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ABSTRACT In the present paper, we consider a problem of distribution of sequences in the interval

[0,1), the so-called ’Pr-sequences’ We obtain the best possible order O(N-(logN) /’2) for the

diaphony of such Pr-sequences For the symmetric sequences obtained by symmetrization of P-
sequences, we get also the best possible order O(N-l(lo9N) 1/.2) of the quadratic discrepancy
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INTRODUCTION
Let a (x,),:0 be an infinite sequence in the unit interval E [0, 1) For every real number

x E E and every positive integer N we denote AN(a, x) the number of terms x., 0 < n < N- 1.
which are less than x

The sequence is called uniformly distributed in E if for every real number x E E we have

limN_,AN(cr; x)N-1 x.

The systematic study of the theory ofuniformly distributed sequences was initiated by Weyl
A classical measure for the irregularity of the distribution of a sequence a in E is its quadratic

discrepancy TN (or), which is defined for every positive integer N as

TN(O’) (f AN(a; x)/N- x 12dx) 1/"

The irregularity of distribution with respect to the quadratic discrepancy was first studied by Roth

[2]
In 1976, Zinterhof (see [3,4]) proposed a new measure for distribution, which he named diaphony

The diaphony FN(a) of a is defined for every positive integer N as

2 h-9 N-1 (a;h)FN(O-) -’]h=l SN /2

where

SN(O h) N-1’=0 exp(27rihx,)

signify trigonometric sum of a

We note that the diaphony ofa can be written in the form

FN(O-) (N- N-1

where

g(x) --7v2 (Zx 2x + 1/3)
It is well known (see [5], p 115, [4]) that both equalities

limN_, TN(o) 0 and limu__, Fy(a) 0

are equivalent to the definition that the sequence cr is uniformly distributed in E
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2 Using the well-known theorem of Roth [2] it can be proved (see Neiderreiter [7], p 158;

Proinov [8]) that for any infinite sequence a in E, the estimate

TN(a) > 214-N-(logN) /’2 (1.1)
holds for infinitely many integers N The exactness of the order of magnitude of this estimate was

proved by Proinov ([9], [10], [11])
Proinov [8] proved that for any sequence a in E the estimate

FN(Cr) > 68-1N-l(logN) 1/2 (1.2)
holds for infinitely many N.

From (1.1) and (1.2) becomes clearly that the best possible order of diaphony and quadratic

discrepancy of every sequence a in E is O(N- (logN) 1/2 ).
2. A SEQUENCE OF r-ADIC RATIONAL TYPE.
2.1 CONSTRUCTION OF SEQUENCE OF r-ADIC RATIONAL TYPE

In this part we generalize Sobol’s ([12], [5], p 117, [13], p. 23) construction of sequences of binary

rational type
Let r >_ 2 is fixed integer. We consider the infinite matrix

(vs,3) vm v (2.1)

where for every s, j 1, 2,..., vs,3 {0,1,..-, r- 1}. We suppose that in every column, the

quantity of vs,j, which are different from zero is a positive integer number, i.e., vs, 0 for j sufficiently

big Such matrix we shall call guiding matrix

To every column ofthe matrix (2 1) corresponds a r-adic rational numbers

V 0, v, v,. .v,j. (s 1, 2. (2.2)
The numbers determined in (2.2) are called guiding numbers.

We signify No N U {0), with N the set of natural integers.
A sequence of r-adic rational type (or RP-sequence) is a sequence ((i)),:0, which is generated by

the guiding matrix (v,j) in the following way: If in the r-adic number system

i- 8mem_ 1

then in the r-adic number system

where for j 1, 2, , m
Wj eV VfVf "V, (2.3)

e terms

and is the operation ofthe digit-by-digit addition modulo r of elements ofZ {0, 1, , r 1}.
A RP-sequence (o(i)),=0, which is generated by the guiding matrix (v,l) can be also construct:l

by following the three mentioned below rules

() (0) O.

(2) If/= r(z e No), then qo(i) Vs+l.
(3) If r < < rs+l, then o(i) e+ (r)*(i- e+ r), where es+ is higher significant digit

in r-adic development of and e+ (19(rs ys*+1Vi*+1" "* Vs+1.
es+ terrr8

Obviously the operation has commutative and associative property.

We shall prove that the two definitions of the PR-sequenes are equivalent.

Let us suppose that the first definition is valid for RP-sequence.
(1) If 0, then obviously (i) 0.

(2) Ifi r (s N0), then p(i) V+I.
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(3) Let us assume that r < < r+1 and (%+1%-..e)r Since the operator is

commutative and associative we have

(i) O, ((1 V1)*" "(ca V))*(%+1 Vs+I).
Since Vs+l (r) and %+ (es e el)r then (i-
). Finally (i)= %+l(r’)’(i e,+ ). The three roles in the second definition for RP-

sequence e proved.

Reversely, let the second deflation for PR-sequence is valid d is given positive integer. Then

there ests uquely positive integer s that r S < r+1. We shall prove deflation by induction on s.

Ifs 0, then I < r and

(i) iv()’(0) 0, ivy.

We make inductive supposition that for some s N and eve integer i, r-1 S < r deflation holds.
Let us assume that r S < r+a and (e+% el) From role 3 we have

If we denote j=i-%+l r, then j= (e e_...el) d r-l j < r. Then by inductive

supposition

(j) 0, (elY,)" "(e,).
By role 2, (r) +1 d we have

(i) 0, (el)* *(%)*(%++).
Deflation holds for eve positive integer .

In the follong lena we ve a prope ofthe nctions .
LE 2.1. Let (vo) is an bitr iding matrix, d ((i)),0 is RP-sequenee, weh is

generated by (v,s). Let v, m, n be integer numbers such that v No, 0 n < r d m O(mod
r"). Then we have

(+) ()’().
The proof ofthe lena is obvious.

For eve integer a Z we define the oy integer, weh is a lution ofthe equation
a + O(mod r).

If =0,12. "or, where, for r=1,2,. .,t oZ, then we dee

0,12-" "t.
2.2. SEQNCES OF r-ICTIONTE,CH P-SEQNCES.

The theo of the P-mquenees was first studied by Faure ([14];[15]) d gener by
Yeideneiter ([ 16];[ 17]).

A r-adie element inte is inte

t, [(- 1)/,j/),
in weh I S j S r, fory imeger m.

Let N r. We shl1 the net

X (z0, z, ., zu_)
be a net ofeP (or P-e), if eve r-adie element inte l,s, hating lenh 1/N ntn
one point ofthe net X.

A r-adie section of the sequence X (z),0 is a set of tes z,, th numbers i, mtisng the

inequities
kr < ( + 1)r,

for eve integers k and , such that k 0, 1, 1, 2,

The sequence (z,)io is eled a sequence of te P (or P-suenee) if eve r-adie section is a

P-net.
OM2.1. Let in the iding mat (v,S) eve v. 1 d for j > eve v,s 0, i.e.,
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I W21 U31 U71
0 1 V32 V./2

(v,.3)
0 0 1 v33

0 0 0 1

Then the corresponding RP-sequence is Pr-sequence
PROOF. We choose arbitrary r-adic section of the RP-sequence (o(i)),0, the length of which is

r’. We write the numbers i, belonging to this section in the r-adic number system:

cucu_ "cm+lemem-1 "el, (2 4)
where ck are fixed and ek are arbitrary r-adic numbers

We choose now an arbitrary r-adic interval l, with length r-’- In the r-adic system this

interval is determined by the inequality
O a a2 a, < x < O a a2 "am +0, 1,

rn- zero8

where al, , a, are r-adic numbers

We shall prove, that for every choice of the numbers ck and ak among the numbers i, in the form

(2.4) there exists exactly one i, for which o(i) E l.

In the r-adic number system we write

y)(i) O,g,,1L.2 g,.3

From (2.3) we have

g,,3 elV,3 ernVn,3Cm+lVn+l,3
where the sense ofekvk, is the same as in (2.3).

The condition o(i) E is equivalent to the following conditions

g,o=a, forl_<j_<m.

We get that for each j, 1 < j < rn

g,../ (elVlo. emVm,3) (Crn+lVm+l,3" .*C#V#,3)
from which we get

ev’,,. *e=vm, aj(cm+v:.+,, ....c.v.,,) (1 < j < m)
Let us call f the fight-side of (2.5) for 1 _< j _< m. Having in mind that for s 1, 2, , vs,s 1 and

in case j > s, v,, 0, the system (2.5) become

ev;oe3+lV+l,... *emv,, L(1 _< j < m).
In this system the unknowns el, e2, ", ern are successively so determined that it has only one

solution.

The theorem is proved.
In the following lemma we shall show some property of Pr-sequences.
LEMMA 2.2. Let N r" where u E No. For every guiding matrix (v,o) in which v,,, 1 and

v,, 0 for j > s(s 1, 2, and for the RP-sequence (o(i)),__0, which is product of (v,,j) we
have

{o(i): 0 < < r"} {fiN: 0 _< j < N} (2.6)
PROOF. We shall make the proof by induction on u. If u 0 and u 1, then we make directly

examination.

We make inductive supposition, that for some u N the equality (2 6) is true and for
j 0,1, .,r- 1 we consider the multitudes A3 {o(i)’jr < < (j + 1)r"}. Then obviously

A U: A (2.7)
where A {o(i): 0 _< < r+l}.
We consider that j 0. By the inductive supposition

A0 {o(i): 0 < < ,} {r/,+" 0 < , < ,"+,, 0 (,od )}
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Let us now consider that 1 < j < r 1. We shall prove the following equality
A {m/r"+L 0 < m < r+’, m =_ j (rood r)}. (2.9)

Let j, 1 < j < r 1 is fixed integer and consider that jr" < < (j + 1)r". Let us represent in the
formi=jr"+k,whereO<_ k<r.
Then by Lemma 2 we have

It is obvious that

Let us put

)(i) (jr")*o(k) (2.10)

(jrv) Y;+l*+l *Vv+l (2.11)
j- erms

(jrv) 0, Wv+I,lWv+I,2" "Wv+I,v+I.
From (2 l) is clear, that wv+l,.+l j. Let k has r-adic development k k.k_l kl. Then

() 0,(kY)’. .’(kV)
o(k) 0, aoe .a, where a {0,1, .,r- 1},s= 1,2,- ,) (2.12)

From (2.10), (2.1 l) d (2.12) we get

(i) 0, (aw,+l,1) (aw+l,)j O,bb2. bj (2.13)
en0k<r, then0 (bib2. .b)<rdom(2.13) wegetthatforljr-1

A {(i): jr < (j + 1)r"} (m/r"+LO m < r"+,m j (rood r)}
The inequalities (2.9) are proved.
By induction on the lena is proved.
LE2.3 Let ((i)),o be a P-sequence. Then for eve No holds the equity

{(m + j)" m O(mod r"), 0 j < r}
{(m) + p(j)(mod 1)’m O(mod r), 0 N j < r} (2.14)

PROOF. Let us consider that m kr, for some positive integer k. The equNity (2.14) is

equivent to the equity

{(m + j): m O(mod r"), 0 j < r}
r-1-1

t=o {(m + j)’m O(mod r"),lr j < (l + 1)r} (2.15)

First, we shN1 prove that for eve fixed l, 0 r-1 ests uNquely l" 0 l" < r"-, such that

{V(+j):= ,t j < (t + 1)t
{(m) +(j)(mod 1):m kr",l’r j < (l" + 1)r}. (2.16)

Let k (kk_l k). Then we have

v() 0,r. gn+
where for 1 N n + u g h=l khVh+,,, (rood r).

Let 0 g < r- be fix integerd (/-1 l). Then lr (/-1 ll 0).
en j is such imeger that lr j < (l + 1)r, we have j (l_ lllo)r where l_, ,1

e fix integers d l0 tes r different vNues in the t {0, 1, r 1}. t (j) 0, a .a,
where

-1 (rood r)a l0 + h=l e Vh+l,
-1 (d r)l + h=eh Vh+l,e

av-1 1-2 A- l-i v, -1 (rood r)
av Iv-l.

It is obvious that and al takes r different values in the set {0,1, r 1}.
From the Lemma 2. we have
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where

(rn + j) (0, gTg gg,,,+, g,,,"+,,) *( O, a,a2
O, b] b2 b,,,9,,+

b gm + a(rood r)
b-I (rnod r)gv-1 + av-1

b2 g + a2 (rnod r)
h ? + (.od ) (2. 7)

Since 0 _< l" < r"-1, we shall search l’ in the form l" (1"-1 /l")r, where ll’, ., 1",-1 are

unknown quantities. Then l’r (1’,_1 11" 0)r. When l’ r < < (l + 1)r then (/’,-1
10"), for 0 < 10 < r.

Let us denote (i) 0, cl c2 c, where
-1 (rnod r)Cl l0 -t- ’]h=l lh Vh+l,1- (rood r)c2 ll + Eh=2 lh Vh+l,2

Then we have

Cu-1 1"-2 Jc l’u-1 Vu,u- (rnod r)
Cu ,-1.

o(m) + o(i)(rnod 1) O, g g". gv-lrn g2 ,q+lm g,+nm- O, C C2" C,-1 C

0, dld du-ldu gu+l "g+n

where 51, 62, , 5u-1 are the step-by-step carries and else

du g’ + cu (rood r)
du- gu -Jr- 5u- -- Cu- (rood r)

d g’ +52 +c2 (rood r)
dl gr + 51 ._ (1 (rnod r) (2.18)

For the demonstration of the equality (2.16) we make equal the numbers, constructed in (2.17) and

(2.1 $), and we get

l’u-1 =- lu-1 (rood r)
l’u-2 + l’u-1 Vv,u-1 + 5u-1 =-- lu-2 + lu-1 Vu,u-1 (rood r)

u-1 -1 (rnod r)ll + ]’h=2 lh 73h+1,2 + 52 ll -- Eh=2 lh ’Uh+l,2- - (rood r).10 --Eh=l lh ’Oh+l,1 - 51 ----l0 -Eh=l lh Vh+l,1

Since 0 < lu-1, I’,,-1 < r, then equation lu-1 lu-1 (rood r) has the only solution 1’-1 lu-1.
Consecutively we solve the left over equations and get uniquely integer number l’= (l’u- l’),
such that 0 < I" < r-1.

Since l0 takes r different values in the set {0, 1, r- 1}, then and 10" takes r different values in

the set {0,1, r- 1} and l’r < < (l + 1)r.
Finally, we establish a bijection between the sets from the two sides ofthe equation (2.16).
Let.p and q be such that 0 < p, q < rs, p q and p" and q’ are the numbers, satisfying the equality

(2.16). We shall prove that p" q’. Let us admit that p" q’ c. Then we have

{o(rn + j) "m =_ 0 (rnod r), pr <_ j < (p + 1)r}
{o(rn) + o(i) (rood 1)"m 0 (rood r"),r < < (c + 1)r}.
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and

{o(m + j)"m =_ 0 (rood r),qr < j < (q + 1)r}
{(m) + qo(i) (rood 1)"m =_ 0 (rood r),ar < < (a + 1)r}.

Then we have

{o(m + j)’m =_ 0 (rood r"), pr < j < (p + 1)r}
{qo(m +j)"m =0 (rood r"),qr < j < (q + 1)r}.

This is a contradiction, since the function p is an injection; so the equation (2.16) is proved.
From (2.15) and (2.16) we get

rv-1{o(m + j)"m =_ 0 (rood r),O < j < r} J,.=o- {p(m) + qo(i) (rood 1)"m 0

(rood r"), l’r < < (l" + 1)r} {(m) +(j) (rood 1)"m 0 (rood r),O < j < r"}.
The lemma is proved.

3. AN ESTIMATION FROM ABOVE FOR THE DIAPHONY OF Pr-SEQUENCES.
THEOREM 3.1. Let in the guiding matrix (v,) every v,,, 1 and for j > s every v,, 0 and let

a (o(i)),__o be the P-sequence which is produced by the (v,). Then for every positive integer N we

have

Fg(cr) <_ c(r)g-l(log((r 1)g + 1)) 1/2,
where the constant c(r) is given by

c(r) 7r((r 1)/3 log r) 1/. (3.1)
The proof of this theorem is based on a non-trivial estimate for the trigonometric sum ofan arbitrary

P, sequence.
3.1. AN ESTIMATION OF THE TRIGONOMETRIC SlIM OF ARBITRARY Pr-SEQUENCE.

Let X ,),,=0 is arbitrary sequence in interval E.A trigonometric sum, SN(X:h), of the

sequence X, where h is an integer is the quantity

SN(X;h) N-1-=0 exp (27rihx).
LEMMA 3.1. Let N P + Q, where P and Q are arbitrary integers. Then for every integer h

and arbitrary sequence X (x,),__o we have

SN (X;h) < SP (X;h) / Sp (X;h) l,
where

se (x; h) z_.,,=p exp (27r/x,).
The proof oflemma is obvious.

LEMMA 3.2. Let N ar, where a :> 1 and n > 0 are integers.
Then for every integer h we have

SN (X; h) < E,=la S(,_l)r,r- (X; h)
The proofoflemma is based ofLemma 3.1 and is done by induction on a.

Let a be an arbitrary integer and q a positive integer. We define the function q(a) by
1, lfa=0(rnod q)

()
0. ifa0(mod q)

It is well known that for every integer a and every natural q we have
q-1E=o exp (2riax/q) q(a)

LEMMA 3.3. Let N :> 1 be an integer and

g=’v__0ar,ae{0,1,. -,r-1}(j=0,1,. -) (3.2)
be its r-adic representation.

Let in the guiding matrix (v,) every v, 1 and for j > s every vs, 0 and cr (o(n)),__0 be

the Pr-sequence which is product of (v,).
Then for every integer h we have

SN (a; h) < Ej:0 aj r, (h)
PROOF. Let N > 1 be an integer with r-adic representation of a type (3.2).
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We shall prove that for every integer h and for every sequence X in interval E we have the

estimation

[SN (g; h) < :=0 Em=ll Sire-l/r, (S; h)[ (3.3)
where we have the supposition that when a 0, the inside sum is 0.

Let h be an integer. For eve N 1 ests an integer n, such that N < r. We shl prove the

lena by the induction on n

Ifn 1, then the estimation (3.3) is tribal.

We suppose, that (3.2) is te for eve integer N, 1 N < r, where n is some integer.

Let now N such that rN<r+. By herewe have, that in (3.2) a=0 forj>n Let
N P + Q where P ar and Q a.

By Lena 3.1, Lena 3.2 and the induction supposition we get

SN (X; h) S: (X; h) + S (X; h)] E=I S:(m_): (X; h)

’
aE:0 E: (x; h)S(m_)

such that (3.3) is proved IfQ 0, then (3 3) is got by Lena 3.2.

Let now j, 0 j n be arbitra fixed number and consider that 1 m a. Ifm 1, then

by Lemma 2.2 for the trigonometric sum S (a; h) we have

s(; h)= , (h) (3.4)
(a; h), by Lena 2.4, we haveLet now 2 m a. Then for the trigonometric sum S(m_)

(a; h) -x -k=0 expSm_), .:_), ezp (2h(n)) (2ih(((m ))
d-1+ ())) (ih((m ))) E:0 zp (ih(k)).

(a; h) we etThus for the module ofthe trigonometric sum

s_), (; h) , (h). (3.5)

From (3.3), (3.4) d (3.5) we get

The lemma is proved.
3.2. PROOF OF THEOREM 3.1.

SN (a; h) S Ej:0 aj r 6r, (h).

Let (vs,) is an arbitrary guiding matrix, such that on principal diagonal there stand ones, and over

him zeros and a (,#,(n)),__0 is Pr-sequence, which is bred by the matrix (vs.).
We choose N > 1 arbitrary integer and let has r-adic representation in the form

N ’],, aa rn, (aj
_

{I,- -,r- I}, j 1,2,- ,k), (3.6)
where

O < n < r2 < < nk.

are integer numbers.

From Lemma 3.3 for every integer h we have

Sw (a; h) <_ Ejk=1 ajr
, 5:, (h) < (r- 1)E3=1 r, 5:, (h).

By the last inequality for the diaphony Fv(a) ofa we have

(YFv(a)) 2’h_-i h-2 SN a; h) g

:( 1) E.: -2(r 1)2 Eu:l Eh=l 5:, (h)6r-v (h).
Ifthe matrix aj, (1 j, k) is setfic then we have

By hered (3.7) we get
rn+nv h-2(gf ()) a(- )2: E: E:

2(- ) ", Eh: h-2 :,(h).
For jd such that 1 j k, we have

(3.7)

(3.8)

:,(h) r.,(h) :,(h), (3.9)
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for every integer h.
Beside this we have

By (3.$), (3.9) and (3.10) we have

(NFu(a)) <_ (2 (r- 1)/3) E:I E:, r"-"’- (2/3)(r 1)2k
For the sum in last equity holds, that

From (3.11)d (3.12) we have

(NVu(a)) (/3)(r- X)
From (3.6) we get that

Thus we discover

k-1N >_ =r, >_ ’]=o r (rk- 1)/(r- 1).

(3.11)

(3.12)

(3.13)

k < (lo9((r- 1)N + 1))/log r (3.14)
From (3.13) and (3.14) we have

FN(a) _< 7r((r 1)/3 log r) 1/2 N-1 (log((r- 1)N + 1)) 1/2.
The Theorem 3.1 is proved.
In the case, where the guiding matrix (v,) is a unit matrix I, the sequence which is bred by I is

called Van der Corput-Halton’s sequence. In 1935 it was first introduced by Van der Corput [18] and

generalized in 1960 by Halton 19].
In this case the operation turns out to be a simple addition.
By o(i)(i 0,1, we signify the general term ofthe Van der Corput-Halton-sequence.
For r 2 the sequence ofgeneral terms o2 (i)(i 0,1, is called Van der Corput-scquenc.
By Theorem 3.1 we can get the following corollaries.
COROLLARY 3.1. Let a (o()),=0 be the Van der Corput-Halton-sequenc. Then for every

positive integer N, we have

FN(a) <_ c(r) N- (log((r- 1)N + 1)) 1/2,
where the constant c(r) is determined by the equality (3.1).

COROLLARY 3.2. Let a ((p(i))i__0 be the Van der Corput-sextuenc. Then for every N >_ I we
have

FN(a) < aN- (log N)U2.
COROLLARY 3.3. Let a (o(i)),0 be arbitrary binary P-sequence. Then

ti--u, (UFu(o))/ (o N)in <_ / (o 2)in= 3, 7773....
We note that the Corollary 3.1 and Corollary 3.2 are announced without proof by Proinov and

Grozdanov [20] and proved by Proinov and Grozdanov [21 ].
4. ON QUADRATIC DISCREPANCY OF THE SYMMETRIC SEQUENCE PRODUCED BY

THE ARBITRARY P-SEQUENCE.
In this section, we given an appfication of Theorem 3.1 to the problem of finding infinite sequences

in E, with the best possible order ofmagnitude for the quadratic discrepancy.
We need the notion of symmetric sequence (see [11]). A SeXluence a (x,,),=0 in E is called

symmetric of for every integer n > 0 we have x2,, + x2,+ 1. A symmetric sequence a (b,),=0 in
E is said to be produced by an infinite sequence a (a,,),__0, if for every integer n >_ 0 we either have

o b2, or a b2,+1. Obviously, every infinite sequence in E produce at least one synunetric
sequence.

By Sobol ([5], p. 117) is dear that the exact order of quadratic discrepancy of P2-sequenee is

O(N- lo9 N).
We shall prove that the quadratic discrepancy ofarbitrary symmetric sequence, which is produced by

arbitrary P-sequence has exact order O(N- (1o9 N)/2). In the foundation of this problem stands
Theorem A, proved by Proinov and Grozdanov [20].
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By this and Theorem 3 follows

THEOREM 4 Let ’ be an arbitrary symmetric sequence in E, which is produced by an arbitrary

Pr-sequence Then for every integer N _> 2 we have

T.-(’’ < c(r)N-t (log(r 1)N)) /2 + N-1,
where c(r) is defined by the equality (3 1)

From Theorem 4 for the case r 2 we have

lirn,w_,o NT, (" )/ (to9 N)/2 <_ 1/(log 2) 1/2 1,201...,
for every symmetric sequence ’ produced by the P2-sequence

We note that Faure [22] proved that for the symmetric sequence ’, produced by the Van der

Corput-sequence, the constant limN_, (NTx(’)/(Io9 N) 1/2) is between 0,298 and 0,321
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