Internat. J. Math. & Math. Sci. Vol. 1 (1978) 97-112

THE SPACE OF ENTIRE FUNCTIONS OF TWO VARIABLES AS A METRIC SPACE

W. C. SISARCICK

Department of Mathematics Marshall University Huntington, West Virginia 25701

(Received October 17, 1977)

Section 1. Introduction.

Let Γ^2 denote the space of entire functions of two variables. If $f(z,w) \in \Gamma^2$, $f(z,w) = \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n$, the series converging absolutely for all (z,w) and uniformly in every bicylinder centered at (0,0), [2]. Here, a metric is defined on Γ^2 and three classes of linear functionals on Γ^2 are characterized.

We use the following notation.

(1)
$$_{m+n=k}^{\infty} \equiv$$

(2)
$$\sum_{m+n=0}^{\infty} a_{m,n} \equiv a_{0,0}^{+a_{1,0}^{+a_{0,1}^{+a_{2,0}^{+a_{1,1}^{+}}}}$$

 $\equiv \lim_{N \to \infty} \sum_{m+n=0}^{N} a_{m,n}^{-}$

<u>Definition 1.1</u>. The sequence $\langle a_{m,n} \rangle_{m+n=k}^{\infty}$ is said to have limit a as $m+n \rightarrow \infty$, written $\lim_{m+n\rightarrow\infty} a_{m,n} = a$, if and only if for any $\varepsilon > 0$, there exists an $N = N(\varepsilon) \ge 0$ such that $|a_{m,n}-a| < \varepsilon$ if m+n > N.

Lemma 1.2. If
$$f(z,w) = \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \in \Gamma^2$$
, then for each (z,w) , the sequence $\langle a_{m,n} z^m w^n \rangle_{m+n=0}^{\infty}$ is such that $\lim_{m+n\to\infty} a_{m,n} z^m w^n = 0$.

<u>Proof</u>. Given (z,w), let $S_N = \sum_{\substack{j+k=0\\ j+k=0}}^{N} |a_{j,k}z^{j}w^k|$. Since $\lim_{N\to\infty} S_N$ exists, $0 = \lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N-1} = \lim_{N\to\infty} (S_N - S_{N-1}) = \lim_{N\to\infty} \sum_{j+k=N}^{N} |a_{j,k}z^{j}w^k|$. Hence given $\varepsilon > 0$, there exists an $M = M(\varepsilon)$ such that if N > M, $|a_{N-j,j}z^{N-j}w^j| < \varepsilon$ for each j, $0 \le j \le N$. Let m+n = N. Then $0 \le n \le N$ and $|a_{m,n}z^mw^n| < \varepsilon$. Therefore given $\varepsilon > 0$, there exists an $M = M(\varepsilon)$ such that $m+n > M \Rightarrow |a_{m,n}z^mw^n| < \varepsilon$. Hence $\lim_{m+n\to\infty} a_{m,n}z^mw^n = 0$.

Lemma 1.3. A necessary and sufficient condition that $\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n$

is an entire function is that for the sequence $\langle |a_{m,n}|^{1/m+n} \rangle_{m+n=1}^{\infty}$, one has $\lim_{m+n \to \infty} |a_{m,n}|^{1/m+n} = 0$. $\frac{Proof}{2} \quad \text{Let } \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \in \Gamma^2 \text{ and } T = \overline{\lim_{m+n \to \infty}} |a_{m,n}|^{1/m+n}.$ If T > 0, choose (z,w) such that $|z| \geq |w| > 1/T$. $(1/T = 0 \text{ if } T = \omega)$. Then choose p such that |w| > p > 1/T. Then $\left|\frac{1}{z}\right| \leq \left|\frac{1}{w}\right| < \frac{1}{p} < T$. By definition of T, there exists a sequence $\langle (m_k, n_k) \rangle^{\infty} k = 1$ such that $\langle m_k + n_k \rangle_{k=1}^{\infty}$ increases monotonically to ω and $|a_{m_k, n_k}| = \frac{1}{m_k + n_k} > 1/p$ for all k. Hence $|a_{m_k, n_k} z^{m_k} w^{n_k}| > (\frac{z}{p})^{m_k} (\frac{w}{p})^{n_k} > 1$. This contradicts Lemma 1.2. Therefore T = 0. Hence $\lim_{m+n \to \infty} |a_{m,n}|^{1/m+n} = 0$.

Conversely, let $\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n$ be a series such that for the $m,n=0^{m},n^{2m}w^n$ be a series such that for the sequence $\langle |a_{m,n}|^{1/m+n} \rangle_{m+n=1}^{\infty}$, one has $\lim_{m+n \to \infty} |a_{m,n}|^{1/m+n} = 0$. To show this series is an entire function, it sufficies to show [2] the series converges for each (z,w). Consider (z,w) fixed. Choose p such that |z| < p and |w| < p. Let N be such that $m+n > N \Rightarrow |a_{m,n}|^{1/m+n} < 1/p$. Then for m+n > N, $|a_{m,n} z^m w^n| < (\frac{|z|}{p}) m (|w|)^n$, $\sum_{m+n=N+1} |a_{m,n} z^m w^n| \le \sum_{m+n=N+1} (\frac{|z|}{p}) m (|w|)^n < \infty$. Therefore $\sum_{m+n=0}^{\infty} |a_{m,n} z^m w^n| < \infty$.

W. C. SISARCICK

Let $s_{p,q} = \sum_{n=0}^{p} \sum_{m=0}^{q} z_{w}^{m}$. To show the series converges, it sufficies to show [1] that given $\epsilon > 0$, there exists an N = N(ε) such that $|s_{p,q} - s_{m,n}| < \varepsilon$ if P > m > N and q > n > N. Since $\sum_{m+n=0}^{\infty} |a_{m,n} z^m w^n| < \infty$, given $\varepsilon > 0$, there exists an $M = M(\varepsilon)$ such that N > max{M,1} $\Rightarrow \sum_{j+k=N+1}^{\infty} a_{j,k} z^{j} w^{k} < \varepsilon$. Choose such an N. Then $N = N(\epsilon)$. For p > m > N and q > n > N, $|s_{p,q} - s_{m,n}|$ $= \left| \begin{array}{c} P & q \\ \Sigma & \Sigma & a_{j,k} z^{j} w^{k} - \begin{array}{c} m & n \\ \Sigma & \Sigma & a_{j,k} z^{j} w^{k} \right|^{k} - \begin{array}{c} \Sigma & \Sigma & a_{j,k} z^{j} w^{k} \\ j = 0 & k = 0 \end{array} \right| \left| \begin{array}{c} a_{j,k} z^{j} w^{k} \\ j + k = m + n \end{array} \right|$ $\leq \sum_{j+k=N+1}^{\infty} \left[a_{j,k} z^{j} w^{k} \right] < \epsilon.$ <u>Definition 1.4</u>. Given $f(z,w) = \sum_{m=n=0}^{\infty} a_{m,n} z^m w^m \in \Gamma^2$ and $g(z,w) = \sum_{m=0}^{\infty} b_{m,n} z^m w^n \in \Gamma^2$, define d(f,g) = $\sup\{|a_{0,0}-b_{0,0}|, |a_{m,n}-b_{m,n}|^{1/m+n}: m+n \ge 1\}.$ <u>Theorem 1.5</u>. The space (Γ^2, d) is a metric space. Proof. Given f, g as in Definition 1.4, the set $\{|a_{m,n}-b_{m,n}|^{1/m+n}: m+n \ge 1\}$ is a bounded set by Lemma 1.3, so d is well defined. It is clear that d(f,g) = 0 if and only if f = gand that d(f,g) = d(g,f). Let $h(z,w) = \sum_{m,n=0}^{\infty} c_{m,n} z^m w^n \in \Gamma^2$. Then $d(f,h) = \sup\{|a_{0,0} - c_{0,0}|, |a_{m,n} - b_{m,n}|^{1/m+n} : m+n \ge 1\} =$ $\sup\{ \left| (a_{0,0}^{-b}b_{0,0}) + (b_{0,0}^{-c}c_{0,0}) \right|, \left| (a_{m,n}^{-b}b_{m,n}) + (b_{m,n}^{-c}c_{m,n}) \right|^{1/m+n} : m+n \ge 1 \}$ $\leq \sup\{|a_{0,0}-b_{0,0}|+|b_{0,0}-c_{0,0}|, |a_{m,n}-b_{m,n}|^{1/m+n}+|b_{m,n}-c_{m,n}|^{1/m+n}$ $m+n \ge 1 \le \sup\{|a_{0,0}-b_{0,0}|, |a_{m,n}-b_{m,n}|^{1/m+n}: m+n \ge 1\} + \sup\{|a_{0,0}-b_{0,0}|, |a_{m,n}-b_{m,n}|^{1/m+n}: m+n \ge 1\}$

100

 $\{|b_{0,0}-c_{0,0}|, |b_{m,n}-c_{m,n}|^{1/m+n}: m+n \ge 1\} = d(f,g) + d(g,h).$ Hence d is a metric on Γ^2 .

<u>Section 2</u>. The class of continuous linear functionals on Γ^2 .

<u>Definition 2.1</u>. A function F from Γ^2 to \mathscr{C} (complex plane) is a linear functional if and only if for all f,g $\in \Gamma^2, \alpha \in \mathscr{C}$, F(f+g) = F(f)+F(g) and F(α f) = α F(f).

Definition 2.2. A function F from Γ^2 to \emptyset is said to be continuous at f $\epsilon \Gamma^2$ if and only if for any $\epsilon > 0$ there exists a $\delta > 0$ such that if g $\epsilon \Gamma^2$ and d(f,g) < δ , then $|F(f)-F(g)| < \epsilon$.

<u>Definition 2.3.</u> A function F from Γ^2 to $\not c$ is said to be continuous if and only if it is continuous at each f $\epsilon \Gamma^2$.

Lemma 2.4 The series $\sum_{m+n=0}^{\infty} a_{m,n}b_{m,n}$ converges for all sequences $\langle a_{m,n} \rangle_{m+n=0}^{\infty}$ such that $\lim_{m+n \to \infty} |a_{m,n}|^{1/m+n} = 0$ if and only if $\langle |b_{m,n}|^{1/m+n} \rangle_{m+n=1}^{\infty}$ is a bounded sequence.

<u>Proof</u>. Let $<|b_{m,n}|^{1/m+n} >_{m+n=1}^{\infty}$ be a bounded sequence and $<a_{m,n} >_{m+n=0}^{\infty}$ be such that $\lim_{m+n\to\infty} |a_{m,n}|^{1/m+n} = 0$. Choose M > 0 such that $|b_{m,n}|^{1/m+n} \le M$ if m+n ≥ 1 and then N ≥ 0 such that m+n > N \Rightarrow $|a_{m,n}|^{1/m+n} \le \frac{1}{2M}$. Then if m+n > N, $|a_{m,n}b_{m,n}| \le \frac{1}{(2M)^{m+n}} \cdot M^{m+n} = \frac{1}{2^{m+n}}$.

Therefore $\sum_{m+n=N+1}^{\infty} |a_{m,n}b_{m,n}| \le \sum_{m+n=N+1}^{\infty} \frac{1}{2^{m+n}} < \infty$.

Hence the series $\sum_{m+n=0}^{\infty} a_{m,n} b_{m,n}$ converges absolutely, hence it

converges.

Conversely suppose for any sequence $\langle a_{m,n} \rangle_{m+n=0}^{\infty}$ such that $\lim_{m+n \to \infty} |a_{m,n}|^{1/m+n} = 0, \text{ the series } \sum_{m+n=0}^{\infty} a_{m,n} b_{m,n} \text{ converges. If}$ $\langle |b_{m,n}|^{1/m+n} \rangle_{m+n=1}^{\infty}$ is not bounded, for each k $\in \mathbb{Z}^+$ there exists an (m_k, n_k) such that $|b_{m_k, n_k}|^{\frac{1}{m_k+n_k}} > k$ and $\langle m_k+n_k \rangle_{k=1}^{\infty}$ is strictly increasing. Choose $a_{m,n} = 0$ if $(m,n) \neq (m_k, n_k)$, $a_{m_k, n_k} = k^{\frac{1}{m_k+n_k}}$. Then $\lim_{m+n \to \infty} |a_{m,n}|^{1/m+n} = \lim_{m_k} m_{n_k} + n_k |a_{m_k, n_k}|$ $\frac{1}{m_k+n_k} = \lim_{k \to \infty} \frac{1}{k} = 0$. But $|a_{m_k, n_k} b_{m_k, n_k}| > 1$ for each k so $\sum_{m+n=0}^{\infty} a_{m,n} b_{m,n}$ does not converge. Therefore $\langle |b_{m,n}|^{1/m+n} >_{m+n=1}^{\infty}$ is bounded. The series $\Sigma a_{m,n} b_{m,n}$ does not converge since the only $\neq 0$ terms are > 1 and there are an infinite number of them,

We now characterize the class of continous linear functionals on Γ^2 .

Theorem 2.5. Let F be a function from Γ^2 to the complex plane. Then F is a continous linear functional on Γ^2 if and only if there is a unique sequence $\langle b_{m,n} \rangle_{m+n=0}^{\infty}$ such that $\langle |b_{0,0}|, |b_{m,n}|^{1/m+n} \rangle_{m+n=1}^{\infty}$ is bounded and such that for all $f(z,w) = \sum_{m+n=0}^{\infty} a_{m,n} z^m w^n \in \Gamma^2$,

$$F(f) = \sum_{m+n=0}^{a_{m,n}b_{m,n}}$$

<u>Proof</u>. Let $<|b_{0,0}|$, $|b_{m,n}|^{1/m+n} >_{m+n=1}^{\infty}$ be a bounded sequence, M > 0 be such that $|b_{0,0}| < M$, $|b_{m,n}|^{1/m+n} < M$, $m+n \ge 1$ and $f(z,w) = \sum_{m+n=0}^{\infty} a_{m,n} z^m w^n \epsilon \Gamma^2. \text{ Then } \lim_{m+n\to\infty} |a_{m,n}|^{1/m+n} = 0 \text{ so}$ Σ a b converges by Lemma 2.4. Hence we may define m+n=0a function F from Γ^2 to the complex plane by F(f) = $\sum_{m+n=0}^{\infty} a_{m,n} b_{m,n}$. It is clear that F is a linear functional. Let $\varepsilon > 0$ and $f(z,w) = \sum_{m+n=0}^{\infty} a_{m,n} z^m w^n \epsilon \Gamma^2$ be given. We show there exists a $\delta > 0$ such that if g $\epsilon \Gamma^2$ and $d(f,g) < \delta$, then $|F(f)-F(g)| < \varepsilon$. Choose $\delta > 0$ such that $\delta M < 1$ and $\delta M + \left(\frac{\delta M}{1-\delta M}\right)^2 < \epsilon$. Then if $g(z,w) = \sum_{m+n=0}^{\infty} C_{m,n} z^m w^n \epsilon \Gamma^2$ and $d(f,g) < \varepsilon, |F(f)-F(g)| = |F(f-g)| = \left| \sum_{m+n=0}^{\infty} (a_{m,n}-C_{m,n})b_{m,n} \right|$ $\leq |a_{0,0}^{-C}-C_{0,0}|M + \sum_{m+n=1}^{\infty} |a_{m,n}^{-C}-C_{m,n}|M^{m+n}$ $\leq \delta M + \sum_{m+n=1}^{\infty} (\delta M)^{m+n}$ $= \delta M + \sum_{m=1}^{\infty} (\delta M)^m \sum_{n=1}^{\infty} (\delta M)^n$ $= \delta M + \left(\frac{\delta M}{1-\delta M}\right)^2 < \varepsilon$. Conversely, let F be a continuous linear functional on Γ^2 .

Let $F(z^m w^n) = b_{m,n}$ for all $m+n \ge 0$. Given $f(z,w) = \sum_{m+n=0}^{\infty} a_{m,n} z^m w^n$, let $f_N(z,w) = \sum_{m+n=0}^{N} a_{m,n} z^m w^n$. Then $d(f_N,f) = \sup\{|a_{m,n}|^{1/m+n}: m+n \ge N\} \rightarrow 0$ as $N \rightarrow \infty$ so by the continuity of F, $F(f_N) \rightarrow F(f)$ as $N \rightarrow \infty$. But $F(f_N) = \sum_{m+n=0}^{\infty} a_{m,n}b_{m,n}$. Therefore $\lim_{N \to \infty} \sum_{m+n=0}^{N} a_{m,n}b_{m,n} = F(f)$. Hence $\sum_{m+n=0}^{\infty} a_{m,n}b_{m,n}$ converges and $F(f) = \sum_{m+n=0}^{\infty} a_{m,n}b_{m,n}$. By Lemma 2.4, the sequence $\langle |b_{0,0}|^{1/m+n} \rangle_{m+n=1}^{\infty}$ is bounded. Suppose $\langle C_{m,n} \rangle \sum_{m+n=0}^{\infty} a_{m,n}z^m w^n \in \Gamma^2$, $F(f) = \sum_{m+n=0}^{\infty} a_{m,n}C_{m,n}$, then for $j, k \in Z_+$, $F(z^{j}w^k) = C_{j,k}$. But $F(z^{j}w^k) = b_{j,k}$. Hence $C_{ik} = b_{i,k}$ and the sequence is unique.

Section 3. The class of continuous scalar homomorphisms on Γ^2 . Let f,g $\in \Gamma^2$, $\alpha \in \emptyset$ (complex field). Define (f+g)(z,w) = f(z,w) + g(z,w), $(f \cdot g)(z,w) = f(z,w)g(z,w)$, $(\alpha f)(z,w) = \alpha \cdot f(z,w)$. Then Γ^2 becomes a commutative algebra with a unit. In this section we characterize the continuous linear functionals on Γ^2 that preserve multiplication. That is the continuous scalar homomorphisms on Γ^2 .

Lemma 3.1. Given $\varepsilon > 0$ and (b,c) $\varepsilon \not c x \not c$, there exists a $\delta > 0$ such that if f, g $\varepsilon \Gamma^2$ and d(f,g) < δ , then $|f(b,c)-g(b,c)| < \varepsilon$.

 $\begin{array}{l} \underline{\operatorname{Proof}} & \text{Given } \varepsilon > 0 \text{ and } (b,c) \ \varepsilon \ \mathscr{C} \times \mathscr{C}, \ \operatorname{let } R = \max\{|b|,|c|\} \\ \operatorname{choose } \delta > 0 \text{ such that } \delta R < 1 \text{ and } \delta + \left(\frac{\delta R}{1-\delta R}\right)^2 < \varepsilon & \text{Then if} \\ f(z,w) = \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \text{ and } g(z,w) = \sum_{m,n=0}^{\infty} b_{m,n} z^m w^n \text{ are in } \Gamma^2 \\ \operatorname{and } d(f,g) < \delta, \ |f(b,c)-g(b,c)| = |\sum_{m+n=0}^{\infty} (a_{m,n}-b_{m,n}) b^m c^n| \\ \leq |a_{0,0}-b_{0,0}| + \sum_{m+n=1}^{\infty} |a_{m,n}-b_{m,n}| R^{m+n} < \delta + \sum_{m+n=1}^{\infty} (\delta R)^{m+n} = \end{array}$

104

ENTIRE FUNCTIONS OF TWO VARIABLES

$$\delta + \sum_{m=1}^{\infty} (\delta R)^m \sum_{n=1}^{\infty} (\delta R)^n = \delta + \left(\frac{\delta R}{1 - \delta R}\right)^2 < \epsilon.$$

<u>Theorem 3.2</u>. Let F be a function from Γ^2 to \emptyset , F \ddagger 0. Then F is a continuous scalar homorphism on Γ^2 if and only if there exists a unique (b,c) $\varepsilon \notin x \notin$ such that for all f(z,w) =

 $\sum_{\substack{m,n=0}}^{\infty} a_{m,n} z^m w^n \in \Gamma^2,$

$$F(f) = f(b,c)$$
.

<u>Proof</u>. Let F be a $\ddagger 0$ continuous scalar homomorphism on Γ^2 . By Theorem 2.5, there is a unique sequence $< b_{m,n} >_{m+n=0}^{\infty}$ such that

for all
$$f(z,w) = \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \in \Gamma^2$$
, $F(f) = \sum_{m+n=0}^{\infty} a_{m,n} b_{m,n}$. For
each m and n, $b_{m,n} = F(z^m w^n) = F(z)^m F(w)^n = b_{1,0}^m b_{0,1}^n$. Therefore

$$F(f) = \sum_{m+n=0}^{\infty} a_{m,n} b_{1,0}^{m} b_{0,1}^{n} = f(b_{1,0}^{n} b_{0,1}^{n}).$$

Conversely, given (b,c) $\epsilon \not \ll \not \ll$, define a function F from Γ^2 to $\not \ll$ by F(f) = f(b,c). Then F is clearly a $\ddagger 0$ scalar homomorphism. Given $\epsilon > 0$, let $\delta > 0$ be such that if f,g $\epsilon \Gamma^2$ and d(f,g) $< \delta$, then $|f(b,c)-g(b,c)| < \epsilon$. Then |F(f)-F(g)| = |F(f-g)| = $|(f-g)(b,c)|=|f(b,c)-g(b,c)| < \epsilon$. Hence F is continuous.

```
Section 4. The class of bounded linear functionals on \Gamma^2.
```

<u>Definition 4.1</u>. Let F be a linear functional on Γ^2 . Then F is said to be bounded if and only if there exists an M \ge 0 such

W. C. SISARCICK

that for all $f \in \Gamma^2$, $|F(f)| \leq Md(f, 0)$. Here, 0 denotes the function identically zero on & x & &.

Lemma 4.2. Let F be a linear functional on Γ^2 . If F is bounded, F is continuous but not conversely.

<u>Proof</u>. Let F be a bounded linear functional on Γ^2 . Let $f_0 \in \Gamma^2 \in 0$ be given and let $M \ge 0$ be such that for all $f \in \Gamma^2$, $|F(f)| \le Md(f,0)$. Choose $\delta = \epsilon/M+1$. Then if $g \in \Gamma^2$ and $d(f_0,g) < \delta$, $|F(f_0)-F(g)| = |F(f_0-g)| \le Md(f_0-g,0) \le (m+1)d(f_0,g) < (M+1) \delta < \epsilon$. Therefore F is continuous at f_0 . Hence F is continuous.

For an example of a continuous linear functional that is not bounded, let $b_{m,n} = n$. Then $<|n|^{1/m+n} >_{m+n=1}^{\infty}$ is a bounded sequence.

Define a function F from Γ^2 to $\not C$ by F ($\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n$) = $\sum_{m+n=1}^{\infty} na_{m,n}$. By Theorem 2.5, F is a continuous linear functional on Γ^2 . If F

is bounded, there exists an $M \ge 0$ such that $|\sum_{m+n+1}^{\infty} na_{m,n}| \le M$ sup $\{|a_{0,0}|, |a_{m,n}|^{1/m+n} : m+n \ge 1\}$ for all $\langle a_{m,n} \rangle_{m+n=0}^{\infty}$ such that $|a_{m,n}|^{1/m+n} \rightarrow 0$ as $m+n \rightarrow \infty$. Let $k \in \mathbb{Z}^+$, $k > max\{M,2\}$. Let $a_{0,k} = k, a_{m,n} = 0$ if (m,n) = (0,k). Then $|a_{m,n}|^{1/m+n} \rightarrow 0$ as

 $m+n \rightarrow \infty$ since the sequence has only one non-zero term. But

$$\begin{split} &|\sum_{m+n=1}^{\infty}na_{m,n}| = k^2, \ \text{M sup}\{|a_{0,0}|, \ |a_{m,n}|^{1/m,n} : m+n \geq 1\} = \\ & \text{M} \bullet k^{1/k} < k \bullet k^{1/k} < k \bullet k^{1/k} < k^2, \ \text{a contradiction.} \quad \text{Hence F is not} \\ & \text{bounded.} \end{split}$$

Definition 4.3. Let B denote the class of bounded linear functionals on Γ^2 . For F,G ϵ B, $\alpha \in \emptyset$, f $\epsilon \Gamma^2$, define (F+G) (f) = F(f) = G(f), (α F)(f) = $\alpha \cdot F(f)$, $||F|| = \inf\{M \ge 0 | \text{ for all } f \in \Gamma^2, |F(f)| \le Md(f, 0)\}.$

Theorem 4.4. With respect to Definition 4.3, B is a normed linear space.

<u>Proof</u>. Let F ϵ B. Then $|F(f)| \leq ||F|| d(f,0)$ for all F $\epsilon \Gamma^2$. If not, for some $f_0 \epsilon \Gamma^2$, $|F(f_0)| > ||F|| d(f_{0,0})$. Then $d(f_0,0) \neq 0$ so choose $\epsilon > 0$ such that $|F(f_0)| = ||F||d(f_0,0) + \epsilon d(f_0,0)$. By Definition of ||F||, there exists an M ≥ 0 such that $|F(f)| \leq Md$ (f,0) for all f $\epsilon \Gamma^2$ and $||F|| + \epsilon > M$. Then $d(f_0,0)(||F|| + \epsilon)$ $= |F(f_0)| \leq Md(f_0,0)$. Hence $||F|| + \epsilon \leq M$, a contradiction. Therefore $|F(f)| \leq ||F||d(f,0)$ for all f $\epsilon \Gamma^2$ and ||F|| is the smallest number to satisfy this inequality for all f $\epsilon \Gamma^2$.

For F, G \in B, $\alpha \in \emptyset$, F+G and α F are clearly linear functionals on Γ^2 . For f $\in \Gamma^2$, $|(F+G)(f)| = |F(f)+G(f)| \le |F(f)| + |G(f)| \le$ ||F|| d(f,0) + ||G|| d(f,0) = (||F|| + ||G||) d(f,0). Hence F+G \in B and $||F+G|| \le ||F|| + ||G||$. Also $|(\alpha F)(f)| = |\alpha \bullet F(f)| =$ $|\alpha| |F(f)| \le |\alpha| ||F|| d(f,0)$. Hence $\alpha F \in$ B and $||\alpha F|| \le |\alpha|$ ||F||. Suppose it is possible to have $||\alpha F|| < |\alpha| ||F||$. Choose $\epsilon > 0$ such that $||\alpha F|| + \epsilon |\alpha| ||F|| = |\alpha| ||F||$. Then for all f $\epsilon \Gamma^2$, $|\alpha| |F(f)| = |(\alpha F)(f)| \le ||\alpha F||d(f,0) = (1 - \epsilon) |\alpha|$ ||F|| d(f,0). Therefore $|F(f)| \le (1 - \epsilon) ||F|| d(f,0)$, a contradiction. Hence $||\alpha F|| = |\alpha| ||F||$.

It is clear that $||\cdot||$ evaluated at the zero linear functional on Γ^2 is 0 and if ||F|| = 0 then |F(f)| = 0 for all f $\epsilon \Gamma^2$, hence F = 0. Also the remaining properties required for B to be a normed linear space follow trivially. Hence B is a normed linear space with respect to Definition 4.3. <u>Theorem 4.5</u>. Let F be a function from Γ^2 to \emptyset . Then F ϵ B if and only if there exists unique $(a,b,c,) \epsilon \notin x \notin x \notin y$ such that for all $f(z,w) = \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \epsilon \Gamma^2$,

$$F(f) = a_{0,0}a + a_{1,0}b + a_{0,1}c.$$

Also, ||F|| = |a| + |b| + |c|.

<u>Proof</u>. Let F ϵ B. Then F is continuous so there exist a unique sequence $\langle b_{m,n} \rangle_{n+n=0}^{\infty}$ such that F $(\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n) = \sum_{m+n=0}^{\infty} a_{m,n} b_{m,n}$

and $|\sum_{m+n=0}^{\infty} a_{m,n} b_{m,n}| \le ||F|| \sup\{|a_{0,0}|, |a_{m,n}|^{1/m+n}: m+n \ge 1 \text{ for } ||F|| \le 1 + n \le 1$

all sequences $\langle a_{m,n} \rangle_{m+n=0}^{\infty}$ such that $|a_{m,n}|^{1/m+n} \rightarrow 0$ as $m+n \rightarrow \infty$. Suppose $b_{k,j} \neq 0$ for some (k,j) with $k+j \geq 2$. Choose $a_{m,n} = 0$ if $(m,n) \neq (k,j)$ and choose $a_{k,j}$ such that ||F|| > 0

$$|a_{k,j}|^{1-\frac{1}{k+j}} \cdot |b_{k,j}|$$
. Then $|a_{m,n}|^{1/m+n} \rightarrow 0$ as $m+n \rightarrow \infty$,

$$\begin{aligned} & \sum_{m+n=0}^{\infty} a_{m,n} b_{m,n} | = |a_{k,j} b_{k,j}| \le ||F|| ||a_{k,j}|^{\frac{1}{k+j}} & \text{Therefore} \\ & |a_{k,j}|^{1-\frac{1}{k+j}} \cdot |b_{k,j}| \le ||F||, \text{ a contradiction. Hence } b_{k,j} = 0 \\ & \text{if } k+j \ge 2. & \text{Hence } F \left(\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \right) = a_{0,0} b_{0,0} + a_{1,0} b_{1,0} + \\ & a_{0,1} b_{0,1} \cdot & \text{Also } |F(\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n)| \le |a_{0,0}| ||b_{0,0}| + \\ & |a_{1,0}| ||b_{1,0}| + ||a_{0,1}| ||b_{0,1}|| \le (|b_{0,0}| + ||b_{1,0}|| + ||b_{0,1}||) d(f,0) \\ & \text{Therefore } ||F|| \le |b_{0,0}| + ||b_{1,0}| + ||b_{0,1}|| & \text{To show equality} \\ & \text{here, it sufficies to show there exists an } f_0 \in \Gamma^2 \text{ such that} \\ & |F(f_0)| = (|b_{0,0}| + ||b_{1,0}|| + ||b_{0,1}||) d(f_0,0) & \text{If } b_{0,0} = \\ & |b_{0,0}| e^{\frac{1}{10}}, b_{1,0}| = ||b_{1,0}| e^{\frac{1}{10}}, b_{0,1}| = ||b_{0,1}|| e^{\frac{1}{10}}, \text{ choose} \\ & f_0(z,w) = e^{-\frac{1}{10}} + e^{-\frac{1}{10}} z z e^{-\frac{1}{10}} w. & \text{Then } |F(f_0)| = \\ & |b_{0,0}| + ||b_{1,0}| + ||b_{0,1}|| = (|b_{0,0}| + ||b_{1,0}|| + ||b_{0,1}||) d(f_0,0) \\ & \text{ Conversely, given } (a,b,c) \in g g g g g, d e \text{ fine a function F from} \\ & \Gamma^2 \text{ to } g \text{ by } F(f) = a_{0,0}a + a_{1,0}b + a_{0,1}c, f(z,w) = \\ & \sum_{m,n=0}^{\infty} a_{m,n} z^m w^n \in \Gamma^2. & \text{By Theorem 2.5, F is a continuous linear} \\ & \text{functional on } \Gamma^2. & \text{Since } |F(f)| \le |a_{0,0}| ||a| + |a_{1,0}| ||b| + \\ & |a_{0,1}| ||c| \le (|a| + |b| + |c|) d(f,0), F \in B. \end{aligned}$$

<u>Corollary 4.6</u>. With respect to Definition 4.3, B is a Banach space.

<u>Proof.</u> Let $\langle F_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in B, F_n corresponding to (a_n, b_n, c_n) . Then for any $\varepsilon > 0$, there exists an N = N(ε) such that m,n > N(ε) $\Rightarrow ||F_n - F_m|| < \varepsilon$. That is $|a_n - a_m| + |b_n - b_m| + |c_n - c_m|$ $< \varepsilon$. Hence each of $\langle a_n \rangle$, $\langle b_n \rangle$, $\langle c_n \rangle$ is a Cauchy sequence. Let $a_n \rightarrow a$, $b_n \rightarrow b$, $c_n \rightarrow c$ as $n \rightarrow \varphi$. Define a function F from Γ^2 to \emptyset by

$$F(\sum_{m,n=0}^{\infty} a_{m,n} z^m w^n) = a_{0,0} a + a_{1,0} b + a_{0,1} c$$
. By Theorem 4.5, $F \in B$.

Given $\varepsilon > 0$, there exists an $N = N(\varepsilon)$ such that $|a_m - a| + |b_m - b_n|$ + $|c_m - c_n| < \varepsilon/2$ if $m, n > N(\varepsilon)$. Let $m \to \infty$ to get $|a - a_n| + |b - b_n|$ + $|c - c_n| \le \varepsilon/2$ if $n > N(\varepsilon)$. Hence given $\varepsilon > 0$, there exists an $N = N(\varepsilon)$ such that if $n > N(\varepsilon)$, $|a - a_n| + |b - b_n| + |c - c_n| < \varepsilon$. That is $||F_n - F|| < \varepsilon$. Therefore B is a Banach Space.

$$f(z,w) = \sum_{m,n=0}^{\infty} a_{m,n} z^{m} w^{n} \in \Gamma^{2}. \text{ Let } \Psi(F) = (a,b,c). \text{ The following}$$

theorem is straightforward to prove so the proof is omitted

<u>Theorem 3.4.7</u>. The spaces B and $\pounds x \pounds x \pounds$ are isometrically isomorphic Banach spaces.

REFERENCES

- 1. Copson, E. T. <u>Theory of Functions of a Complex Variable</u>, Oxford Clarendon Press, 1935.
- Funks, B. A. <u>Theory of Analytic Functions of Several Complex Variables</u>, American Mathematical Society, Providence, 1963.

<u>ABSTRACT</u>. Three classes of linear functionals on the space of entire functions of two variables are characterized. Several results are proved.

<u>ACKNOWLEDGMENT</u>. This work was supported by a 1976 Marshall University Summer Research Grant.

KEY WORDS AND PHRASES. Space of entire functions, Metric space, continuous linear functional and continuous scalar homorphism.

AMS(MOS) SUBJECT CLASSIFICATIONS (1970). 30A66, 46E15.