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ABSTRACT. Let G denote the dyadic group, which has as its dual group the

Walsh(-Paley) functions. In this paper we formulate a condition for

functions in LI(G) which implies that their Walsh-Fourler series converges

in Ll(G)-norm. As a corollary we obtain a Dini-Lipschltz-type theorem for

LI (G) convergence and we prove that the assumption on the LI(G) modulus

of continuity in this theorem cannot be weakened. Similar results also

hold for functions on the circle group T and their (trigonometric) Fourier

series.

Let G be the direct product of countably many groups of order 2.

Thus G-- {x x (xl) 0 with xi {0,i} for each i >_ 0}, and for

x,y E G the sum x + y is obtained by adding the i-th coordinates of
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x and y modulo 2 for each i >_ 0. The topology of G can be described

by means of the (non-archimedean) norm II’II on G, where lxll 2
-k

if x0 Xk_I 0 and xk i, and II011 0. Also, if we define

the subgroups Gk of G by GO G and for k >_ I

Gk {x e G llxll <_ 2-k} {x e G; x
0 --...=Xk_I 0},

then the Gk form a basis for the neighborhoods of 0 in G. For k >_ 0

we define the cosets l(n,k), 0 < n < 2k, of Gk as follows If 0 < n < 2k

then n can be represented uniquely as

n b02k-I + bl2k-2 + ...+ bk_I,
with bi e{0,1} for each i. Let e(n,k) (bo,bl,...,bk_l,0,0,...)
in G and let l(n,k) e(n,k) Gk. So, in particular, l(0,k) Gk.

Furthermore, in order to simplify the notation, we shall denote e(l,k)

by e (k).

Next, let denote the dual group of G. Its elements are the

Walsh functions and Paley defined the following enumeration for them.

For each k >_ 0 and x (xi) 0 e G define #k(X) by k(X) exp(ixk).
If n > 0 is represented as

n a0 + a12+ ...+ a
k

2k

with ai e{O,l} for all i, then the n-th Walsh function Xn is

defined by a0
a

Xn(X) 0 (x)-..." kk(x).
Let dx denote normalized Haar measure on G. For f e LI(G) we define

its Walsh-Fourier series by

f(x) . }(k) Xk(X), where (k) g f(t)Xk(t)dt.
k--O
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For the partial sums of this series we have
n-1

Sn(f;x) 7. f(k) Xk(X) f(x-t)Dn(t)dt-- f , Dn(X)
k--0 G

n-i
where Dn (t) k=O k(t) is called the Dirlchlet kernel of order n.

The following properties hold.

(D1) If n > 0 is expressed as n 2k + n’ with 0 < n’ < 2
k

then

Dn(x) D2k(X) + k(X)Dn’ (x).

(D2) For each k > 0 we have

2k, if x e: Gk, .ID2k(X) [0 if x e G k G
k

(D3) If f e LI(G) then lk_= IS2k(f)-f Ii O.

(D4) for each n > 0 we have D (0) n.
n

(DS) If k > 0, 1 < m < 2k and 0 < n < 2k, then for each

x e l(m,k) e(m,k) + G
k
we have

ISn(x) [D (e(m k))l < m-12k+l
n

A proof of these properties and additional information on Walsh-Fourier

series can be found in [2]. Finally, if f is a function on G and if

y e G the function f is defined by f (x) f(x-y).
Y Y

Theorem I. Let f be a function in LI(G) for which n f-fe(n)

as n / . Then ISn(f)-f Ii o(I) as n / .
Proof. Let n > 0 be given and assume that n 2k + n’ with

0 < n’ < 2k. Then

lSn(f)-fll I <_ lSn(f)-S2k(f)ll I + lS2k(f)-f II I.

o()
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Thus, according to (DI) and (D3) we have

IISn(f) IIl < Ik Dn’ * fl I + o(i) A + o(i), as n / .
In order to find the appropriate estimate for A we continue as follows.

2k_l

G p=O I (p,k) k(t)Dn’ (t) f (x-t) dt

Clearly, Dn,(t) is constant on each set l(p,k)G. Also

l(p,k) l(2p,k+l)l(2p+l,k+l) and if t E l(2p,k+l) then k(t) i,

whereas if t l(2p+l,k+l) then k(t) -i. Therefore

A [ [ D (e(p k)) (x-t)dt (x-t)d
G p--0 n’ I (2p,k+l) I (2p+l, k+l)

< IDn’(e(0’k))I I I If(x-t)-f(x-t-e(l,k+l))Idt dx
G Gk+I

2k_l

p--i G Gk+I -f(x-t-e(2p+l,k+l))Idt dx

=B+C.

According to (D4) we have

B <n’ I Ilf(x-t)-f(x-t+e(k+l))Idx dt

Gk+I G

n’ II f-f II at o(i) as n /

e (k+l) I

Gk+l
Finally, if we use (D5) and apply Fubini’s Theorem we obtain

2k_l
C <_ p e(k+l) I

p=l G

dt
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2k_l
I p-I 2k+l 2-(k+l) ilf_f

p=l
e (k+l) i

< cI log 2kl f-f o(i) as n /

e (k+l) i

according to the assumption of the Theorem. Thus ISn(f)-f II o(i) as

n/

Before stating a corollary to Theorem i we first introduce some

additional terminology.

Definition i. For f LI(G) and > 0 the integral modulus of continuity

is defined by

ml(; f) sup{l Ify-fl Ii; lYll <_ 6}.

si== lle(n) ll 2-(n+l) for each n >__ 0 we see immediately that the

following holds.

Corollary i. If f e LI(G) and if ml(;f) o(llog 61-1 as / 0,

then ISn(f)-f Ii o(i) as n /

Remark i. Corollary i can be considered as the LI analogue of the Dini-

Lipschitz test for uniform convergence of Walsh-Fourier series, see

[2, Theorem XIII].

We first show that Corollary i is weaker than Theorem i by giving an

example of a function f e LI(G) such that (i) ml(6;f) + o(llog 61-1
as / 0 and (ii) n If-f II o(i) as n /

e(n) I

For each k >_ 0 and x (xi) 0 in G define the function fk
i

by fk(x) i Xk; then fk e LI) and lfk I " Next let

f(x) (k+i)-3/2 fk(x)"
k=O
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Clearly, the sum defining f(x) converges for each x e G and applying

the Monotone Convergence Theorem to its partial sums we see that

f e LI(G). Fix r >_ 0. Then for all k >__ 0 and x e G we have

Thus,

fk(x-e(r))
k(X), if k + r,

-fk(x), if k r

f(x-e(r)) [ (k+l)-3/2fk(x) + (r+l)-3/2(l-2f (x)).
rk--O

Hence,

-3/2f(x) f(x-e(r)) (r+l) (2f (x)-l)
r

and since 2fr(X) 1 _r(X), we obtain

-iII f-f II (r+I)-3/21 l*rl 11 o(re(r) i

Next, let d(r) k--r e(k). Then for each k >_ 0 and x e G we have

Thus

fk(X_d(r)) Ik(x)’ if k < rllI fk(x), if k >_ r

f(x) f(x-d(r)) [ (k+l)-3/2(2fk(X)-l)
k--r

[ (k+i)-3/2 k(X)"
k--r

From a well-known inequality for Rademacher functions, see [4, Chapter V,

Theorem (8.4) ], we obtain

llf-fd(r) ll I >_AI( [ (k+i)-3)i/2>_ A2r-i
k;r

for some positive constants AI and A2. Therefore, since lld(r) ll 2-(r+l)
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we see that i 2-r

as 6+0.

;f) + o(r-l), that is, ml(6;f) + o(IXog

We shall now show that Corollary I is the best possible in the

following sense.

Theorem 2. There exists a function f in LI(G) with the following two

properties: (i) l(;f) 0(flog 61-1 and (ii) {S (f)} does not
n

converge in LI(G)

Proof. In [2, p. 386] it was shown that if

then

nI 2n2 n
n 2 + + + 2 with nI

> n
2

>

-i -n n

llDnll [ 2 P( [ 2 r).
p=l r=p+l

...> n

Thus, if n 22s + 22(s-l) + + 22 + 20 for some s > 0 then

s
2p p-i

--(s+l)- [ 2- [ 2mr)
p=l r=0

S

>(s+) [ _f >
p=l 2

Also, it follows immediately from (D2) that for each k > 0 we have

llD2klll i. Next for each n > 0, let n [ n-i
ak 2

k
k=0

with a
k

0

if k is odd and a
k

I if k is even. Furthermore, for each n >_ 0,

let

P (x) D (x) and Qn(X) D
n 2n+l 2n+n

(x)
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> n/4, and the (Walsh)Then {Ienlll 1 and if n is even then {]QnlII
polynomial Qn is "part" of the polynomial P In order to simplify

n

the notation we shall from here on write k’ for 2
k

and k" for (k’)’.

Consider the function

f(x) 2-k (k+l) (x) Pk, (x)
k=l

Clearly, the series defining f(x) converges for all x 0 and f LI(G).
For k > i we have

Qk’l IS(k+l),,+ (f)-S (f) ll l2-kx
(k+l)’ (k+l)" i

i
(k+l)" Qk’ II i >-- 2-k/4

Thus, the sequence {Sn (f) does not converge in LI(G). Next, take any $

with 0 < g < 1 and let be the natural number for which 2-(1+1)< < 2-1.
Then lYll <_ $ implies y e G. Choose the natural number s so that for

all k _< s the polynomial X(k+l),,(X)Pk, (x) is of degree < ’, whereas

the polynomial X(s+2) (x) Ps (x) is of degree _> ’. The last condition

implies that 2(s+2)" > 1’ hence that (s+2)’ > k-l, so that 2
-s -10(. ).

Also y G implies that n(X+y) Xn(X) for all x in G and all n such

that 0 <__ n < 2. Consequently, we have

lfY-fl Ii Ilf(x-Y)-f(x)
G

< 2-k IX (x-y) D (x-y)-x (x) D (x)
k:l (k+l)" (k+l)" (k+l)" (k+l)"

G

+ 2-k
(k+l),, (x-y)D (k+l),, (x_y)k=s+l G

+ 2-k il(k+l) ’’(x)D(k+l) ’’(x)
k:s+l

G
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0 + 2 . 2
-k 0(2-s) 0(-i).

k--s+l

Therefore, if lYll <_ 6 then lfy-f Ii 0(flog 2-(+1)

that is, l(;f) 0(flog I-i). This completes the proof of Theorem 2.

Remark 2. As was observed in the abstract, except for some minor

modifications the theorems presented thus far also hold for functions

defined on the circle group T and their (trigonometric) Fourier series.

In this context we have

Theorem i’ If f e LI(T) and if log n If-f II o(I) as n / then/n i

ISn(f)-f ll o(1) as n / .
Theorem l’ can be proved by modifying the proof of a test for uniform

convergence of Fourier series due to Salem, see [i, Chapter 4, 5]. Also,

in order to see more clearly the similarity between Theorem i and Theorem i’

we mention that the condition n If-f II o(i) as n + in Theorem Ie(n) i

is equivalent to log( le(n) ll)-ll If-f II o(I) as n
e(n) 1

Theorem 2’. There exists an f e LI(T) such that (i)

as / 0 and (ii) {Sn (f) does not converge in LI(T).
In order to prove Theorem 2’ we use a result of F. Riesz, who showed

that for each n > I there exists a trigonometric polynomial P of degree
n

2n such that llenlll i, and a polynomial Qn of degree n, which is

> C log n, see [i, Chapter VIII, 22]"part" of en and such that ....llQnll I
or [3].
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