (AC)YI) (Ad +b) = (- AT (Ad +b),

j=0
(2.11)
k , .
S =lim Y (A0 (ARA' + B)AC), 2.12)
k—oo =
j=0
and
ox(s) = exp {iuis - %s'):ms} , Vse Rm, (2.13)
Substituting (2.13) in (2.4)
oy(t) = exp {iuét - % t'Zz,zt}, Vvt e Rn, (2.14)
where
U2 = C“1 +d, (2.15)
$2=C5H,C + 5. (2.16)
Then if we substitute again (2.14) in (2.3), we will get
Uy = Ay + b, (2.17)
Di1=ADA + 5. (2.18)

The joint characteristic function of X and Y is obtained by substituting (2.13) in
2.2)
. L) . ' 1 ) ) 1] L} )
#x,Y(s,t) = exp {1/,115 +ipot -5 [s'Zips +t' Dt +s'L11Ct + ¢t C}J],]s]} ,
(2.19)
Vse Rm, te R", or by substituting (2.14) in (2.1)
¢x,v(s.t) = exp {iyis + iuot - % [s'Z118 + t'Zp ot + s'AZp ot + t'Ezle's]},

(2.20)
Vse Rm, te R". Then by the uniqueness of the characteristic function,
A% =21,1C. (2.21)
From (2.18) and (2.21),
ADppA' = Z11CA' =211-21.
Hence
I =Up - ACYT &, 222)
and from (2.16) and (2.21),
32 =,-CAy1 5. (2.23)

Theorem 2.1 is proved.
3. A CHARACTERIZATION OF MATRIX VARIATE NORMAL

DISTRIBUTION
Let X bea kxn random matrix, where the row vectors are X;j = (Xi1,-.-,Xin),

i=1,.,k The notation Vec(X") =(Xy,...Xp' isa kn x 1 random vector. X is
defined to have a k x n matrix variate normal distribution with mean matrix u
of dimension k x n having row vectors pj,...,ttx and with covariance matrix
(%), ij=1,..,k, denoted by Nin(u,2) if Vec(X) has a kn-variate normal
distribution with mean vector (u1,...,up', where y;=E(Xy), i =1,..k, and with
covariance matrix X = (Z,;j), ij=1,.,k, where Zij= Cov(X,',X,'), ij=1,..k

In the following part ® denotes the Kronecker product of two matrices and
Iy the k x k identity matrix.
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THEOREM 3.1. Let X and Y be two random matrices of dimension ki x n
and kp x n, respectively. Suppose XY =y ~ Nk, n(Ay + B,Zy) forall y, where

. . . . . ..
A isa k; x ko matrix, B isa ki x n matrix, X = )';'I isa kin x kyn positive
.. . . 1) .
definite covariance matrix, ).".,J = Cov(X;, X)) under the conditional

distribution, ij =1,..k;, and A, B, Z; do not depend on y, and
YIX=x~ Niyn(Cx + D, Z3) forall x, where C isa ky xk; matrix, D isa kayxn

matrix, ) = (’;’,(j ) isa kan x kan positive definite matrix, ZiSZ) = Cov(Y;Y)

under the conditional distribution, ij=1,..,k;, and A, B, Z; do not depend on
x. Then
@ p(AC) < 1.
b) I (C'®1y) =(A® Iy) I, where
011 = Uk, - AO T @ Iy) 5y,
52=Uky-CAT® 1) %y
(© X ~Niyn(u1,21,1), Y ~ Nkyn(p12,22,2), where py = (Ix, - AC)'1 (AD + B),

2 = (I, - CA)1(CB + D).

(d) The joint distribution of X and Y isa (kj + k2) x n matrix variate normal
distribution with covariance matrix (%)), ij = 1,2, where

212 = (Allky - CAY) @ In) 22, 2,1 = ((CUk, - ACYN) ® 1) Z1.

PROOF. From the hypothesis of this theorem and from the fact that
Vec((AB)') = (A ® I,) Vec(B') if B has n columns,

Vec(X") I Vec(Y') = Vec(y') ~ N((A ® I,;) Vec(y') + Vec(B"),Z]) and

Vec(Y') I Vec(X') = Vec(x') ~ N((C ® I,) Vec(x') + Vec(D'),Z3). Then by Theorem
2.1 and the properties of Kronecker product of matrices (Anderson (1984)) the
results of this theorem are obtained.

The following result given by Gupta and Varga [6] can be considered as a
Corollary of Theorem 3.1 by giving special structures to covariance matrices of
conditional distributions of X|Y and Y !X in Theorem 3.1.

COROLLARY 3.1. Let X and Y be kj xn and k2 x n random matrix,
respectively, and suppose that

X1Y ~ Ni n(AY + B, Z; ® &)
YIX ~Neu(CX+D,5®d),
where A: k1 xky, B: ki xn, Z1: kixky, @: nxn, C: koxky, D: ko xn, £ ko x
k2, 21, £, @ positive definite. Then
@ p(AC) <1, Z1IC' = AZ,
X (I-AC)V (AD+B) \ ( (k-ACY1 51 Allk,-CA)1 5
© (Y)~ Niatkpn [((lkz -cAYt (cmo)]’[ ] ]

If the condition that X and Y have a joint continuous density is accepted,

C(lk]-AC)‘] P2 (lkz-CA)'] P!

the result of Bischoff and Fieger [2] can be applied to characterizie a matrix
variate normal distribution without assuming linear regressions. The result is
given by the following theorem.

THEOREM 3.2. Let X and Y be two random matrices of dimensions ki x n
and k2 x n, respectively, with a joint continuous density function. If the
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conditional distributions of X given Y =y and Y given X =x are both matrix
variate normal, then the following statements arc equivalent
(a) X and Y have ajoint (ky + k) x n matrix variate normal distribution.

(b) Xp(x) is constant in Rk"l where X(x) is the covariance matrix of YI1X =1x.
(¢c) For the minimal eigen value A(x) of the positive definite matrix Xp(x)
T2A(1h) —> 00 as T oo for j=1,..kin,
where h],i..,bkl,, is an arbitrary, but fixed, basis of Rk'n
Note that without supposing at least a constant covariance for a conditional
distribution, the joint normal distribution does not hold [8].
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