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ABSTRACT. The present paper deals with the study of the solvability of variational inequalities
for strongly nonlinear elliptic operators of infinite order with liberal growth on the coefficients.
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1. INTRODUCTION
In a series of articles Dubinskii [1,2] considered the nontriviality of Sobolev spaces of infinite

order corresponding to boundary value problems for linear differential equations of infinite order

and obtained the solvability of these problems for the case in which the coefficients of the equation
grow polynomially with respect to the derivatives.

Chan [3], extended the results ofDubinskii to include the case ofoperators with rapidly (slowly)
increasing coefficients.

In this paper we generalize the above results to cover the solvability of variational inequalities
for strongly nonlinear operators of the form

Au(x)/Bu(x), x _f (1.1)

where is a bounded domain in R" and

Au(x) -i.o(-)lDA(x,D’u(x)),
Bu(x ist(-)lD’B,(x,D"u (x ))

with more liberal growth on the coefficients.

YI I1, (1.2)

M fixed, (1.3)

2. PRELIMINARIES

Let f be a bounded domain in R"(n > 2) for which the cone and the strong local Lipschitz

properties hold [4].
AnN-function is any continuous map-R Rwhich is even, convex and satisfies (t)/t 0

(resp. +oo) as 0 (resp., +oo). The conjugate or complementaryN-function ofO and its nonnegative
reciprocal will be denoted by and -, respectively [4].

When and W are two N-functions, we shall write W if for any e > 0

Lim t(t) /(t) O

The Orlicz space L.,(ff) corresponding to N-functions q. is defined as the set of all measurable

functions u f R such that
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Let E.,(V) be the (norm) closure in L.,() of L(R)(f2)-functions with compact support in .
The Sobolev-Orlicz spaces of functions u such that u and its distributional derivatives

D’u, ct[ m, lie in L,t,,(ff2) (resp. E,t,,(ff2)). These are Banach spaces with the norm

and they are identified to subspaces of the product

FI L. ()- IlL.

Denote by C(R)() the space of infinitely differentiable functions on ,D() the space C(R)() with

compact support in C and by ’() for the space of distributions on .
We define WL%() as the o(rIt%,n<) closure of D(C)in W"L%() and WE.o() as the

norm closure ofD() in W"L..(9).
The Sobolev-Orlicz spaces of infinite order is defined by:

W**L. (ff) u

_
C(R)(f2) . ,,(D"u(n))dr. < oo

andx g. Moreover there exists a function ht L(g), independent of l, and a sequence of positive

numbers (St) es with lSt < oo such that

sup I&,(x,r,)l hx(x)&.
IU "s;

(A1) There exists a constant Co > 0 and a function h2L(), both independent of l, such that

I0a-(x,,)-z Coioa.]d e h2(x

for all x , R.
() For all N, a.a.x and all distinct,R

Or the following one:

(A1)* For all N, eachA.(x,)is a real-valued Caratheodo function defined on fl x R.
There exist two N-functions .,W. with. .; functions a.(x) in E.() for ] l, inL() for

]] < l; and positive constants c, c2, both independent of l, such that if[[
+ A,

ill tl <1

for a.a. x f and all j R.
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(A2)* There exist functions b, in E.Cf2) for 1 t, in L.() for 1 < 1; function h3 tEL 1()

and positive constants dl, d:,, independent of 1, such that

:.0Aa(x, .),z d ,.o*,(d2)-i.ob,(x),-h3(x)
for a.a. x and all vU R

They are Banach spaces with the norm

Similar definition of WgE..() is obvious. The dual of WgL..() (resp. WgE..()) will be

denoted by W-’E.() (resp. W-’L.()), where

W-’E ()) (resp. WL ()) h ’() h(x)

These spaces are Banach spaces with the norm

The duality of WgL%() and WE.() is defined by

(h,u) :-0 n.(x"u(x

Let 1 xp < . e Sobolev spaces of infinite order are defined by

where a, 0 is a sequence of numbers. We formally define the spaces dual to (a,,p)()via:

,< p p p/p

For more details we may reNr to 1,3,4]. t l,M N,M being fixed. By X and we denote the

number of multi-indices a with a l, al M, respectively.

3. COITIONS ON THE COEFFICIES
To define the operator (1.2) more precisely we introduce either the following set of hypotheses:

() For a le and I1 1=1, each A,(x, ,) is a ratheodory function, i.e., A,(x, ,) is

measurable in x for all fixed R, and continuous in for almost all (a.a.) fixed.

()* in (). For the operator (1.3) we impose the following assumption:

(B1) B,(x, is a ratheodo function defined on x Rh. ere exists a Nnction h in

L() such that:

for some continuous Nnction P,: Rh R and

.(x,..0, x ea, la M
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4. MAIN RESULTS

THEOREM 4.1. Let K be a closed convex subset of W(a,,p)() containing the origin.

Suppose that (A2)-(A3) and (B 1) hold. Let f W-(R)(a,,p’)() be given. Then there exists at least

one solution u K of

(4(u),v-u)+(u),v-u)a(f,v-u) VvK (4.1)

PROOF. Consider a partial sum of order 21 of the series (4.1):

O,(u,), v u,) + (B (u,), v u,) ’, v u,) Vv K (4.2)

where

and

(-)om(x,Ou,), I’1 alA:,z(u,)(x) I-0
(-)I’D’B.(x.D’ut)B(u,)(x) I.,.,

f’- i,.o(-)l’a,D’f, Wt(a,,p’) (ff2)

For the solvability of (4.2), in view of (A2)-(A3) and (B1), we refer to [5] and [6].
Put v 0 in (4.2), and use (A2) and (B1) to get the a priori-bound

Since Ul Wt(a,,p)() implies Ul - Wa(a,,p)() we get from the compactness of

W’(a,,p)(f) C()

the uniform convergence of u(x) u(x) on f as oo. Similarly, by the compactness of

Wt(a,,p)().--,Ct-’(’), forlargeenough and m EN;

we obtain,

Dut(x) D’u(x) uniformly on f as (4.3)

Using the definition of Wo(a,,p)(f)we get u Wo(a,p)(f) and by the closedness ofK, u tEK.

It remains to show that u is a solution of(4.1). For this purpose it suffices to prove the assertions:

Lim(A:,(ut),z) (u ),z) (4.4)

Lim(B (ut),z) (B (u ),z) (4.5)

and

Lim inf(A2,(u,), u,) (A(u),u) (4.6)

Lim inf(B (u,), ut),a (fl (u), u) (4.7)

for all z K.

To show (4.4) we use the inequality:

IAo(x,D’u,)l ,, sp Iao(x,,)l +S,Ao(x,Du,)D%
I ,s;’
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as well as the uniform boundedness of {2ut, ut)} in L 1(), to obtain the uniform equi-integrability

of {A,(x,D’ut)} inL 1() provided that Y S),.(.,I) < oo. Now, in view ofVitali’s convergence theorem,

(4.7) follows.

To show (4.5) we have

fa fa /
const.,,. Ig,(x,O’u,)l Ih,(x)e,(O’u,)l IIh,II

and (4.5) follows from the dominated convergence theorem. Assertions (4.6) and (4.7) are direct

consequences of Fatou’s lemma in view of the uniform convergence (4.3) and the proof is completed.

The above result enables us to give the following theorem.

THEOREM 4.2. Let K be a convex o(W’L,,.(), WE-.()) sequentially closed subset of

W(R)L.o() such that K VI WE(R)o() is cW(R)L**(), W’L.()) dense in K and 0 K. Let

.f (E W-E()be given. Let the hypotheses (A1)*-(A3)* hold. Then there exists at least one solution

u (E K such that:

{Au, v u) (f, v u) . O ’tv K (4.8)

OUTLINE OF PROOF. As in Theorem 4.1, we may consider the auxiliary variational

inequality

:,,,(u,,,), v u,,,) (f’, v u,,,) a: 0 ’’v EK (4.9)

The solvability of (4.9) is a consequence of [7]. Thus, there exists u, tE K solving (4.9).

Put v 0 in (4.9) and make use of (A2)*, we have

where

Hence, there exists a subsequence of u,,, such that u,, u in C**(). By the definition of W**L,t,.(f)
and the o(W**L,.(f), W-*’E.--()) sequential closedness of K, we get u KK. To show that u solving

(4.8) it remains to prove assertions (4.4) and (4.6) of Theorem 4.1.

A similar procedure of Theorem 4.1 may be carried and the proof follows.

EXAMPLE. As a particular example which can be handled by Theorem 4.1 and falls outside

the scope of [1], consider the nonlinear Dirichlet boundary-value problem

,.o ..,(-)’’oa’Selo’u[e-’-o"u) + ul e’"-.,"(x)

where (S)te N is a sequence described in (A1). In fact:

a,,(x,O’u)’’aSFlO"ul"-O"u, I’1 -Il
Bo(x,DC’u u[

By the Sobolev’s embedding theorem, for u Wt(a,,p)()(lp . n), the functionsD’u are bounded

for all]a] I. ThereforeA,,(x,IT andB,(x,I,) areL**(f)-functions and hence (A1) and (B1) follow.

Condition (A2) is obvious, while (A3) follows in view of the inequality

Ixl"-,-lyl"-x,/(Ixl""/lyl"-)>0 for x
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Thus the hypotheses of Theorem 4.1 are satisfied. Our example falls outside the scope of [1], for

the term lu e i’l does not verify the polynomial growth condition of [1].
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