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ABSTRACT In the present paper, we consider a problem of distribution of sequences in the interval
[0,1), the so-called 'P.-sequences’ We obtain the best possible order O(N~!(logN)!/?) for the
diaphony of such P,-sequences For the symmetric sequences obtained by symmetrization of P,-
sequences, we get also the best possible order O(N ! (logN)!/?) of the quadratic discrepancy
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1 INTRODUCTION

11 Leto = (z,), be an infinite sequence in the unit interval £ = [0,1) For every real number
z € E and every positive integer N we denote Ay (o, z) the number of terms z,, 0 <n < N -1,
which are less than

The sequence o is called uniformly distributed in E if for every real number z € E we have

limy An(o; )N~ = .

The systematic study of the theory of uniformly distributed sequences was initiated by Weyl [1]

A classical measure for the irregularity of the distribution of a sequence o in E is its quadratic
discrepancy Ty (o), which is defined for every positive integer N as

Tn(o) = (fy | An(o;2)/N — z | 2dz)/ 2.

The irregularity of distribution with respect to the quadratic discrepancy was first studied by Roth
[2]

In 1976, Zinterhof (see [3,4]) proposed a new measure for distribution, which he named diaphony
The diaphony Fiy (o) of o is defined for every positive integer N as

Fn(0) = (255, k™ | N7 Sy (a:h) | )/
where
Sy(o;h) =N exp(2mihz,)
signify trigonometric sum of ¢
We note that the diaphony of o can be written in the form
Fr(o) = (N7 Tailo glza — zx)"/?
where
g9(z) = n*(2z> — 2z +1/3)
It is well known (see [5], p 115, [4]) that both equalities
limy_ Tn(0) =0and limy_ Fn(o) =0

are equivalent to the definition that the sequence o is uniformly distributed in £
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12 Using the well-known theorem of Roth [2] it can be proved (see Neiderreiter [7], p 158,
Proinov [8]) that for any infinite sequence o in E, the estimate
Tn (o) > 214" 'N "1 (logN)"/? {R))
holds for infinitely many integers N  The exactness of the order of magnitude of this estimate was
proved by Proinov ([9], [10], [11])
Proinov [8] proved that for any sequence o in E the estimate
Fy(o) > 68" 1N "!(logN)'/? (12)
holds for infinitely many N .
From (1.1) and (1.2) becomes clearly that the best possible order of diaphony and quadratic
discrepancy of every sequence o in E is O(N " !(logN W2,
2. A SEQUENCE OF r-ADIC RATIONAL TYPE.
2.1 CONSTRUCTION OF SEQUENCE OF r-ADIC RATIONAL TYPE
In this part we generalize Sobol's ([12], [S], p 117, [13], p. 23) construction of sequences of binary
rational type
Let r > 2 is fixed integer. We consider the infinite matrix
i V21 - - -

(vs) = ( V12 Va2 - = = ) 2.1
where for every s,j=1,2, - -,v,,€{0,1,- - -,r—1}. We suppose that in every column, the
quantity of v, ;, which are different from zero is a positive integer number, i.e., v, , = 0 for j sufficiently
big Such matrix we shall call guiding matrix

To every column of the matrix (2 1) corresponds a r-adic rational numbers
Ve=0, 01052 - "Vsy- - - (s=1,2--+) 22
The numbers determined in (2.2) are called guiding numbers.
We signify Ny = N U {0}, with N the set of natural integers.
A sequence of r-adic rational type (or RP-sequence) is a sequence (y(3));o,, which is generated by
the guiding matrix (v, ,) in the following way: If in the r-adic number system
1=é€ném_1- €]
then in the r-adic number system
»(i) =0, W;W; W

wherefor j=1,2,- - -,m
W,=eV,=V'V . .."V, 2.3)
h—,———/
e, — terms
and * is the operation of the digit-by-digit addition modulo r of elements of Z, = {0,1, - - - ,r — 1}.

A RP-sequence (¢(i)),,, which is generated by the guiding matrix (v,,) can be also constructed
by following the three mentioned below rules’

1) ¢(0) =

) Ifi=r°(s € Ny), then (7)) = V1.

3) Ifr® <i<rtl) then p(i) = e,y o(r*)" go(z — ey,41 7°), where e, is higher significant digit
in r-adic development ofz and e, 10(7%) = Verl it Ve

es+1 — terms
Obviously the operation * has commutative and associative property.
We shall prove that the two definitions of the P R-sequences are equivalent.
Let us suppose that the first definition is valid for R P-sequence.
(1) Ifi = 0, then obviously ¢(z) = 0.
(2) Ifi =r°(s € Ny), then (i) = V,y;.
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(3) Let us assume that r°* <i<r**! and i = (e,;4; €, - -€;), . Since the operator * is
commutative and associative we have

9@ =0,((e1 Vi)™ - " (s V4)) (€541 Viora)-
Since Vo = @(r®) and i —e,y1 7° = (e, €51 - - €1), , then p(i — e,y 7°) =0,(e7 V4)* - - - *(e
V,). Finally (i) = e,110(r°) (i — €541 7°).  The three rules in the second definition for RP-
sequence are proved.

Reversely, let the second definition for P R-sequence is valid and ¢ is given positive integer. Then
there exists uniquely positive integer s that 7* < i < r**!. We shall prove definition 1 by induction on s.
Ifs=0,thenl <i<rand

(@) = ip(r®)"p(0) = 0, iV;.

We make inductive supposition that for some s € N and every integer 4, 7*~! < i < r° definition 1 holds.

Let us assume that * < i < 7°*! and i = (e,11€, - - - e;), . From rule 3 we have

o(i) = €541 0(r°) (i — €541 °).
If we denote j=1i—e,,, °, then j= (e, e,_;- - -€1), and r*! < j<r°. Then by inductive
supposition

©() =0,(esV1)" - - - "(esV5).
By rule 2, o(r°) = V,;; and we have
p(i) =0,(e1V1)" - - - *(esVe) (ess1Von)-
Definition 1 holds for every positive integer s.

In the following lemma we give a property of the functions (.

LEMMA 2.1. Let (v,,) is an arbitrary guiding matrix, and (p(3))2, is RP-sequence, which is
generated by (v,,). Let v, m, n be integer numbers such that v € Ny, 0 < n < r¥ and m = 0(mod
r*). Then we have

p(m+n) = p(m)"p(n).

The proof of the lemma is obvious.

For every integer a € Z, we define @ the only integer, which is a solution of the equation

a+a=0(modr).

If a=0,qa9- -4, where, for 7=1,2,---,t ar € Z,, then we define
a =0,aaq- - -Gy
2.2. SEQUENCES OF r-ADIC RATIONAL TYPE, WHICH ARE P,-SEQUENCES.

The theory of the P.-sequences was first studied by Faure ([14];[15]) and generalized by
Neiderreiter ([16];[17]).

A r-adic elementary interval is an interval

bny =[G =1/r™,3/m™),
in which 1 < j < r™, for any integer m.
Let N = r™. We shall call the net
X = (z0,21, - +,TN-1)
be a net of type P (or P"-type), if every r-adic elementary interval ., ;, having length 1/ N contain
one point of the net X.
A r-adic section of the sequence X = (z;);2, is a set of terms z,, with numbers 4, satisfying the

inequalities
krt <i< (k+1)r,
for every integers k and s, such that k = 0,1, - - -;8=1,2, - - ..
The sequence (z,);2, is called a sequence of type P, (or P,-sequence) if every r-adic section is a
P™-net.

THEOREM 2.1. Let in the guiding matrix (v, ;) every v, , = 1 and for j > s every v, ; = 0, i.e,,
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1 V21 v31 - - - Usn - -
0 1 U39 - = = Uy - =
0 0 1 - - - v - -
(vs.]): S _13_ _ o
0 0 0 - - = 1 - -

Then the corresponding R P-sequence is P,-sequence
PROOF. We choose arbitrary r-adic section of the RP-sequence (¢(7)),~,, the length of which is
™. We write the numbers i, belonging to this section in the r-adic number system:
1=0CuCu 1" * " Cmt1€m€m—1" * - €1, 249
where ¢, are fixed and e, are arbitrary r-adic numbers
We choose now an arbitrary r-adic interval I, with length |l | = 7~™. In the r-adic system this

interval is determined by the inequality
0,a1a0 - ra, <zr<0,0i09- - -a,,+0,0---0 1,
m — Zeros

where a;, - - -, a,, are r-adic numbers

We shall prove, that for every choice of the numbers c; and a; among the numbers 7, in the form
(2.4) there exists exactly one ¢, for which ¢(3) € [.

. In the r-adic number system we write
(1) =0,0,192" " G, -
From (2.3) we have
Gy = €1V, TemUp Cmi1 Vi1, ¥y

where the sense of e, vy ; is the same as in (2.3).

The condition (i) € [ is equivalent to the following conditions

9., = a; forl1 < j<m.
We get that foreach j, 1 < j<m

9.y = (elv;J T .emvm.J)‘(cmHv:nH.J T ‘Cuvu.J)’
from which we get
eV, - “emUm; = a;(Cmi1Vnyy, © " "CuUu;) (1< j<m) 2.5)
Let us call f; the right-side of (2.5) for 1 < j < m. Having in mind that fors = 1,2, - - -, v,, = 1 and
in case j > s, v, , = 0, the system (2.5) become
;0] €410 1, "+ * “emUm, = f,(1 < j < m).
In this system the unknowns ey, e, - - -, e, are successively so determined that it has only one

solution.
The theorem is proved.
In the following lemma we shall show some property of P,-sequences.
LEMMA 22. Let N =r” where v € Ny. For every guiding matrix (v, ;) in which v,, =1 and
v,, =0 for j>3(s=1,2, - - -) and for the RP-sequence (¢(z))r2,, which is product of (v, ;) we
have
{p(@):0< i<} ={j/N:0<j< N} 2.6)
PROOF. We shall make the proof by induction on v. If v = 0 and v = 1, then we make directly
examination.
We make inductive supposition, that for some v € N the equality (26) is true and for
j=0,1, . . -,r— 1 we consider the multitudes A, = {p(%): j* < i < (j+ 1)r*}. Then obviously
A=Us 4, @7
where A = {p(i):0 < i < r*1}.
We consider that j = 0. By the inductive supposition
Ag = {p(A):0 < i<} = {m/r*:0 < m < 1 m =0 (mod r)} (2.8)
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Let us now consider that 1 < j < r — 1. We shall prove the following equality-
A, ={m/r*0< m < m = j (mod 1)} (2.9)
Let j,1 < j < r - 1is fixed integer and consider that jr* < i < (j+ 1)r”. Let us represent i in the
formi = jr* + k, where0 < k < r*.
Then by Lemma 2 1 we have

(i) = p(5r’) p(k) (2.10)
It is obvious that
p(r’) = }/;-H i ‘VV+14 @1
j—terms
Let us put
P(Ur*) = 0, Wyi1,1Wps12 * * * Wotlpt1-
From (2 11) is clear, that w, 1,41 = j. Let k has r-adic development k = k,k,_; - - - k1. Then
p(k) =0,(kiV1)"- - - (K V,)
p(k) =0,a1a9 - - -a,, wherea, € {0,1, - - -,7r—1},5=1,2, - - -,v) (2.12)
From (2.10), (2.11) and (2.12) we get
(@) =0, (ajwyq1,1) - - - (@Jwy41,,)5 = 0,b1by - - - b5 (2.13)

When0 < k <, then0 < (byby- - -b,), < and from (2.13) we get that for 1 < j<r—1
Ay ={p@): " <i< G+ 1)r} = {m/r0<m < m = j (mod r)}
The inequalities (2.9) are proved.
By induction on v the lemma is proved.
LEMMA 2.3 Let (p(3)),°, be a P.-sequence. Then for every v € Np holds the equality
{p(m+37):m =0(mod r*),0< j <’}
= {p(m) + p(j)(mod 1):m = 0(mod *),0 < j < "} (2.19)

PROOF. Let us consider that m = kr”, for some positive integer k. The equality (2.14) is
equivalent to the equality
{p(m +j):m =0(mod r*),0< j < 1}
— U, Hplm + j):m = 0(mod ), 1 < j < 1+ 1)r} @.15)

First, we shall prove that for every fixed I, 0 < I < r*~! exists uniquely I’ 0 < I’ < r~1, such that

{em+j):m=kr",iIr<j<(+1)r}
= {p(m) + () (mod 1):m = kr*,I'r < j< (I'+ 1)r}. (2.16)

Let k = (knkn—1- - - k1),. Then we have
p(m) =0,g7'g5" - - - gy,
whereforl <i<n+v g =Y 1_; kaVhs,, (modr).
Let 0 < I < 1 be fixed integerand [ = (I,,_; - - “4),. Thenlr=(l,_1- - -1, 0),.
When j is such integer that Ir < j < (I + 1)r, we have j = (l,_;1 - - - lily), , where ,_q, - - -, 14
are fixed integers and ly takes r different values in the set {0,1,..., r—1}. Let p(j) =0, a;- - - a,,
where
ay = lo + Y521 €n Vhs1, (mod 1)
ay = Iy + Y h_yen vhtr2 (mod r)
ay-1 = lu—2 + 11 Uy, v—l("wd ’I')
a,=1,.
It is obvious that and a, takes r different values in the set {0, 1, ...,r — 1}.
From the Lemma 2.1 we have
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SP(m*'J) = (Org;"g;n : g:.g:/n+l e 'gnm+y) *(0,0.1(12 v 'au)
=0’b]b2‘ . .b”g:;-l . .gz;_y

where
b, =g +a,(mod r)
b,—1 =g, +a,_1(mod )
by = g5 + ay(mod 1)
by = g + a;(mod r) 2.17)
Since 0 < I’ < 771, we shall search I" in the form ' = (I',_; - - -4y"),, where ly", - - -1, are

unknown quantities. Then I'r=(I',_;- - -1;7 0),. Whenl'r<i<(+1)rtheni=('q- - -1l
'), for0 <y <r
Let us denote (i) = 0,¢1¢2 - - - ¢, where
e =o'+ h) I vhsa (mod 7)
=0+ 0y In vhsr2 (mod r)

1=l 2+l 10,1 (modr)

c, =1,
Then we have
61 & 6,1
p(m) + (i) (mod1) =0, g7 g5+ - G019 g1~ Ghn
+0,c1¢: - ¢cp_1¢

0,didy- - -dp1dy gty - 904
where 61, 62, - - -, 6,1 are the step-by-step carries and else
d, =g’ +¢, (mod )
dy-1 =g 1 +6,-1+ ¢ (mod )
dy = g5 + & + ¢ (mod 1)
dl = g’l" + 51 +c (mod T) (218)

For the demonstration of the equality (2.16) we make equal the numbers, constructed in (2.17) and

(2.18), and we get
l’v—l = lv—l (mOd 1')
Vpa+l01vp1+6,10 =2+ 1101 (Mod T)
L+ Y00y I vhgg + 6 =l + 4 I Vrsrz (mod 1)
lo"+ 02y I vhenn +81 = lo + 52y bh vnsra (mod 7).

Since 0 <1I,_y, U',_; <r, then equation I,_; =1,y (mod r) has the only solution l',_; =1I,_;.
Consecutively we solve the left over equations and get uniquely integer number ' = (I',_y - - - I1'),,
suchthat 0 < I’ < 1.

Since Iy takes r different values in the set {0,1,...,r — 1}, then and Iy’ takes r different values in
the set {0,1,...,r— 1} and I'r <i < (I + 1)r.

Finally, we establish a bijection between the sets from the two sides of the equation (2.16).

Let p and ¢ be such that 0 < p,q < 7°,p # ¢ and p” and ¢’ are the numbers, satisfying the equality
(2.16). We shall prove that p” # ¢". Let us admit that p" = ¢’ = a. Then we have

{p(m+3):m=0(modr"),pr <j< (p+1)r}
= {p(m) + ¢(3) (mod 1) :m = 0 (mod ), ar < i < (a+ 1)r}.
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and

{o(m+j):m=0(modr"),qr <j < (g +1)r}
= {p(m) + (i) (mod 1) :m =0 (mod ), ar < i < (a+ 1)r}.

Then we have

{p(m+3):m=0(modr"),pr <j< (p+1)r}
={p(m+7):m=0(modr"),qr < j<(¢g+1)r}.

This is a contradiction, since the function ¢ is an injection; so the equation (2.16) is proved.
From (2.15) and (2.16) we get
{o(m+3):m=0(modr*),0<j<r*} = U,',:;_‘ {p(m) + ¢(3) (mod 1) : m =0
(mod ), I'r <i< (I'+ 1)r} = {o(m) + ¢(j) (Mod 1) :m =0 (mod r*),0 < 7 < r*}.

The lemma is proved.
3. AN ESTIMATION FROM ABOVE FOR THE DIAPHONY OF P,-SEQUENCES.

THEOREM 3.1. Let in the guiding matrix (v, ;) every v, , = 1 and for j > s every v, , = 0 and let
o = (p(3))2, be the P,-sequence which is produced by the (v, ,). Then for every positive integer N we
have

Fn(0) < c(r)N "' (log((r — 1)N +1))'/2,
where the constant c(r) is given by
c(r) =m((r* —1)/3 log )2, 3.1

The proof of this theorem is based on a non-trivial estimate for the trigonometric sum of an arbitrary
P, — sequence.
3.1. AN ESTIMATION OF THE TRIGONOMETRIC SUM OF ARBITRARY P,-SEQUENCE.

Let X = (z,)p, is arbitrary sequence in interval E.A trigonometric sum, Sy(X:h), of the
sequence X, where h is an integer is the quantity

Sn(X;h) = SN exp (2mihz,).

LEMMA 3.1. Let N = P +Q, where P and Q are arbitrary integers. Then for every integer h

and arbitrary sequence X = (z,).-, we have
| Sy (X;h)| < |Sp(X:h)| + | SS(Xih) |,
where
S (X;h) = TP exp (2miz,).

The proof of lemma is obvious.

LEMMA 3.2. Let N = ar", where a > 1 and n > 0 are integers.
Then for every integer h we have

| Sn (Xih) | < Ei | Sl (KR |,
The proof of lemma is based of Lemma 3.1 and is done by induction on a.
Let a be an arbitrary integer and g a positive integer. We define the function 6,(a) by

1, 1if a=0(mod q)
6g(a) = {

0, if a#:0(mod g)
It is well known that for every integer a and every natural ¢ we have
Y45 exp (2miaz/q) = ¢}(a)
LEMMA 3.3. Let N > 1 be an integer and
N=Y%,a,7a¢€{0,1, - -,r—1}(j=0,1,- - -) (3.2)
be its r-adic representation.
Let in the guiding matrix (v, ;) every v, = 1 and for j > 3 every v,, = 0 and ¢ = (p(n));r, be
the P.-sequence which is product of (v, ;).
Then for every integer h we have
| Sn (o;h) | <3320, 6 (R)
PROOF. Let N > 1 be an integer with r-adic representation of a type (3.2).
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We shall prove that for every integer h and for every sequence X in interval E we have the
estimation
| S (Xih) | < T2 et | Sinys (XiB) (33)
where we have the supposition that when a, = 0, the inside sum is 0.
Let h be an integer. For every N > 1 exists an integer n, such that N < r". We shall prove the
lemma by the induction on n
If n = 1, then the estimation (3.3) is trivial.
We suppose, that (3.2) is true for every integer N, 1 < N < ™, where n is some integer.
Let now N such that r* < N < r"*!. By here we have, that in (3.2) a, =0 for j >n Let
N =P+ Q where P =a,r" and Q = Z,—o a;r
By Lemma 3.1, Lemma 3.2 and the induction supposition we get
| Sy (Xih)| < | Sapn (Xih) | + | SB(Xih) | STy | Sioyyen (Xih) |
+ 3550 et | Sty (XiB) | = g Tt | iy (X3 1) |
= E;io 22:1 | San-nr: (Xh) 1,
such that (3.3) is proved If Q = 0, then (3 3) is got by Lemma 3.2.
Let now 4,0 < j < n be an arbitrary fixed number and consider that 1 < m < a,. If m =1, then
by Lemma 2.2 for the trigonometric sum S (o; h) we have
S5 (a3h) =176, (h) (4)
Let now 2 <m < a,. Then for the trigonometric sum Sgn_l),, (o} h), by Lemma 2.4, we have
Sty (03h) = Swmi b 10 ezp (2mihp(n)) = k_o ezp (2mih(p((m — 1))
+¢(k))) = ezp (2mihp((m — 1)r7)) Tico exp (2mihp(k)).
Thus for the module of the trigonometric sum S(m_1 y (03 h) we get
| Stn_tys (@3 1) | =19 8,5 (R). (3.5)
From (3.3), (3.4) and (3.5) we get
| Sn (03h) | <3320 0,7 6, ().
The lemma is proved.
3.2. PROOF OF THEOREM 3.1.
Let (v,,) is an arbitrary guiding matrix, such that on principal diagonal there stand ones, and over
him zeros and o = (p(n))pe is Pr-sequence, which is bred by the matrix (v, ;).
We choose N > 1 arbitrary integer and let has r-adic representation in the form
N=3"% a,™ (g€l -,r—1}, j=12,- - - k), (3.6)
where
0<m<n< - -+ <ng.
are integer numbers.
From Lemma 3.3 for every integer h we have
| Sy (03h) | < XK a7 6 (B) < (r=DEE, ™™ 6, (B).
By the last inequality for the diaphony Fy (a) of o we have
(NFN(a = 22;. L h? | Syo;h)? <
2r— 1) TR b Sy ™ By (R) 6 (B)
=20r— 1) T Yk e R b by (B) 6, (R). 3.7
If the matrix | | a,, | | (1 < j,v < k) is symmetric then we have
E,’;:l Et:l 4y = 22*:1 201 G z:_’;:l a5,5-
By here and (3.7) we get
(NFy (0))° S4(r=1)" Sy Sy 7 52y B2 Gy () 6, (R)
=2(r =17 T P TR BT 6 (h). 39
For jand v such that 1 < v < j < k, we have
6,7 (R) 6~ (h) = 8y (), (3.9
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for every integer h.
Beside this we have

S R 6 (h) = 72 /6r20, (3.10)
By (3.8), (3.9) and (3.10) we have
(NFy(0))* < @n? (r=1)*/3) Tk, 50y v — (22 /3)(r — 1)’k @3.11)

For the sum in last equality holds, that
S T = T L, T < D Y D, = (rR)/(r 1) (12)

From (3.11) and (3.12) we have

(NFy(9))* < (7*/3)(" ~ Dk (.13)
From (3.6) we get that

N2>35 2T = -1/ -1).

Thus we discover

k < (log((r—1)N + 1))/ logr (3.14)
From (3.13) and (3.14) we have

Fn(o) < m((r* — 1)/3log r)"/* N7 (log((r — 1)N +1))/2.

The Theorem 3.1 is proved.

In the case, where the guiding matrix (v, ;) is a unit matrix I, the sequence which is bred by I is
called Van der Corput-Halton's sequence. In 1935 it was first introduced by Van der Corput [18] and
generalized in 1960 by Halton [19].

In this case the operation * turns out to be a simple addition.

By ¢,(i)(i = 0,1, - - ) we signify the general term of the Van der Corput-Halton-sequence.

For r = 2 the sequence of general terms ¢, (4)( = 0,1, - - - ) is called Van der Corput-sequence.

By Theorem 3.1 we can get the following corollaries.

COROLLARY 3.1. Let g = (p,(3));°, be the Van der Corput-Halton-sequence. Then for every
positive integer N, we have

Fn(0) < ¢(r) N™* (log((r — 1)N +1))"/2,
where the constant c(r) is determined by the equality (3.1).

COROLLARY 3.2. Let 0 = (p(3))i2, be the Van der Corput-sequence. Then for every N > 1 we

have

Fy(o) < 4N7! (log N)'72.

COROLLARY 3.3. Let 0 = (p(4))2, be arbitrary binary P,-sequence. Then

im0 (NFy(0))/ (log N)'2 < 1/ (log 2)/* = 3,7773 - - -.

We note that the Corollary 3.1 and Corollary 3.2 are announced without proof by Proinov and
Grozdanov [20] and proved by Proinov and Grozdanov [21].

4. ON QUADRATIC DISCREPANCY OF THE SYMMETRIC SEQUENCE PRODUCED BY

THE ARBITRARY P,-SEQUENCE.

In this section, we given an application of Theorem 3.1 to the problem of finding infinite sequences
in E, with the best possible order of magnitude for the quadratic discrepancy.

We need the notion of symmetric sequence (see [11]). A sequence o = (z,)n, in E is called
symmetric of for every integer n > 0 we have z5,, + Zont1 = 1. A symmetric sequence &@ = (b, ), in
E is said to be produced by an infinite sequence o = (a,),.,, if for every integer n > 0 we either have
a, = by, Or @, = bynyy. Obviously, every infinite sequence in E produce at least one symmetric
sequence.

By Sobol ([S], p. 117) is clear that the exact order of quadratic discrepancy of P,-sequence is
O(N7'log N).

We shall prove that the quadratic discrepancy of arbitrary symmetric sequence, which is produced by
arbitrary P,-sequence has exact order O(N~! (log N)'/?). In the foundation of this problem stands
Theorem A, proved by Proinov and Grozdanov [20].
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By this and Theorem 3 1 follows

THEOREM 41 Letd be an arbitrary symmetric sequence in E, which is produced by an arbitrary
P,-sequence Then for every integer N > 2 we have

Ty(3) <e(r)N"! (log(r = )N))'* + N1,

where c(r) is defined by the equality (3 1)

From Theorem 4 1 for the case r = 2 we have

limy—o NTw (& )/ (log N)'/? <1/ (log2)V/? =1,201- - -,

for every symmetric sequence & produced by the P;-sequence

We note that Faure [22] proved that for the symmetric sequence & , produced by the Van der
Corput-sequence, the constant limy o, (NTy (% )/ (log N )'/2) is between 0, 298 and 0, 321
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