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ABSTRACT. Expllcit L2 inequalltles are derived for second and third order

diffusion equations with Neumann boundary conditions. Such inequalities are

useful in approximating solutlons to partlal differential equations by the

method of a priori inequalltles.

1. INTRODUCTION.

In this paper we derive explicit a priori inequalities which are useful in

yielding approximate solutions, with norm or polntwlse error bounds, of the

Neumann initial-boundary value problem associated with the diffusion operator

Lu u u
t
and the related third order operator LlU A(u + ut) ut. These

inequalities complete a series of a priori inequalitles which are applicable to

the Dirichlet and Robin boundary value problems for parabolic and pseudoparabolic

operators [5], [6], [7], [8]. A priori inequalities for second order elliptic

operators with Dirichlet, Neumann or Robin boundary conditions have appeared in
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[], [2], [3].

A comprehensive treatment of explicit a priori inequalities and their appll-

cations is given in [ii] (also see [9], [i0]). Recently a priori inequalities

have been shown to be useful in yielding upper and lower bounds in classical

and Steklov eigenvalue problems [4].

Inequalities using more general parabolic and pseudoparabollc operators than

L or LI can be derived by the method presented here but we have chosen these

simpler cases to keep the derivations from becoming unnecessarily cluttered.

In the next section we introduce notation and then briefly describe the use

of the a priori inequalities to approximate solutions of boundary value problems.

The inequalities are then derived in the final section.

2. USE OF THE INEQUALITIES.

Our motivation for developing the a priori inequalities is the standard

Neumann problem

G in R,

u F on B, (2.1)

u
n H on S,

where denotes either L or LI, B is a region in n-dimenslonal Euclidean space

u_
is thewith boundary B, R is the time cylinder B )< (0,T], and

n u, lni
normal derivative on S B K (0,T] where (nl) is the unit outer normal vector

on S. A comma denotes differentiation and the summation convention is used so

that repeated in dlees are to be summed over that index from i to n.

Suppose for definiteness thatffi L, then problem (2.1) can be solved

approximately by the method of a priori inequalities providing the inequality

v2 dxdt < i v2 dx + 2 (n) dsdt + 3 (Lv)2dxdt’ (2.2)
R B S R
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can be obtained with explicit constants aI, a2, a3 which depend on R but not

on the function v which is an arbitrary smooth function.

The method of a priori inequalities puts

N
v u E ai i u- u

i=l a

into (2.2) for some set of test functions {i }. Here u denotes the solution of

(2. i). This leads to

(F-Ua(X’0))2dx + a2 (H ---)2dsdt + a3 RR
(U-Ua) 2dxdt < al

B S
(G_Lua) 2dxdt

(2.3)

in which the right-hand side is in terms of known quantities and the undeter-

mined coefficients ai, i=l,’’’,N. The right-hand side is now minimized with

respect to the a
i yielding an L2 bound on the error. Pointwise bounds are

obtainable from this L2 bound. The procedure for computing them is given in

detail in [5], [I0].

3. THE INEQUALITIES.

A. THE INEQUALITY FOR L. The desired inequality for the operator L is

< Cl u2 dx)1/2 + c2 ()2 dsdt)1/2 + c3 (Lu)2dxdt)1/2,
R S R

(3.1)

for an arbitrary function u e R, which is once continuously differentiable in

and twice continuously differentiable in x.

To obtain this inequality write u f + g + h where

Lf 0, Lg Lu, Lh 0, in R,

f u, g 0, h 0, on B,

8f g
0 8h _9_u-- 0, n -- n’ on S.
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Now substitute f, g, and h successively into the identity

2 dx 2 dx- 2 L dxd’r- 2 ’t ’t
0 BB

t
g 0 B

+2 I I % -dsdT
0 S

)n

where B ls the lntersectlon of R wlth t z and S B X (0,T].

Putting f into (3.2) yields

(3.2)

f2 dx <_
B B
t

u2 dx,

and integrating from t 0 to t T gives

f2 dxdt <_ T IR B
u2 dx. (3.3)

Puttlng g into (3.2) yields

g2 dx <- 2 g Lu dxdT < a g2 dxdT + a (Lu) 2

B
t

0 B 0 B 0 B
T T T

dxdx,

by the arithmetlc-geometric mean inequality for arbitrary positive a. Multiply-

lng by e and rearranging glves

g2 dxdT) < a e (Lu) 2 dxdT.
dt

0 B 0 B
T T

Integration wlth respect to t from 0 to T and multlpllcatlon by e
aT then gives
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t

g2 dxdt < a e (Lu) dxdx dt
R 0 0 B

a e e (Lu) 2 dxd dt
0 0 B

a (Lu) 2

0 B
dxdz

a (ea i)
0 B

(Lu) 2 dxdt

-2 (eaT< a i) (Lu) 2 dxdt,
R

where integration by parts was used in going from the first to the second llne

-i
above. Setting a 8T gives

g2 dxdt < B-2(eB i) | < | dxdt,T2 (Lu) 2 T2 (Lu) 2dxdt 1.544138653
R JR #R

(3.4)

with the optimal choice of 8 1.59362.

Finally, putting h into (3.2) yields

h2 dx 2 h,i h,i dxdz + 2 hn
dsdz

B
t

0 B 0 S

<- 2 h,i h,
i

0 B
T

t

+ I f h2 dsd.
0 $-r

-i u 2
dxd + a

0 S
T

dsdz

(3.5)
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Now introduce a continuously differential vector field fl which has the property

that min flnl b > 0 (see [i] and [2] for methods of constructing such vector
S

fields). Then,

I h2dx < b-I I h2finlds b-1 I (h2fl)’i
S S B

dE

b-i I h2fi i
+ 2b-I I h h,i fi dx

B B

<_b-I Ifi il l h2dx+ 2b-I (Ififil ] h2dx I h,lh,idx)1/2
MB M B B

(3.6)

< b ifiil h2dx + 2 h,ih,ldx + Iflfll h2dx.
MB B MB

T T T

where the subscript M denotes the maximum value of the function.

Using this inequality in (3.5) gives

t t

h2dx < (n) dsdT + (Ifi il b
-I + Ififil b-2) h2dxdT,(3.7)

B
0

S M M B
T 0 T

t

where in (3.5) we have chosen 1 to cancel out the term -2 I I h,ih,idxd
B

0 x

with that in (3.6). If we now define K Ifi,il
-Ktmultiply (3.7) by e we can write

1 2
b + ififi[ b- and

M M

t t

-6d (e-Kt f BI h2dxdz)< e-KtI-- Sf "u)2[n
0 0 z

dsd.

T
Integrating with respect to t from 0 to T and multiplying by e yields
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K.T
h2 dxdt < e

R

T t

0 0 S

dsdz dt

T

K-1 I (eK" (T-t)

0

8u 2
i) (n) dsdt

S
t

< K-I (eK.T u 2
) (-gin)

S

dsdt

(3.8)

2 I (8u’2C
2

S

dsdt,

where we have again used integration by parts in a similar manner to go from

the first to the second line above.

As an example of a choice of the vector field fi assume that B is star-

shaped with respect to an interior point which we take as the origin. Then we

could choose f
i xi’ since then nlxi > 0 on the boundary of B. The quantity

xlni is the distance from the origin to the tangent line at the point (xl). In

this case then fifll r21 for r the distance to the origin and Ifi i
n.

M M M
More specifically suppose B is a rectangle centered at the origin with sides of

length 2a and 2b. Choose fl x/a, f2 y/b. Then Iflfll M
-I

a + b- Thusfi,i
K 1 + i/a + i/b.

=2, t i and

Combining (3.3), (3.4) and (3.8) now yields the desired inequality (3.1)

with

cI T1/2, c
2

[K-l(eKY i)]%, C
3

1.242633757 T.



28 J. R. KUTTLER & V. G. SIGILLITO

B. THE INEQUALITY FOR LI. For the operator LI the a priori inequality

(I u2 dxdt)1/2 < cl(I (u2 + u’iu’i)dx)1/2 + c2(I
R B S

2 )1/2(u + ut) dsdt

+ c3(I (LIu) 2 dxdt)
R

can be developed in an entirely analogous manner. The starting point is the

identity

t

(2 + ,i,i)dx I (2 + ,i#,i)dx 2 I I L1 dxdT
B 0 B

T

2 I I #,i#,idxdT + 2
0 B 0 S

dsdT.

The derivation then exactly parallels that of (3.1) and we omit the details.
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