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ABS’I’RA(’.T. In this paper, we study initial value problems for couph’d second order delay" differ-
cntial equations with variable coefficients. By means of the application of the method of st,ps al
the method of Frobenius, the exact solution of the problem is constrcted. Then, in a

toain, a fitite analytic solution with error bounds is provided. C, iven an admissible error t, we

give the number of terms to be taken in the infinite series exact solution so that the approximatio
,.’freer be smaller than in the bounded domain.
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1. INTRODUCTION.
In tnany fields of the contemporary science and technology systems with delaying links are fften

met ad the dynamical processes in these are described by systems of delay differential equation,s,
Belhnan & Cooke [1], Driver [3], Marchuck [11], Okamoto & Hayashi [13]. The delay appears
in complicated systems with logical and computing devices, where certain time for information
processing is needed.

The theory of linear delay differential equations has been developed in the fundamental nono-

graphs Bellman & Cooke [1], Driver [3], Hale [10], Myshkis [12], Pinney [15]. Analytic soh,tions

of some linear systems of delay differential equations have been investigated by Cherepennikov [2],
J6dar & Martin [8], J6dar & Mart[n [9], Rodinov [16].

In this paper, we consider initial value problems for systems of second order delay differential
equations of the form

X"(t) + A(t)X’(t) + B(t)X(t) + B,(t)X’(t- w) F(t), > 0
(1.1)

x(t) (t), c [-,o], ,,, > o
where A(t) and B(t) are analytic C valued functions on the positive real line, B(t) is a C

valued continuous function, the unknown X(t) as well as F(t) and G(t) are C valued functions,

with F(t) continuous in > 0 and G(t) is a continuously differentiable fimction in f-w,0].
Problem (1.1) can be transformed into the equivalent extended first, order system
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z’() +
0 0
0

Z( .,) + +z()=

,’()
z(/)

I,tl. tlis al)l)roa(’l las sonw (lrawl)a(’ks, s,(’l as the increas(’ ()1’ tl(, (’()tq)utatiotal (.,,! atl l’
la(k of (,xl)licil.t,(,s (I,,e to tl,(, rolaliosti !) .Y(I) [/, 0]Z(t).

The aim of 1,]is paper is twofold. First of all we (onstrl(’l, a series soltti() t)[ t)rolh’ (I.I)
I)v (’as of a ,ml, rix nel, ho(i of lrrol)(’is and tile nel, ho(! ()f sl,(,l)S but ([(’alig (lirr(llv will

al)l)()xiale soitti() wh(’ [nu,. (. + l)w] a(i ++ is a l)ositiv( it(’ger. For tle (’OllSl.alll corlli( i(’l

.&lath [] a(! .JtS.iar &: Nlarfl [9] avoi(ling tl(’ transfor.mtiot, o[ ,1(" prol)le il,o a ’(lialt’
(’xl.r(le(! first ()(l(’r syst(’tu.

This 1)aper is organized as [ollows. In serLion 2 we ronsLrurt, a series solution of probl(,. (1.1).
I’]rror aalysis of Lhc finiLe trunraLed series in terms of the da,La, for given inLerval [ntv, (+

2. A ,";I’]I{IES S()I,I)’TION OF ]’liE PROBLEM.
We begin tllis section considering the differential sysLem

x"() + A(t)X’(t)+ i(t)X() O. (’2.

Let us spl)ose that A(t), B(t) are C valued analytic f,nctions in I1 <. with 0 < +
&lId

A(t) y A,,/, ’, B(I)= B,t"’, It, < ,, (’2.2)
n>O n>O

where A,, B, are matrices in C’’’. From the Cauchy inequalities, there exists a positive constant
L. such that

IIA,,llp

_
L, IIg,,llP

_
L, 0 < p < ,, _> 0. (’2.:{)

Let us look for Cx solutions of (2.1) of Lhe form X() >0 C,,/,, where C,, is a. matrix in
Lo be deLermined. Assuming Lhe convergence of X(I) and of its formal derivatives

X’(t) (n + 1)C,,+,t", X"(t)- (r + 2)(, +
n>O n>O

and substituting the expressions into (2.1), it follows that the coefficients C, must satisfy

Equating to zero the coecient of each power one gets

(n + 2)(n + )C,+ ((j + 1)A,_,Cj+, + B,_,C), n 0 (2.4)
3=0

where C0, C are rbitrary matrices in Cx Taking norms in (2.1) and using (2.3). it follows
that
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< ’;=,, ((9 + )IIA,-IIII(’.,+,II + I1[,-.,1111C511) _< =0 (LIIC,+,II + ’-=, I1(-11) <
< ’ C’;:o ((J + )11",+,11 + II",ll)p + LII" +,lip.

W(’ l,av(" ad(le(I 11,(. last. t(.rn tr the sake of later coveience. Now, let us introduce the sequece
of i)(,siiv(’ ,,,t,,,I,ers {3.},0 (lefi,,ed I)v to ](o, , (:,, and for ,, 0, %+2 is defined by the

(n + 2)(n + 1)i,,+2 ((j + 1)39+, + %) p + L"t,+,p, ,, > O.
3=0

IIC, < %, , >_ o.

For n > 1. we may write (2.5) in the form

a,ld for n > "2,

L

pn(n + 1)7,,+,

L n-2
o.-2 Ej=o ((./+ 1)73+, + 7)p3 + Lp(nT,, + "7,,-,)+ L3’,p

n(n- 1)7, + LnT,P + L/=P2,

by virtue of (2.6).
Hence

and

[n(n- 1)+ Lnp + Lp]’7,.,
"7,+ p(n + 1)n

n _> 2

lim
[n(n- 1)+ Lnp + Lp2]’7,

Itl Itl, P (0, a).-+oo p(n + 1)n’)’, p

Thus for any pair of starting matrices Co and C, the series X(t) ,>0 C,t" with matrices C,
defined by (2.4) is absolutely convergent in It[ < a.

Let us denote by Xa(t) the solution of (2.1) constructed by the above procedure with C defined
by (2.4) with Co I, Ca 0, and let X(t) be defined in the same way with Co 0, C 1.
Then, from Lemma of J6dar & Legua [7] and the definition given in Jddar & Legua [7], the pair
{Xa(t),X(t)} is a fundamental set of solutions of (2.1) in Itl < a, and the set of all C solutions of
(2.1) in Itl < a, is given by

X() X,()C + X(t)D, C,D

Let H(t) be a continuous C function in Itl < a, and let us consider the non-homogeneous
problem

X"(t) + A(t)X’(t) + B(t)X(t) H(t), Itl < a.

From Lemma of J6dar & Legua [7], the C,x" valued function W(t) defined by

(2.7)
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iu(t) C <,./ <’

Lcl us look for a i)artictlar solutiot ()f (’2.7) of the form

Z(t) X,(I)D,(t) +

Hence Z(t) satisfies

0
Itj<a’//(t) (’>10)

X(t)D’,() + .()D.() 0,

X[(t)D’(t) + X(I)D’(I) ii(1).

Z"(t) + A(t)Z’(t) + B(t)Z(t)

[X{’(t) + A(t)X; + B(t)X,(t)]D,(I)+

+[X’(t) + A(t)X’ + B(t)X=(t)]D(t) + ]](1)= H(t),

Z(O) D,(O), Z’(O)= D2(O).

A solution of (2.10) for D,(t), D(t), satisfying D,(0)= D(0)= 0 is give,, by

D,(t) V,(x)H(x)d.r, D:(t)- l.(x)lf(x)dx.

Sin(’e (2.7) is linear, its genera] solution is given by

X(t) X,(t)C, + X(t)C + Z()

Xl(t)[C1-- fl V12(x)H()dz] - X2(’)[C2 2f_ f)V22()H(x)d
where C, C are arbitrary vectors in C. Given fixed initial conditions

X(0) G,, X G2, (2.12)
the unique solution of (2.7) satisfying (2.12) is given by (2.11), where the vectors C,, C2 must

satisfy G X(0) C and G2 X’(0) C2. Thus the following result has been established.

THEOREM 1. Let us consider equation (2.7) where A(t), B(t) arc analytic C valued func-
tions with power expansions defined by (2.2) and let H(t) be a continuous vector function. Let
{X,(t),X:(t)} be the pair of C analytic solutions of (2.1) satisfying X,(0) I, X(0) 0,
X2(0) 0, X(0) l, and let W(t) and V(t) be the Cx valued f,,nctio,,s defined by (2.t) and
(2.9) respectivel.v. Then, the unique solution of the initial value prol)!em (’2.7). (2.12), is giw,n I)y
(2.1 l) where (; G,, C G.

Let us consider the delay differential system (1.1) written in the form

(2.11)

valued functions satisfying

[ D’,(I))IV(t) D’(t
Note that (2.10) means that

where {X,(t),X2(t)} is the above fun(lanwntal set. of solutions of (2.1) and l),(t), D2(t) are C’
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X"(t) + A(t)X’(t) + B(t)X(t) F(t) B,(t)X’(t w), > 0 I (2.13)
x(t) (;(t), e [-,,0]

where A(t), B(t) are analytic C valwd finctions on the real line, and note that for [0, w],
the right-hand side of (2.13) is a known continuous function. Let {X,(t), X:(t)} be the fundanwntai
set of solutions of (2.1) on the real line provided by Theorem 1, let W(t) and V(t) be defined by
Theorem and let us introduce the matrix kernel K R. x C"x’, by the expression

K(t,z) X,(t)V()+ X(t)V(.r), (2.14)
and note that from the definition of V(t) and W(t) one gets K(t,t) 0 for E .
Lel H(z) be a continuous C’ value,! function and let K(t,x) be defined bv (2.14), hen we

i,t,oiucc the operator defined by

(WH)(t) K(t,x)H(x)dx, O. (2.15)

It is clear that is a linear operator, i.e.,

W(aH + J) a WH +/3 WJ.

Ilcrc and below, when possible, we will drop the dependence on for the sake of brevity.
From Theorem 1, the solution of (2.13) can be written in the form,

x ,v+ w(e- l,X’,)= ,v + we- W(B,X’), (2.16)
where

x’,,,() x’(- w)

atd

x(t) x,(t)c(o) + x(t)c’(0), >_ 0.

Note that (2.16) is a feedback expression that provides the solution of (1.1) in an interval of
length w, in terms of the solution in the previous intervals of length w. In order to find a closed
form expression or the solution of (1.1) in any interval [nw, (n / 1)w]. we introduce a recurrent
sequence of integral operators. If H is a continuously differentiable function in [-w. +oc[, we define
for a positive integer k,

W, (B, H) W(B, H’),
and for k> 1,

(’I/V}(BIH))(t)- ’I/V(B,(VV’,_,(, H))_,,,)()

f K(t,x)B,(x)(W’ )dx._,(1 H))(- w

oAs above, (W_a(B,H))_,o(t) -(W_,(B,H))(t- w). Now, we prove that the solution of
(1.1) can be written in the compact form
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Indeed, if 6 [0, w], from (2.16) and (2.18) it follows that

X , + 14;( F- B, G’_,,,)= . + 14;F- )’V, (B, C_,).

Thus (2.20) holds for n 0. Let us suppose that (2.20) is true fort [nw, (n + l)w] a,d let
take [(n + 1)w, (n + 2)w]. From (2.16) and the induction hypothesis, we can write

X X + ),V(F- B,X’_)=

0 IX_ + (I/YF)_, + E=,(-1)()’Y(B(14F)_))_,+X +14) (F- B,-

+ E=,(-1)+’I,(B,(1/Y:(B,X_,))_,) + (-1)"+Id;(B,(14)’+,(B,G_,))_)
-’n+l )k-, + WF / ,=, (-1

(2.21)
X--n++ .=,(-)W(B,X_)+ (-)"+W,,+(B,a_).

Note that (2.21) coincides with (2.20) replacing n by n + 1. Thus the [ollowing result has been
proved.

THEOREM 2. Let us consider the problem (1.1) under the hypothesis of Theorem 1. Let
{)4;}_> be the sequence of operators defined by (2.18) and (2.19) where B,(t)is a C valued
continuous function and let K(t,z) be defined by (2.14). If X(t) is defined by (2.17), then the exact
solution of (1.1) in the interval [nw, (n + 1)w], for n > 0, is given by (2.20).

REMARK. It is easy to show that the integral operators )4; defined by (2.18), (2.19) can be
written in terms of the data in the form

(I/Y(B, H) )(t)

f fd.-,.., f),+,-,o [K(t,t,,)B,(t,,)7-t(. "(t, w,t,_,) (2.22)

B(t+,) K(tv+, w, v)B, (t,) H(t,)] dt,dt+,...Ot+
where p n k + 1.
From a computational point of view, the solution provided by Theorem 2 has the drawback that

the expression of K(t,x) and X(t) is given in terms of infinite series involving X(t), X(t) and the
block entries of V(t) defined by Theorem 1. In the sequel we construct finite approximate solutions
of (1.1) obtained by truncation of the quoted infinite series.

3. FINITE ANALYTIC APPROXIMATE SOLUTIONS AND ERROR BOUNDS.
Let Xa(t) and X(t) be the pair of analytic series solutions of (2.1) given by Theorem l,

let > and let

-boo -boo

X,(t)

_
C,t", X.(t) D,t", 0 < < +cxz,

n=O n=O

X,,(t) C.t", X2,(t)= D.t",
n---O n=O
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.t;(t) x,,(t)c;(0)+ (3.11

where t’’2(.r and V2’(x denote the blo,’k e,tri,.s of the iversc of the i-th partial s, of I|’(r).

(s,,,, b,,ow (3.:))-(3.2)).
Note thai fro. Lenma of.I6lar & Legua [7], tlc matrix fictio W(/} detncd Ix (:2.8) sa! islies

w’(t) c()w(t), w(o)= z, c(t)=

l.(’t ,q’q I)e the positive constmlt

,q’q= cxp((q+l)’’’

I:r,m l"lett [,1, i).1 1’]], it, follows that

IIW(t)ll _< .%, IIW-’(t)ll- IIV()ll _< .%, e [0,(q + ),,]
all(]

-,,.,{llX, (*)11, IIX(t)ll, IIX(t)ll, IIX(t)ll, IIU,(*)ll, I1%()11} _< s,

t [0, (q + ),,,].
From the Cauchy inequalities, it follows that

IIC,,ll _< .-%[=(a / 1)w]-’, IID,,II _< ,q[Z(q + ])w] -l, rt. l, [0, (q-I- l)w]

ad r be th(" positive constants defined by

r z(q+ l)w, z > 1.

Then, for 0 _< _< (q + 1)w, it follows that

IlXl(t) Xl.(t)[I / t" /E,,=,+, c,, II-< E,,=.+, IIC,,lll*l _<

Analogously,

S’q
z’(z- )

E,q. (3.6)

En=, ,C,,e’- --< E,,=, llC,,lll*l"-’ <_

< 4.00 Sqltln-I 4-00 (rt_[) )n-,=, n < + (q+),,_,n <

S(z-)(,+z-)< Sqr (z-1)z " (z-1)2z (q+l)wzi-1

e [0, (q + 1)w],

where

IIX;(t) x;,(t)ll _< D,q, e [0, (q + ])w],
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z(" l)2(P + l)
(q + l)w

,%(+ )(,: + +)
(q + ),,,z’-

From (2.17), (3.1), (3.4), (3.5) and (3.6), it follows that

Ila’(,) .’,.;(t)ll _< (IIG(o)II + Ila’(o)ll)&,,, [o.(q + ),,].

IIX(t)ll < (llC(O)ll / Ila’(O)ll)S,,, tc [o,(q / i),o].

Si,,,’c {!,} a,,d {1),,} (lefi,,e,! I,y (3.5) a,,(i (3.?)respectively. co,,ve,’ge to zero as, +. h’t
us choose t0 as the first positive integer satisfyi,g

E,q + D,q < (2Sq)-’, >_ o. (3.8)

If we denote by W,(t) the i-th partial sum of W(t), from the l)(’,’turi)ation Lernma Ortega [14.
I).:32] and tlJe inequality

IIW(t)- w,(t)ll _< 2(E,q -}- Dtq) < ,.q’-’ < IIW-’(,)ll-’,
it follows that W,(t) is invertible and from the Banach Lemma Ortega [14. p.32]

IIW-’(t)ll _< &[ -2Sq(E,q + D,)] M,q,

wh

IIW-’(t)- w,-’(t)ll _< 2,%(E,q + D,q)M,q. C [0, (q + l)w]. (3.1 i)

w,-’(t)

Thus the approximate kernel K,(t,x) given by (3.2) for > io, is well defined for 0 < < (q+ i)w,
in the sense that W,(t) is invertible for > i0. Then, we can define

(W’H)(t) K,(t.x)H(x)dx, >_ O, >_ (3.13)

W,,(B,H) W’(B,H’),

(W.(B,H))(t) VV’(B,(VI;’_,,,(B,H))_,o)(i)=

f K,(t,z)B,(z)( :_,,,(B,H))(x w)dx k > 1.

In accordance with (2.22) we can write for k n p +

(W,,(B,H))(t)

fd rt’-"" f’+’-" b-K If’, (t,, w,t,,_,)...

---B,(tp+,) K,(t+, w,t)B,(t)H(tp)] dtpdtr+, .dr,,.

Note that from (3.3), (3.9) and the triangular inequality, it follows that

IIw;(t)ll _< IIW(t)ll / IIW(t)- w,(t)ll _< & /

C [0,(q + l)w], > z0.

(a.5)

From (3.15) and taking into account that
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W,(I)
.\’,,(z)

il’

_
o. 0 _<

_
(q + l)w, it follows tlat

-,-.{llx,,(z)ll, IIx,(z)ll, IIx,()ll, IIx,()ll} .% + s’;-’
()1l’rwisc, ote tlt from the definitio of K(l,.r) and K,(I,.r) given by (’2.11)ad (3.2)r’.,,l’c-

li,l, at,l t’rot (:1.,I) ad (:i.16). it follows float

II.L(z)ll < (llc;(0)ll / Ila’(0)li)[.% +

[o, (q + =),], .,. [o, (q + ),,,],, > ;,,.
l,et s introlce the constants g, f 6 defined by

,,,-.,{llC;(.)ll, -,, < _< o} , ,--.{llF(t)ll, 0 < < (q + ),,,} -.f,

,,,-.{IIB,()II, 0 _< _< (q + ).,o} b,,.

F,’o,, (;radshtevn [6, p.620], it follows that

t fot,,-u, [t,,+,-,, dl,dlp+ dt,,
,o (n-p+l)!

In particular, for (n + 3)’to we have

(,,+),,,/t,,-, /t,,+,-,dZpdtv+, dl,,=
Jo Jo (n p +

From (2.22) and (3.14) if k n p + 1, t,+ and p E , we ca write

(, .,)[ (... p +

(n + 2)(p + ),
lnp.

(W(B,H))(t) (W,(B,T))(t)

f f.-w...f+,-w ({[K(t,t,,)- K,(t,l.,,)] B,(t,)

B,(tp+l) O K,(tp+, w, tp)B,(tp)T(tp)} +

+ {K(t, t,,)B,(t) o__T. /(o"(t,,- w,t,_,)... B,(t+,)o,,+---- K(t+, w,t)

B,() [H(t,,) T(t)l})dtedtp+,...at,,.
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,, ,,,,,.,{ll’r(.,,)ll, p,,, <_ <_ (p / !).,},

(3.18)-(3.20) it, follows that

IIW,(B, tt W,,( B, T)II <

q ’ M,,)

If p 0 and it 7’: (; the expression (3.21) takes the

where

IIW,.+,(B,(;-,.) ,,+,.,(& (;-,.)11 -< p

(3.21)

where

[(S, + ,5’-’)" +, (n=v(5’n + S’)M,n)+ E,,v_, (n=v S) +

Taking H (WF)_=, T (W’F)_= and ,,sing that f E w,{p+ 1)w], from (a.a) ,ha (a.7),
it follows that

II(WF)-.,- (W’F)-=II 5

na fom (3.) na (3.=7),

II(W’F)-=II -= IIK,(- =,)llllr()ll Z
(3.’22)

< =(&-, + -’ )M,,.-,L-,-1

From (3.21) and (3.22) we can write

IIW.(B,(W)_=)- W.,((B,(W’)-=)II (k,,,

e.,, 2"+’.o(Ila=o)[-....+, (I1Lo(& + &-’)M,) +

If we consider H X T XL,, from (2.17), (3.1) and (3.5) fo,’ E , (p + l)w]. it fi,llows
tltat

lla,. a:,-.,ll (llG(0)il + IIG"(0)II)E,,,-,.

and from (3.21) we can write
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whet(

U,,,, ")’-’+ i,wpwf,_ h=p

If we dettot,e by X,(/) for Zo the approximate solution of (/.1) defiued i [nw, ( + l)w] by

from (2.20), (3.23) and the previous comments of Section 3, it follows thai the error X(/)- .,(1)
of the approxinatio X,(t) with respect to the exact solution X(/) of (1.1), for *o ,rod

Ilx(t)- x,(t)/I

(llG’(0)ll + IIG’(O)II)E,,. + (, + t),oL%,. + p.... + k’=,(’%., +
Thus, for a fixed interval [noW, (n0 + )w] and an admissible error , to construcL a finite analytic

approximate solutiott whose error be smaller than in [noW, (no + )w] i is sufficient to take io
such that

(llC(O)ll + IId(o)ll)E,,,, + (, + ).,-,,.f,,,,,, + ,o,,,, + (u,,,, + y,,,,) < .
k=l

Hence the following result has been proved.

(3.25)

THEOREM 3. Let us consider the problem (1.1) under the hypotheses of Theorem 2 ad let us
use the previous notation. If i0 is the first positive integer satisfying (3.8) and X,(t) is the function
defined by (3.23) for > i0, then X,(t) converges to the exact solution X(t) of (1.1) as +, for
any > 0. If no is a positive integer, then the error of the approximate solution X,(t) with respect
to the exact solution X(t) satisfies (3.24) for E [now,(no + 1)w] and _> i0. Given an admissible
error e > 0, taking _> i0 satisfying (3.25), one gets an approximation whose error is bounded above
bye for

_
[noW, (no + 1)w].
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