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CROSSCAPS AND KNOTS

BRADD EVANS CLARK

I. Introduction

Seifert demonstrated in 1934 that every knot can be spanned by

an orientable surface. These Seifert surfaces lead to numerous knot

invariants. The purpose of this paper is to demonstrate the existence

of a parallel theory concerning connected nonorientable surfaces.

These surfaces give rise to additional knot invariants.

If X is a point set we let cl(X) stand for the closure of X,

int(X) stand for the interior of X, and 8X stand for the boundary of X.

If S is a surface, let x(S) stand for the Euler characteristic of S.

If K is a knot in Euclidean 3-dimensional space, E3, let g(k) stand

for the genus of k as defined by Seifert in [4].

This paper deals with piecewise linear topology. As such, all

manifolds and maps will be considered to be piecewise linear.

Z. The Crosscap Number

Let k be a knot in

the orthogonal projection.
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intersects k in at most two points; and if
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-1
r (x) 0 k contains two points, neither is a vertex of k. Reidemeister

in [3] described the fcheckerboard surfaces f associated with a regular

projection of k.

Theorem 2. I. If k is a nontrivial knot and E
Z

is any plane

which is regular for k, then at least one of the associated checkerboard

surfaces is nonorientable.

Proof: Let us call the checkerboard surfaces associated with

E
3

E
Z

k and the orthogonal projection S1 and $2. At each

crossing of k, both S
1

and S
2

contain a disk which is twisted with

respect to r. We place an orientation on k. Then one of the twisted

disks must disagree with the orientation given k.

the surface which contains that twisted disk

Suppose that S1 is

Figure 1

If S
1

is orientable, then we can use the orientation of the

surface to reorient the knot. At the crossing under consideration, we
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would have to leave one arc of k with the same orientation and another

arc of k would have to change its orientation. Since k is a simple

closed curve, this is a contradiction. Therefore S
1

is nonorientable.

Consider a nonorientable surface S which spans a knot k. If

we were to sew a disk to S, we would obtain a nonorientable closed

?--manifold. This manifold could be considered as the connected sum

of n projective planes. Let C(S) 1 (S) n.

Definition: The crosscap number of a knot k, C(k), is the

minimum value for

spanning k in E3.
C(S) where S stands for any nonorientable surface

For completeness we shall define C(k) 0 if

and only if k is the unknot.

Proposition Z.Z. C(k) 1 if and only if k is a (2, n) cable

knot.

Proof: If C(k) I, then there is a MObius band B which

spans k. The centerline of B is a knot, which makes k a (2, n)

cable about that knot. If k is a (g,n) cable about a knot, the construc-

tion of a spanning Mbius band is clear.

A study of embeddings of MJbius bands in S
3

was made by

Kyle in [Z ].

Corollary g. 3. There exist knots of arbitrarily large genus

with C(k)= I.
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If S is a nonorientable surface spanning a knot k, we can

think of S as a disk D and a collection of handles {hi}. Aso, D h.
1

will consist of two arcs, ail and ai2. We can find an embedding f

S
3

of D X I into such that f(D X {1/2}) D and f(DX I) h
i ail U aiz

for all i. We can also find a collectinn of embeddings f. of h. I
1 1

fi(hi X {zl--}) hi, fi(hi X I) ] fj(hj I) if i # j, andsuch that

f(D X I) fl fi(hi I) f((ail U ai2 x I) fi((ail U ai2 X I).

n
Definition: We define D(S), the double of S, to be

fi(hi x {0, I}) U f(D x (0, I)).

Theorem 2.4. D(S) is a connected orientable surface which

has a cable link of two components about k for its boundary and

double covers S.

Proof: It is clear that D(S) double covers S since it does

so locally Also D(S) is connected since S contains a nonorientable

handle, which causes D(S) to contain two handles connecting f(D X { 0})
n

to f(D X {I}). Let M U fi(hi x I) U f(D x I). Then M is a
i=l

S
3

3-manifold with boundary embedded in S
3

D(S) c 8M c which

implies that D(S) is orientable. Also the knot k c 8M. Since

is orientable, and 8M D(S) is a regular neighborhood of k in 8M,

81V[ D(S) is an annulus So 8D(S) is a link.
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Let 8D(S) be the two simple closed curves

II and 12 are isotopic to k and in fact are

The value of n will depend upon the surface

(l,n)

S.

1 and Z" Clearly

cables about k.

Definition: A k-triple (Cn, A, ) is a cube-with-n-holes,

possibly knotted, C a nonseparating annulus A c 8C and a
n n

fixed point free involution on c1(8C A), such that identifying
n

each point x e c1(8C A) with (x) will yield a cube-with-k-knotted
n

hold.

Theorem Z. 5. C(k) n if and only if the minimal number of

holes needed for a k-triple is n.

Proof: Let S be a nonorientable surface spanning k. We

construct D(S) as described above and find a regular neighborhood

of k in S3, N(k), with 8D(S) c 8N(k) and N(k) S a collar for

in S.

D(S) separates the cube-with-kknotted hole,
n

into two pieces. One piece is 0 fi(hi ) I) f(D I)

cube-with-n-handles. Since U fi(hi x I) U f(D x I) U N(k)
n i=l

morphic to 0 fi(hi I) U f(D I), we must have that
i=l

c1(S
3

N(k)),

which is a

n

Cn c1($3 U fi(hi x I) U f(D x I) U N(k))) is a cube-with-n
i=l

8C
n

is homeo-

holes.

D(S)UA where A is an annulus contained in 8N(k).

Since by Theorem 2.4, D(S) is connected, A must be a nonseparating

annulus.
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Finally we note that D(S) is a double cover of S. Let P be

the natural projection from D(S) to S. If x S we can find exactly

two points x 1, xz D(S) such that P(Xl) P(xz) x. Define

-: D(S}--D{S} by -(Xl} =xz and r{xz) =x1. Clearly r is a fixed

point free involution on cl(0C A) D(S), and identifying x

with r(x) will yield a cube-with-k-knotted hole. Thus (C ,A,n) is
n

a k-triple, and the number of holes in C depends on the number of
n

handles in S. Thus the minimal number of holes needed for a k-triple

is less than or equal to C{k).

Now let (Cn, A, ) be a k-triple. We perform the identification

which yields a cube-with-k-knotted hole. We think of k as lying in the

boundary of the cube-with-k-knotted hole, and note that the image of

cl(0C A} is a 2-manifold S which spans k. C can be reconstructed
n n

by removing an open regular neighborhood of S from the cube-with-k-

knotted hole. If S were orientable, then the annulus A from the k-triple

will separate OC Thus S must be nonorientable and the number of
n

holes in C is greater than or equal to C(k).
n

The importance of k-triples to covering space theory will be

demonstrated in the next section.

Mark Kidwell has pointed out that any orientable surface spanning

a knot can be changed to a nonorientable surface by performing

Reidemeister move on the projection. By adding a trivial loop we can



CROSSCAPS AND KNOTS 119

add a nonorientable handle to the surface. This means that the cross-

cap number of a knot is bounded by the genus of the knot.

proposition Z. 6. C(k) < Zg(k) + i.

Proof: Let S be an orientable surface of minimal genus span-

ning k. Then x(S) 1 Zg(k). By changing the surface to a

nonorientable surface as described above we obtain S’ with

x(S’) -Zg(k). So C(S’) Zg(k) + I.

Question: Do there exist knots for which C(k) Zg(k) + 17

Could the alternating pretzel knots have this property?

Let k
1

and kz be knots. We let k
1 # kz stand for the

"connected sum" of k I and k
2. Suppose that S

1

maximal Euler characteristic spanning k
1

and S

maximal Euler characteristic spanning k2.

is a surface of

is a surface of
Z

Lemma Z. 7. The maximal Euler characteristic for a surface

spanning k I # k
2

is x(SI)+x(Sz)- I.

A proof of this lemma can be found in [1].

Theorem 2.8. C(kl) + C(kz) 1 <C(k I # kz) <C(kl) + C(kz).

k I

Proof: Applying Lemma 2. 5 to a nonorientable surface spanning

and a nonorientable surface spanning k
2

gives us that
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C(k I # k2.) < C(kI) + C(k2. ). In fact, if these surfaces are of maximal

Euler characteristic for those spanning k
I and kg, we get equality.

However, if one of these knots, say kl, has C(kl) gg(kl) + I, we

can replace the nonorientable surface spanning k
I by an orientable

surface of maximal Euler characteristic. By Lemrna 2.. 5 we’d then

have C(k I # k2.) C(kl) + C(kz) I.

3. Covering Space Theory

Seifert used his orientable spanning surfaces to form various

covering spaces. In a like manner we shall use our nonorientable

surfaces to form various covering spaces. As we saw in Theorem 2.5,

each nonorientable spanning surface can be associated with a k-triple.

Let (C A,=) and (C’ A’ ’)n’ n’

id c1(8C A)-- c1(8C’ A’)n n

be i’dentical copies of a k-triple.

be the identity map.

Let

Theorem 3.1. Identifying x e cl(SCn A) with =’(idx))e c1(8C- A’)

forms a two-fold cover C of a cube-with-k-knotted hole K.

Proof: Obviously int C int C’ is a double cover of int(K S),
n n

A A’ is a double cover of 8K, and ci(8C A) cI(8C’ A’) is a
n n

double cover of S. All we need to show is that these double covers

agree. Let x e S and N(x) a ball about x which is split into a left

half and a right half by S. Then N(x) will lift to a left half ball and

a right half ball in C and a left half ball and a right half ball in C’.
n n
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But ’(id(N(x) f) S)) sews the left half ball of C to the right half ball
n

of C’ and the right half ball of C to the left half ball of C’. So
n n n

indeed we have a double cover of K.

Of course, any covering space of C is also a covering space

of K. Thus we really have an infinite number of covering spaces

associated with the nonorientable surface S.

space.

The C in Theorem 3. 1 is a fundamental region in our covering
n

A similar situation occurs in Seifert’s covering spaces. If S

is an orientable surface spanning k, then N(S), a regular neighborhood

of S in K will be a cube-with-handles. Thus a fundamental region in

the usual cyclic coverings is also a cube-with-holes.

In this light, the question in Section 2, asking if there is a knot

k with G(k) 2g(k) + 1, translates to "does there exist a knot k all

of whose double covers with fundamental region having the fewest

possible number of holes are associated with orientable surfaces ?’t.

Theorem 3.2. For any knot k, and any integer n, there exists

a nonorientable surface S such that 3D(S) has linking number n.

and be the boundary curves for D(S’) whereProof: Let 1
S’ is any nonorientable surface spanning the knot k. Then since 1. is

isotopic to k in the complement of 1 in S
3

the linking number of

"1 with 2 is the same as the linking number of 1 with k.
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We can change k in an arbitrarily small neighborhood by

adding a trivial loop. This will change the surface S’ to a surface

S which has one more handle and agrees with S’ except in an

arbitrarily small neighborhood.
/ ," ,,/

Figure 2

If 11 and I
Z

are the boundary components of D(S), we have

that I
1

and 1z agree with ll and "2 in all but an arbitrarily small

neighborhood, and the linking number of "l with Iz is either one more

withor one less than the linking number of I f2"
This theorem shows that we can find a double cover of a cube-

with-k-knotted hole which has a cube-with-n-holes for a fundamental

region for any n > C(k).
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